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Abstract

Key feature of Dirac structures (as opposed to Poisson or symplectic structures)
is the fact that the standard composition of two Dirac structures is again a Dirac
structure. In particular this implies that any power-conserving interconnection of port-
Hamiltonian systems is a port-Hamiltonian system itself. This constitutes a fundamen-
tal property in the port-Hamiltonian approach to modeling, simulation and control of
complex physical systems. Furthermore, the composed Dirac structure directly deter-
mines the algebraic constraints of the interconnected system, as well as its Casimir
functions. Especially the Casimirs are of prime importance in the set-point regulation
of port-Hamiltonian systems. It is therefore of importance to characterize the set of
achievable Dirac structures when a given plant port-Hamiltonian system is intercon-
nected with an arbitrary controller port-Hamiltonian system.

The set of achievable Dirac structures in a restricted sense has been recently char-
acterized in [1, 2]. Here we extend this theorem to the present situation occurring in
the interconnection of a plant and controller Hamiltonian system. Furthermore, we
give an insightful procedure for the construction of the controller Dirac structure. This
procedure works for the general case of (non-closed) Dirac structures on manifolds. In
this way we also fully characterize the set of achievable Casimir functions of the inter-
connected (”closed-loop”) system. This yields a fundamental limitation to the design
of stabilizing controllers for underactuated mechanical systems by interconnection with
a port-Hamiltonian controller.

1 Introduction

Network modeling of complex physical systems (possibly containing components from differ-

ent physical domains) leads to a class of nonlinear systems, called port-Hamiltonian systems,

see e.g. [3, 4, 5, 2, 6, 7, 8]. Port-Hamiltonian systems are defined by a Dirac structure
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(formalizing the power-conserving interconnection structure of the system), an energy func-

tion (the Hamiltonian), and a resistive structure. Key property of Dirac structures is that

the power-conserving composition of Dirac structures again defines a Dirac structure, see

[2, 1]. This implies that any power-conserving interconnection of port-controlled Hamilto-

nian systems is also a port-controlled Hamiltonian system, with Dirac structure being the

composition of the Dirac structures of its constituent parts and Hamiltonian the sum of the

Hamiltonians. As a result power-conserving interconnections (in particular classical feedback

interconnections) of port-Hamiltonian systems can be studied to a large extent in terms of

the composition of their Dirac structures. In particular the feedback interconnection of a

given plant port-Hamiltonian system with a yet to be specified port-Hamiltonian controller

system can be studied from the point of view of the composition of a given plant Dirac

structure with a controller Dirac structure. Preliminary results concerning the achievable

”closed-loop” Dirac structures have been obtained in [1, 2]. Here we extend those results,

and we also derive an explicit characterization of the obtainable Casimir functions of the

closed-loop system, which is crucial for the passivity-based control of the port-Hamiltonian

system plant system, see e.g. [9, 6, 7, 10].

2 Dirac structures and port-Hamiltonian systems

Port-based modeling (e.g. by bond-graphs) of complex lumped-parameter physical systems

directly leads to models consisting of a power-conserving interconnection (generalized junc-

tion structure in bond-graph terminology), and the constitutive relations describing the

energy-storing and energy-dissipating elements.

The key to geometrically formalize these models as port-Hamiltonian systems is to describe

the power-conserving interconnection by the notion of a Dirac structure.

2.1 Dirac structures

We start with a space of power variables V ×V∗, for some linear space V, with power defined

by

P = < v∗ | v >, (v, v∗) ∈ V × V∗, (2.1)

where < v∗ | v > denotes the duality product, that is, the linear functional v∗ ∈ V∗ acting

on v ∈ V. Often we call V the space of flows f , and V∗ the space of efforts e, with the power

of a signal (f, e) ∈ V × V∗ denoted as < e | f >.

Note that, contrary to other treatments, we have used ‘Occam’s razor’ by not necessarily

endowing V with an inner product structure <, >. Of course, in this latter case V∗ can be

naturally identified with V in such a way that < e | f >=< e, f >, f, e ∈ V ' V∗.
Closely related to the definition of power there exists a canonically defined bilinear form
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�,� on the space of power variables V × V∗, defined as

� (fa, ea),(f b, eb) �:=

< ea | f b > + < eb | fa >, (fa, ea), (f b, eb) ∈ V × V∗. (2.2)

Definition 2.1. [11, 12] A (constant) Dirac structure on is a subspace

D ⊂ V × V∗

such that D = D⊥, where ⊥ denotes orthogonal complement with respect to the bilinear form

�,�.

