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Abstract

We prove the existence of two 2×2 real matrices such that all periodic products of
these matrices converge to zero but there exists an infinite product that does not. We
outline implications of this result for the stability of switched linear systems, and for
the finiteness conjecture.

Remark: This is a conference version of a paper submitted for publication. Proofs of the

results can be found in the journal version [3].

1 Introduction

In this contribution, we prove the existence of switched linear systems that are periodically

stable but are not absolutely stable. The switched linear system associated to the finite set

of real matrices {Ap : p ∈ P} is given by

xt+1 = Aσ(t)xt.

Starting from the initial state x0, the trajectory associated to the switching function σ :

N→ P is given by

xt+1 = Aσ(t) · · ·Aσ(0)x0

A switched linear system is absolutely stable if trajectories associated to arbitrary switching

functions converge to the origin, and it is periodically stable if trajectories associated to
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periodic switching functions converge to the origin. The problems of determining if a given

switched system is absolutely or periodically stable are both computationally intractable

(NP-hard; see [18]). It is yet unknown whether these problems are decidable, see [4] for a

discussion of this issue. The related problem of determining if all trajectories of a switched

linear system are bounded is known to be undecidable [5]. For a discussion of various other

issues related to switched linear systems3; see [1], [14], [15].

Absolute stability clearly implies periodic stability. In this contribution, we show with an

example that the converse of this statement is not true. More specifically, we prove that

there are uncountably many values of the real parameters a and b for which the switched

linear system

xt+1 ∈
{

a

(
1 1

0 1

)
, b

(
1 0

1 1

)}
xt (1.1)

is periodically stable but is not absolutely stable.

This result arises as a byproduct of a counterexample to the Lagarias-Wang finiteness

conjecture. This conjecture was introduced in [13] in connection with problems related to

spectral radius computation of finite sets of matrices. Let ρ(A) be the spectral radius4 of

the matrix A and let Σ be a finite set of matrices. The generalized spectral radius of Σ is

defined by

ρ(Σ) = lim sup
k→+∞

max{ρ(A1 · · ·Ak)
1/k : Ai ∈ Σ, i = 1, . . . , k}

This quantity was introduced in [7] (see [8] for a corrigendum/addendum). The generalized

spectral radius is known to coincide (see [2]) with the earlier defined joint spectral radius [16],

the notion appears in a wide range of contexts and has led to a number of recent contributions

(see, e.g., [4, 5, 9, 8, 12, 18, 19, 20]); a list of over hundred related contributions is given in

[17]. It is known that

ρ(Σ) ≥ max{ρ(A1 · · ·Ak)
1/k : Ai ∈ Σ, i = 1, . . . , k}

for all k ≥ 0. According to the finiteness conjecture, equality in this expression is always

obtained for some finite k. The existence of a counterexample to the conjecture is proved in

[6] by using iterated function systems, topical maps and sturmian sequences. The proof relies

in part on a particular fixed point theorem known as Mañé’s lemma. In this contribution, we

provide an alternative proof that is self-contained and fairly elementary. From results in [9]

relating spectral radius of sets of matrices and rate of growth of long products of matrices,

it follows that our counterexample is equivalent to the existence of systems of the form (1.1)

that are periodically stable but are not absolutely stable.

3Switched linear systems are also known as discrete linear inclusions [9].
4The spectral radius of a matrix is equal to the absolute value of its largest eigenvalue.
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2 Proof outline

Let us now briefly outline our proof. We define

A0 =

(
1 1

0 1

)
, A1 =

(
1 0

1 1

)

and

Aα
0 =

1

ρα

A0, Aα
1 =

α

ρα

A1

with ρα = ρ({A0, αA1}). Since ρ(λΣ) = |λ| ρ(Σ), the spectral radius of the set Σα =

{Aα
0 , Aα

1} is equal to one. Let I = {0, 1} be a two letters alphabet and let

I+ = {0, 1, 00, 01, 10, 11, 000, . . .}

be the set of finite nonempty words. With the word w = w1 . . . wt ∈ I+ we associate the

products Aw = Aw1 . . . Awt and Aα
w = Aα

w1
. . . Aα

wt
. A word w ∈ I+ will be said optimal for

some α if ρ(Aα
w) = 1. We use Jw to denote the set of α’s for which w ∈ I+ is optimal. If

the finiteness conjecture is true, the union of the sets Jw for w ∈ I+ covers the real line. We

show that this union does not cover the interval [0, 1].

