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Abstract

Two noncanonical Hamiltonian models are presented for the dynamics of a rigid
body with an constrained moving point mass. One of these models is used to analyze
stability of steady principal axis rotation of a rigid body with a spring-mass oscillator.
The analysis gives necessary and sufficient conditions for stability of steady major axis
rotation, as well as sufficient conditions for instability of intermediate and minor axis
rotation.

1 Introduction

A rigid body coupled to a moving point mass is a dynamic model which often appears in
vehicle dynamics and control literature. If the coupling is a spring-damper mechanism, then
this system provides a relatively low-dimensional model for analyzing the effect of vibrational
modes on rigid body motion. Damped point mass oscillators have been used to study effects
such as fuel slosh in aircraft dynamics [1] and flexible modes in gyrostats [3]. Alternatively,
by treating the force of interaction between the rigid body and the point mass as an input,
one may consider certain vehicle control problems. In [11], for example, “principal axis mis-
alignments” were intentionally introduced using two independently controlled point masses
in order to asymptotically stabilize steady rotation of a prolate, axisymmetric spacecraft.
Servo-actuated internal masses have also been proposed to control maneuverable re-entry
vehicles [9, 10]. A number of underwater gliders, which are winged underwater vehicles pro-
pelled by gravity and buoyancy, also use internal moving masses for attitude control; see [4]
and references contained there for examples.

Analysis and control design for systems such as the ones above has largely been limited
to linear or numerical methods. Perhaps this is because analysis of moderate-dimensional
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nonlinear systems can be tedious. Exploiting symmetry, however, can make nonlinear con-
trol design and analysis tractable and can possibly lead to improved results. For example,
the method of controlled Lagrangians [2], or the equivalent technique of interconnection and
damping assignment, passivity-based control [8], can provide nonlinear control laws for a
class of mechanical systems which includes vehicles of interest to engineers. Both techniques
involve shaping the energy, damping, and dynamic structure of a given system. Stability anal-
ysis techniques for systems with symmetry, such as the energy-Casimir or energy-momentum
methods, can be used to construct Lyapunov functions which prove stability and provide
region of attraction estimates [7].

Drawing on results presented in [12], this paper presents two reduced-dimensional Hamil-
tonian models for a rigid spacecraft with a single degree-of-freedom point mass. A “potential
shaping” control law, which can be realized as a simple spring, is applied to the point mass.
The energy-Casimir method provides sufficient conditions for nonlinear stability of steady
rotation about the principal axis of greatest inertia. Spectral analysis shows that this con-
dition is necessary, as well as sufficient. If the spring which couples the point mass to the
rigid body is sufficiently stiff, then the equilibrium is stable; otherwise, the equilibrium is
unstable. Spectral analysis also provides conditions under which steady rotation about the
principal axes of intermediate or least inertia is unstable. These results pose interesting
implications for the demise of Explorer I, which is widely blamed on energy dissipation due
to internal damping [6].

2 Two Hamiltonian Models

Consider a rigid body with a coordinate frame fixed in the principal axes and an internal
point mass constrained to move in a slot parallel to the body 1-axis. We assume that
the system’s center of mass passes through the body coordinate origin as the point mass
passes through the body 2-3 plane. For simplicity, we assume that the system consists
of a non-axisymmetric ellipsoid with uniformly distributed mass and inertia matrix J̃ =
diag(J̃1, J̃2, J̃3), a moving point mass m̄ located at rm = [rm1 , 0, ∆]T , and a fixed point mass
m̄ located at rf = [0, 0,−∆]T . (See Figure 1.) The mass of the complete system is m.

Figure 1: Rigid body and a moving point mass
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There are at least two ways to describe the dynamics of this system in Hamiltonian form.
The first uses the point mass velocity relative to the vehicle as a coordinate velocity. The
second uses the absolute point mass velocity as a coordinate velocity.

2.1 Case 1

Define the body angular velocity Ω and the body translational velocity v. The inertial
velocity of the moving point mass, written in body coordinates, is

vm = v + Ω× rm + ṙm.

Note that, because the other point mass is rigidly constrained, vf is defined by the body
angular and translational velocity.