If V is a finite-dimensional linear space then it is easily seen that necessarily dimD = dimV
for any Dirac structure D. Moreover, in this case a Dirac structure can be alternatively

characterized as a subspace D of V × V∗ such that

(i) < e | f >= 0, for all (f, e) ∈ D,

(ii) dimD = dimV.

Note that condition (i) expresses power conservation. Condition (ii) is perhaps more open

to discussion. Although this condition holds for all “normal” interconnection structures

such as Kirchhoff’s laws, transformers, gyrators, Newton’s third law, kinetic pairs, kinematic

constraints, etc., one could imagine power-conserving elements such as the “nullator” in the

electric domain (setting both voltage and current to be equal to zero) which violate this

condition. The discussion boils down to the validity (or usefulness!) of the usually expressed

statement that a physical element cannot determine at the same time both its voltage and

its current, or both its force and velocity.

Remark 2.2. The property D = D⊥ can be regarded as a generalization of Tellegen’s theo-

rem, since it describes a constraint between two different realizations of the power variables

(in contrast to condition (i)).

Remark 2.3. For many systems, especially those with mechanical components, the intercon-

nection structure is actually modulated by energy or geometric variables. This leads to the

notion of non-constant Dirac structures on manifolds, see e.g. [11, 12, 6, 7, 13]. Because

of space limitations and for reasons of clarity of exposition we focus in the current paper

on the constant case, although everything can be extended to the case of Dirac structures on

manifolds.

Constant Dirac structures admit different matrix representations. Here we just list a

number of them. Let D ⊂ V × V∗, with dimV = n, be a constant Dirac structure.

1. (Kernel and Image representation) Every Dirac structure D can be represented in

kernel representation as

D = {(f, e) ∈ V × V∗ | Ff + Ee = 0} (2.3)
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for n× n matrices F and E satisfying

(i) EF T + FET = 0,

(ii) rank [F
...E] = n.

(2.4)

It follows that D can be also written in image representation as

D = {(f, e) ∈ V × V∗ | f = ET λ, e = F Tλ, λ ∈ R
n} (2.5)

2. (Constrained input-output representation) D = {(f, e) ∈ V ×V∗ | f = Je + Gλ, GTe =

0} for a skew-symmetric matrix J and a matrix G such that Im G = {f | (f, 0) ∈ D}.
Furthermore, Ker J = {e | (0, e) ∈ D}.

3. (Hybrid input-output representation, cf. [14]) Let D be given by square matrices E

and F as in 1. Suppose rank F = m(≤ n). Select m independent columns of F ,

and group them into a matrix F1. Write (possibly after permutations) F = [F1
...F2],

and correspondingly E = [E1
...E2], f =

[
f1

f2

]
, e =

[
e1

e2

]
. Then the matrix [F1

...E2] is

invertible, and

D =

{[
f1

f2

]
,

[
e1

e2

] ∣∣∣∣
[

f1

e2

]
= J

[
e1

f2

]}
(2.6)

with J := −[F1
...E2]

−1[F2
...E1] skew-symmetric.

4. (Canonical coordinate representation), cf. [11]. There exist linear coordinates (q, p, r, s)

for V such that (f, e) = (fq, fp, fr, fs, eq, ep, er, es) ∈ D iff


fq = ep, fp = −eq

fr = 0, es = 0

(2.7)

2.2 Port-Hamiltonian systems

Now let us consider a lumped-parameter physical system given by a power-conserving in-

terconnection defined by a constant Dirac structure D, and k energy-storing elements with

energy-variables xi. For simplicity we assume that the energy-variables are living in linear

spaces Xi, although everything can be generalized to the case of manifolds. The constitu-

tive relations of the energy-storing elements are specified by their stored energy functions

Hi(xi), i = 1, · · · , k. Define the total linear state space X := X1 × · · · × Xk, and the total

energy H(x1, · · · , xk) := H1(x1) + · · ·+ Hk(xk).