In Section 4, we show that if two words u, v ∈ I+ are essentially equal, then Ju = Jv. Two

words u, v ∈ I+ are essentially equal if the periodic infinite words U = uu . . . and V = vv . . .

can be decomposed as U = xww . . . and V = yww . . . for some x, y, w ∈ I+. Words that are

not essentially equal are essentially different. Obviously, if u and v are essentially different,

then so are also arbitrary cyclic permutations of u and v.

We show in the same section that the sets Ju and Jv are disjoint if u and v are essentially

different. This part of the proof requires some properties of infinite words presented in

Section 3. The proof is then almost complete. To conclude, we observe in Section 5 that the

sets Jw ∩ [0, 1] are closed sub-intervals of [0, 1]. There are countably many words in I+ and

so ∪w∈I+(Jw ∩ [0, 1]) is a countable union of disjoint closed sub-intervals of [0, 1]. Except for

a trivial case that we can exclude here, there are always uncountably many points in [0, 1]

that do not belong to such a countable union. Each of these points provides a particular

counterexample to the finiteness conjecture.

3 Palindromes in infinite words

The length of a word w = w1 . . . wt ∈ I∗ = I+ ∪ {∅} is equal to t ≥ 0 and is denoted by

|w|. The mirror image of w is the word w̃ = wt . . . w1 ∈ I∗. A palindrome is a word that is

identical to its mirror image. For u, v ∈ I∗, we write u > v if u is lexicographically larger

than v, that is, ui = 1, vi = 0 for some i ≥ 1 and uj = vj for all j < i. This is only a partial

order since, for example, 101000 and 1010 are not comparable. Let F (U) denote the set of

all finite factors of U = uuu . . . .
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Lemma 3.1. Let u, v ∈ I+ be two words that are essentially different. Then there exists a

pair of words 0p0 and 1p1 in the set F (U) ∪ F (V ) such that p is a palindrome.

Corollary 3.2. Let u, v ∈ I+ be two essentially different words and let U = uuu . . . and

V = vvv . . . . Then there exist words a, b, x, y ∈ I+ satisfying |x| = |y|, x > y, x̃ > ỹ, x > ỹ,

x̃ > y, and a palindrome p ∈ I∗ such that

U = apxpxp . . . and V = bpypyp . . .

or one of the words U and V , say U , can be decomposed as

U = apxpxp · · · = bpypyp . . . .

4 Optimal words are essentially equal

For a given word w ∈ I+ we define Jw = {α : ρ(Aα
w) = 1}. Our goal in this section is to

prove that Ju and Jv are equal when u and v are essentially equal, and have otherwise empty

intersection.

Lemma 4.1. Let u, v ∈ I+ be two words that are essentially equal. Then Ju = Jv.

Proof. Assume u, v ∈ I+ are essentially equal. Then U = uu . . . and V = vv . . . can be

written as U = ss . . . and V = tt . . . with |s| = |t| and t a cyclic permutation of s. The

spectral radius satisfies ρ(AB) = ρ(BA) and so the spectral radius of a product of matrices

is invariant under cyclic permutations of the product factors. From this it follows that

ρ(Aα
s ) = ρ(Aα

t ) and hence u is optimal whenever v is.

We need two preliminary lemmas for proving the next result.

Lemma 4.2. For any word w ∈ I+ we have

Aw̃ − Aw = k(w)T,

where k(w) is an integer and

T = A0A1 − A1A0 =

(
1 0

0 −1

)

Moreover, k(w) is positive if and only if w > w̃.

We say that a matrix A dominates B if A ≥ B componentwise and trA > trB (tr denotes

the trace). The eigenvalues of the 2×2 matrix A are given by (trA±
√

(trA)2 − 4 det A))/2.

For all words w, the matrix Aw satisfies det(Aw) = 1 because it is a product of matrices A0

and A1 of determinant 1. It also satisfies trAw ≥ 2, because of the particular form of A0 and

A1. So, the spectral radius of any matrix Aω is an increasing monotone function of trAω.

We therefore have ρ(Au) > ρ(Av) whenever Au dominates Av.
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Lemma 4.3. For any word of the form w = psq, where s > s̃ and q < p̃, the matrix Aw′

with w′ = ps̃q dominates Aw.

Let w = psq. If s > s̃ and q < p̃, we say that s → s̃ is a dominating flip. We are now

ready to prove the main result of this section.

Lemma 4.4. Let u, v ∈ I+ be two words that are essentially different. Then Ju ∩ Jv = ∅.

5 Finiteness conjecture

We are now ready to prove the main result.

Theorem 5.1. There are uncountably many values of the real parameter α for which the

pair of matrices (
1 1

0 1

)
, α

(
1 0

1 1

)

is periodically stable but not asymptotically stable and so, violates the finiteness conjecture.
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