Define the operator ·̂ which converts a vector into a 3×3 skew-symmetric matrix satisfying
x̂y = x × y for vectors x and y. The rotational inertia of the system with the point mass
locked in place is

J(rm1) = J̃ − m̄r̂f
2 − m̄r̂m

2 =





J1 0 −m̄∆rm1

0 J2 + m̄r2
m1

0
−m̄∆rm1 0 J3 + m̄r2

m1



 ,

where

J1 = J̃1 + 2m̄∆2

J2 = J̃2 + 2m̄∆2

J3 = J̃3.

Define η1 = [ΩT , vT , ṙm1 ]
T . The system kinetic energy is

T1 =
1
2
η1 ·M1η1, where M1 =





J(rm1) m̄rmê1 m̄∆e2

−m̄rmê1 mI m̄e1

m̄∆eT
2 m̄eT

1 m̄



 , (1)

I represents the 3× 3 identity matrix, and we have defined

e1 =





1
0
0



 , e2 =





0
1
0



 , and e3 =





0
0
1



 .

The momentum conjugate to η1 is

ν1 =
∂T1

∂η1
=





Π
P

Pm1



 = M1η1.
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That is,

Π = J(rm1)Ω + m̄rmê1v + m̄∆ṙm1e2

P = −m̄rmê1Ω + mIv + m̄ṙm1e1

Pm1 = m̄ (∆e2 ·Ω + e1 · v + ṙm1) .

The vector Π represents the total angular momentum of the system about the body co-
ordinate origin, written in body coordinates. Similarly, P represents the total translational
momentum in body coordinates. The term Pm1 represents the momentum of the moving
point mass in the 1-axis direction, written in body coordinates.

Specializing the results of [12] to the case of a one degree of freedom point mass, the system
dynamics are











Π̇
Ṗ
ṙm1

Ṗm1











=











Π̂ P̂ 0 0
P̂ 0 0 0
0 0 0 1
0 0 −1 0











∇H1 +











0
0
0
1











u, (2)

where u is the internal force applied to the moving mass in the positive 1-axis direction, and
where

H1(Π,P , rm1 , Pm1) =
1
2
ν1 ·M−1

1 ν1.

Here, we have assumed that no external forces or moments act on the system.
Note that when u = 0, equations (2) form a generalized (noncanonical) Hamiltonian

system. The 8 × 8 skew-symmetric matrix is the “Poisson tensor” which generalizes the
symplectic matrix from classical mechanics. Also note in this case that, in addition to the
Hamiltonian H1, the quantities

C1 =
1
2
P · P and C2 = Π · P

are conserved. These conserved quantities, called Casimir functions, can be useful in stability
analysis. In fact, one may check that the Casimir functions are conserved regardless of the
choice of u, reflecting conservation of inertial angular and translational momentum for the
internally actuated system.

Remark 2.1 If one applies an internal force

u = − dφ
drm1

to the point mass for some “artificial potential” function φ(rm1), then the system is Hamil-
tonian with respect to H = 1

2ν1 ·M−1
1 ν1 + φ(rm1).
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2.2 Case 2

Now define η2 = [ΩT , vT , vm1 ]
T . Note that the relative velocity ṙm1 of the moving point

mass appearing in η1 has been replaced by its inertial velocity vm1 . Let

I23 =





0 0 0
0 1 0
0 0 1





and define the inertia matrix

J̄(rm1) = J̃ − m̄r̂f
2 − m̄r̂mI23r̂m =





J̄1 0 −m̄∆rm1

0 J̄2 + m̄r2
m1

0
−m̄∆rm1 0 J̄3 + m̄r2

m1





where

J̄1 = J̃1 + 2m̄∆2

J̄2 = J̃2 + m̄∆2

J̄3 = J̃3.

The system kinetic energy may be rewritten as

T2 =
1
2
η2 ·M2η2, where M2 =





J̄(rm1) m̄ (r̂f + r̂mI23) 0
−m̄ (r̂f + I23r̂m) mI− m̄e1eT

1 0
0 0 m̄



 . (3)

The momentum conjugate to η2 is

ν2 =
∂T2

∂η2
=





Π̄
P̄

P̄m1



 = M2η2.