The space of flow variables for the Dirac structure D is split as X × F , with fx ∈ X the

flows corresponding to the energy-storing elements, and f ∈ F denoting the remaining flows

(corresponding to dissipative elements and ports/sources). Correspondingly, the space of
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effort variables is split as X ∗ × F∗, with ex ∈ X ∗ the efforts corresponding to the energy-

storing elements and e ∈ F∗ the remaining efforts. The bilinear form �,� then takes the

form:
� (fa

x , ea
x, f

a, ea), (f b
x, e

b
x, f

b, eb) �:=

< ea
x | f b

x > + < eb
x | fa

x > + < ea | f b > + < eb | fa >

(2.8)

with fa
x , f b

x ∈ X , fa, f b ∈ F , ea
x, e

b
x ∈ X ∗, ea, eb ∈ F∗. It follows that D can be represented in

kernel representation as

D = {(fx, ex, f, e) ∈ X × X ∗ × F ×F∗ | Fxfx + Exex + Ff + Ee = 0}, (2.9)

with
(i) ExF

T
x + FxE

T
x + EF T + FET = 0,

(ii) rank [Fx
...Ex

...F
...E] = dim(X ×F).

(2.10)

Now the flows of the energy-storing elements are given by ẋi, and these are equated to

−fxi, i = 1, · · · , k (the minus sign is again included to have a consistent energy flow dirac-

tion). Furthermore, the efforts exi corresponding to the energy-storing elements are given as

exi = ∂H
∂xi

, i = 1, · · · , k. Substitution in (2.9) leads to the description of the physical system

by the set of DAE’s

Fxẋ(t) = Ex
∂H

∂x
(x(t)) + Ff(t) + Ee(t), (2.11)

with f, e the port power variables (some of which are terminated by dissipative elements).

The system of equations (2.11) is called a port-Hamiltonian system.

The definition of a port-Hamiltonian system is not dependent on the particular representa-

tion of the Dirac structure (a kernel representation in (2.11)). In fact, the port-Hamiltonian

system is defined by the Dirac structure D (a geometric object), together with the Hamil-

tonian H and the specification of the ports. Thus in the case of no energy-dissipating ports

we denote the port-Hamiltonian system by (X ,F ,D, H).

Because of (2.10) we immediately obtain the power balance

dH

dt
=

(
∂H

∂x
(x)

)T

ẋ = eT f. (2.12)

expressing that the increase of of internal energy of the port-Hamiltonian system is equal to

the externally supplied power minus the power dissipated in the energy-dissipating elements.

Remark 2.4. In case of a Dirac structure modulated by the energy variables x and state

space X being an arbitrary manifold, the flows fx = −ẋ are elements of the tangent space

TxX at the state x ∈ X , and the efforts ex are elements of the co-tangent space T ∗
xX . We

still obtain the kernel representation (2.11) for the resulting port-Hamiltonian system, but

now the matrices Fx, Ex, F, E depend on x. See for an extensive treatment [6, 7, 13].
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3 Composition of Dirac structures

In this section we investigate the compositionality properties of Dirac structures. Physically

it seems clear that the composition of a number of power-conserving interconnections with

partially shared variables should yield again a power-conserving interconnection. We show

how this can be formalized within the framework of Dirac structures.

First we consider the composition of two Dirac structures with partially shared variables.

That is, we consider a Dirac structure D12 on a product space V1 × V2 of two linear spaces

V1 and V2, and another Dirac structure D23 on a product space V2 × V3, with also V3 being

a linear space. The linear space V2 is the space of shared flow variables.

In order to compose D12 and D23 a problem arises of sign convention for the power flow

corresponding to the power variables (f2, e2) ∈ V2×V∗2 . Indeed, if < e | f > denotes incoming

power (see the previous section), then for(
f1, e1, f

12
2 , e12

2

) ∈ D12

the term < e12
2 | f 12

2 > denotes the incoming power in D12 due to the power variables

(f 12
2 , e12

2 ) ∈ V2 × V∗2 , while for (
f 23

2 , e23
2 , f3, e3

) ∈ D23

the term < e23
2 | f 23

2 > denotes the incoming power in D23 due to the power variables

(f 23
2 , e23

2 ) ∈ V2×V∗2 . Since physically, the incoming power in D12 due to the power variables

in V2 × V∗2 should equal the outgoing power from D23 due to the power variables in V2 ×V∗2
there is a sign conflict if we would simply equate f 12

2 = f 23
2 , e12

2 = e23
2 . A simple way to

resolve this sign problem is to set instead

f 12
2 = −f 23

2

e12
2 = e23

2

(3.13)

Let us therefore define the composition D12 ‖ D23 of the Dirac structures D12 and D23 as

D12 ‖ D23 := {(f1, e1, f3, e3) ∈ V1 × V∗1 × V3 × V∗3 | ∃(f2, e2) ∈ V2 × V∗2 s.t.

(f1, e1, f2, e2) ∈ D12 and (−f2, e2, f3, e3) ∈ D23} (3.14)

The following theorem has been shown in [1] (with a preliminary version given in [2]).

Theorem 3.1. Let D12,D23 be Dirac structures as above. Then D12 ‖ D23 defined in (3.14)

is a Dirac structure.

The compositionality of multiple Dirac structures follows easily from Theorem 3.1. In

general, consider k port-Hamiltonian systems (Xi,Fi,Di, Hi), i = 1, · · · , k, interconnected

by a Dirac structure DI ⊂ F1 × · · · × Fk × F × F∗
1 × · · · × F∗

k × F∗, with F a linear space

of flow port variables, cf. Figure 1.
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f2

e2

ek

DI

e1

fk

f1

X1,F1,D1, H1

Xk,Fk,Dk, Hk

e

f

X2,F2,D2, H2

Figure 1: Interconnection of port-Hamiltonian systems

This can be easily seen to define a port-Hamiltonian system (X ,F ,D, H), where X :=

X1 × · · · × Xk, H := H1 + · · ·+ Hk, and where the Dirac structure D ⊂ X × X ∗ × F × F∗

is determined by D1, · · · ,Dk and DI . Indeed, consider the product of the Dirac structures

D1, · · · ,Dk, and compose this, as in Theorem 3.1, with the Dirac structure DI . This yields

the Dirac structure D.

A typical example of a power-conserving interconnection is the standard feedback inter-

connection

uP = −yC , uC = yP (3.15)

with uP , yP and uC , yC denoting the inputs and outputs of the plant, respectively, controller

system. Identifying the inputs uP , uC with flows, and the outputs yP , yC with efforts, (3.15)

defines a Dirac structure DI .

4 Achievable Dirac structures

In this section several questions about the composition of Dirac structures are addressed. The

main idea is to investigate which closed-loop port-Hamiltonian systems can be achieved by

interconnecting a given plant port-Hamiltonian system P with a controller port-Hamiltonian

system C.

In the framework of the current paper this is restricted to the investigation of the achievable

Dirac structures of the closed-loop system. That is, given the Dirac structure DP of the plant

system P and the to-be-designed Dirac structure DC of the controller system C, what are

the achievable Dirac structures DP ‖ DC , where ‖ denotes the composition of DP and DC

by interconnecting P and C as defined in the previous section.

Consider the general configuration given in Figure 2.
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D
C

wf cf ~

we ce ~

cf−

we

Figure 2: DP ‖ DC

Theorem 4.1. Given any plant Dirac structure DP , a certain composed D = DP ‖ DC can

be achieved by a proper choice of the controller Dirac structure DC if and only if the following

two conditions are satisfied

D0
P ⊂ D0 (4.16)

Dπ ⊂ Dπ
P (4.17)

where




D0
P := {(fw, ew) | (fw, ew, 0, 0) ∈ DP}

Dπ
P := {(fw, ew) | ∃(fc, ec) : (fw, ew, fc, ec) ∈ DP}

D0 := {(fw, ew) | (fw, ew, 0, 0) ∈ D}
Dπ := {(fw, ew) | ∃(fc̃, ec̃) : (fw, ew, fc̃, ec̃) ∈ D}

(4.18)

Remark 4.2. A restricted version of this theorem for the case fc̃ = 0, ec̃ = 0 was given in

[1].

The simple proof of this theorem (compare with the proof given in [1]!) is based on the

following ‘inverse’ D∗
P of the plant Dirac structure DP :

D∗
P := {(fw, ew, fc, ec) | (−fw, ew,−fc, ec) ∈ DP} (4.19)

It is easily seen that D∗
P is a Dirac structure if and only if DP is a Dirac structure.

Proof of Theorem 4.1

Necessity of (4.16, 4.17) is obvious. Sufficiency is shown using the controller Dirac structure

DC := D∗
P ‖ D

(see Figure 3).

To check that D ⊂ DP ‖ DC , consider (w′, c) ∈ D. Because w′ ∈ Dπ, applying (4.17)

yields that ∃d such that (w′, d) ∈ DP . Define the partial sign reversal operator

Rd := (−fd, ed), for d = (fd, ed)
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D
P

D
P

*

w d w’

D

c

Figure 3: D = DP ‖ D∗
P ‖ D.

It follows that (Rd, Rw′) ∈ D∗
P

3, and thus (w′, c) ∈ DP ‖ DC (take w = w′ in Figure 3).

Therefore, D ⊂ DP ‖ DC .

To check that DP ‖ DC ⊂ D, consider (w, c) ∈ DP ‖ DC . Then there exist d, w′ such that

(w, d) ∈ DP (4.20)

(w′, d) ∈ DP (4.21)

(w′, c) ∈ D (4.22)

Subtracting (4.21) from (4.20) we get

(w − w′, 0) ∈ DP ⇐⇒ w − w′ ∈ D0
P (4.23)

Using (4.23) and (4.16) we get

(w − w′, 0) ∈ D (4.24)

Finally, adding (4.22) and (4.24), we get (w, c) ∈ D, and so DP ‖ DC ⊂ D.

�

The above proof also immediately provides us with a closed expression for a controller Dirac

structure DC such that D = DP ‖ DC , for D satisfying the conditions of Theorem 4.1. We

state this as a separate proposition.

Proposition 4.3. Given a plant Dirac structure DP , and D satisfying the conditions of

Theorem 4.1. Then DC := D∗
P ‖ D, with D∗

P defined as in (4.19), achieves D = DP ‖ DC.

5 Achievable Casimirs and constraints

An important application of Theorem 4.1 concerns the characterization of the Casimir func-

tions which can be achieved for the closed-loop system by interconnecting a given plant port-

Hamiltonian system with associated Dirac structure DP with a controller port-Hamiltonian

system with associated Dirac structure DC . This constitutes a cornerstone for passivity-

based control of port-Hamiltonian systems as developed e.g. in [10, 15]. Dually, we may

characterize the achievable algebraic constraints for the closed-loop system.

3Note that the definition of D∗
P compensates the sign change for interconnection of flows given in (3.13).
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In order to explain these notions consider a port-Hamiltonian system without ports on

a state space X with Dirac structure D ⊂ X × X ∗. Then the following subspaces of X ,

respectively X ∗, are of importance

G1 := {fx ∈ X | ∃ex ∈ X ∗ s.t. (fx, ex) ∈ D}

P1 := {ex ∈ X ∗ | ∃fx ∈ X s.t. (fx, ex) ∈ D}
(5.25)

The subspace G1 expresses the set of admissible flows, and P1 the set of admissible efforts.

It follows from the image representation (2.5) that

G1 = Im ET
x

P1 = Im F T
x

(5.26)

A Casimir function C : X → R of the port-Hamiltonian system is defined to be a function

which is constant along all trajectories of the port-Hamiltonian system, irrespectively of

the Hamiltonian H . It follows from the above consideration of the admissible flows that the

Casimirs are determined by the subspace G1. Indeed, necessarily fx = −ẋ(t) ∈ G1 = Im ET
x ,

and thus

ẋ(t) ∈ Im ET
x , t ∈ R. (5.27)

Therefore C : X → R is a Casimir function if dC
dt

(x(t)) = ∂T C
∂x

(x(t))ẋ(t) = 0 for all ẋ(t) ∈
Im ET

x . Hence C : X → R is a Casimir of the port-Hamiltonian system if it satisfies the set

of partial differential equations
∂C

∂x
(x) ∈ Ker Ex (5.28)

Remark 5.1. In the case of a non-constant Dirac structure the matrix Ex will depend on

x, and Ker Ex will define a co-distribution on the manifold X . Then the issue arises of

integrability of this co-distribution, see [6].

Dually, the algebraic constraints for the port-Hamiltonian system are determined by the

space P1, since necessarily ∂T H
∂x

(x) ∈ P1, which will induce constraints on the state variables

x.

Let us now consider the question of characterizing the set of achievable Casimirs for the

closed-loop system DP ‖ DC , where DP is the given Dirac structure of the plant port-

Hamiltonian system with Hamiltonian H , and DC is the controller Dirac structure. In this

case, the Casimirs will depend on the plant state x as well as on the controller state ξ. Since

the controller Hamiltonian HC(ξ) is at our own disposal we will be primarily interested in

the dependency of the Casimirs only on the plant state x. (Since we want to use the Casimirs

for shaping the total Hamiltonian H + HC to a Lyapunov function, cf. [10, 15].)

Consider the notation given in Figure 2, and assume the ports in (fw, ew) are connected

to the (given) energy storing elements of the plant port-Hamiltonian system (that is, fw =

−ẋ, ew = ∂T H
∂x

), while (fc̃, ec̃) are connected to the (to-be-designed) energy storing elements
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of a controller port-Hamiltonian system (that is, fc̃ = −ξ̇, ec̃ = ∂T HC

∂ξ
). Note that the number

of ports (fc̃, ec̃) can be freely chosen. In this situation the achievable Casimir functions are

functions C(x, ξ) such that ∂T C
∂x

(x, ξ) belongs to the space

PCas = {ew | ∃DC s.t. ∃ec̃ : (0, ew, 0, ec̃) ∈ DP ‖ DC} (5.29)

Thus the question of characterizing the achievable Casimirs of the closed-loop system, re-

garded as functions of the plant state x, is translated to finding a characterization of the

space PCas. It is answered by the following theorem.

Theorem 5.2. The space PCas defined in (5.29) is equal to the linear space

P̃ = {ew | ∃(fc, ec) : (0, ew, fc, ec) ∈ DP} (5.30)

.

Proof PCas ⊂ P̃ trivially. By using the controller Dirac structure DC = D∗
P , we immediately

obtain P̃ ⊂ PCas.

�

Remark 5.3. For a non-constant Dirac structure on a manifold X PCas defines a co-

distribution on X .

In a completely dual way we may consider the achievable constraints of the closed-loop

system, characterized by the space

GAlg = {fw | ∃DC s.t. ∃fc̃ : (fw, 0, fc̃, 0) ∈ DP ‖ DC} (5.31)

Theorem 5.4. The space GAlg defined in (5.31) is equal to the linear space

{fw | ∃(fc, ec) : (fw, 0, fc, ec) ∈ DP} (5.32)

.

Remark 5.5. For a non-constant Dirac structure GAlg defines a distribution on the manifold

X .

Example 5.6. Consider the port-Hamiltonian plant system with inputs fc and outputs ec

ẋ = J(x)∂H
∂x

(x) + g(x)fc, x ∈ X , fc ∈ R
m

ec = gT (x)∂H
∂x

(x), ec ∈ R
m

(5.33)

where J(x) is a skew-symmetric n × n matrix. The corresponding Dirac structure is given

by [
fw

ec

]
=

[−J(x) −g(x)

gT (x) 0

][
ew

fc

]
(5.34)
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It is easily seen that

PCas = {ew | ∃fc s.t. 0 = J(x)ew + g(x)fc}, (5.35)

implying that the x−dependency of the achievable Casimirs are the Hamiltonian functions

corresponding to the input vector fields given by the columns of g(x). Similarly, it is easily

seen that

GAlg = {fw | ∃fc s.t. fw = −g(x)fc} = Im g(x), (5.36)

and the achievable algebraic constraints are of the form ∂T H
∂x

(x)g(x) = k(ξ).

References

[1] A.J. van der Schaft. The Mathematics of Systems and Control: From Intelligent Control

to Behavioral Systems, chapter Interconnection and Geometry. Foundations Systems

and Control Groningen, 1999.

[2] B.M. Maschke and A.J. van der Schaft. Interconnected mechanical systems, Part I and

II. In A. Astolfi, D.J.N Limebeer, C. Melchiorri, A. Tornambè, and R.B. Vinter, editors,
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