It can easily be checked that

Π̄ = Π− rm × Pm1e1

P̄ = P − Pm1e1

P̄m1 = Pm1 .

The vector Π̄ represents the total angular momentum of the system about the body coor-
dinate origin, less that component due to the 1-axis momentum of the moving point mass.
Similarly, P̄ represents the total translational momentum less the component due to the
1-axis momentum of the moving point mass. Finally, P̄m1 represents the momentum of the
moving point mass in the 1-axis direction, written in body coordinates.
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Specializing the results of [12], the system dynamics in the absence of dissipation are










˙̄Π
˙̄P

ṙm1

˙̄Pm1











=











ˆ̄Π + ̂rm × P̄m1e1 P̂ + P̄m1ê1 ∆e2 0
P̂ + P̄m1 ê1 0 e1 0
−∆eT

2 −eT
1 0 1

0 0 −1 0











∇H2 +











0
0
0
1











u,

where
H2(Π̄, P̄ , rm1 , P̄m1) =

1
2
ν2 ·M−1

2 ν2.

In addition to the Hamiltonian H2, the Casimir functions

C̄1 =
1
2
(P̄ + P̄m1e1) · (P̄ + P̄m1e1) and C̄2 = (Π̄ + rm × P̄m1e1) · (P̄ + P̄m1e1)

are conserved. These functions correspond to the Casimirs C1 and C2 in Case 1.

3 Stability of Steady Rotation

One application for the models described in Section 2 is to investigate the effect of unmodeled
dynamics on spacecraft motion. For example, suppose we let

u = −krm1 (4)

where k > 0 is a spring stiffness corresponding, for example, to the lowest natural frequency
of a flexible appendage. Note that this control law can be written as the negative gradient
of a scalar potential,

u = − dφ
drm1

where φ = 1
2kr2

m1
. In the setting of Section 2.1, the “closed-loop” dynamics are Hamiltonian

with respect to H = 1
2ν1 ·M−1

1 ν1 + φ.
We are interested in determining conditions under which the equilibrium

Π|e = Π0
1e1, P |e = 0, rm1|e = 0, Pm1 |e = 0, (5)

which corresponds to steady rotation about the 1-axis, is stable. This is a “nongeneric”
equilibrium. When P = 0, the rank of the Poisson tensor drops from six to five. Corre-
spondingly, the dynamics evolve on a lower-dimensional invariant surface than when P 6= 0.
(Recall that ‖P ‖ is conserved, so if P = 0 initially, it remains so for all time.) In this case,
there exists a special conserved quantity, known as a “subcasimir”

C3 =
1
2
Π ·Π.

One may study nonlinear stability of (5) using the energy-Casimir method. However, the
stability results may only be valid when the dynamics are restricted to the lower-dimensional
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“invariant leaf” corresponding to the special case P = 0. In this case, one says that the
equilibrium is “leafwise stable.” One may apply the results of [5] to extend conclusions about
stability to the entire phase space.

Proving nonlinear stability using the energy-Casimir method involves constructing a func-
tion HΦ = H + Φ(C1, C2, C3) which has a minimum or a maximum at the equilibrium of
interest. One first requires that the derivative of HΦ vanishes at the equilibrium. Let

Φi =
∂Φ
∂Ci

and Φij =
∂2Φ

∂Ci∂Cj
.

The derivative of HΦ(Π, P , Pm1 , rm1) is

DHΦ =











Ω + Φ2P + Φ3Π
v + Φ1P + Φ2Π

ṙm1

e1 · (−P m ×Ω) + krm1











,

which vanishes at the equilibrium (5) provided

Φ2
e = 0 and Φ3

e = − 1
J1

. (6)

(The order of Pm1 and rm1 has been reversed in the argument list for HΦ in order to simplify
the analysis.)

One next requires that the second derivative of HΦ be (positive or negative) definite when
evaluated at the equilibrium. Evaluating the matrix of the second derivative of HΦ at the
equilibrium, and substituting from (6), one obtains































− (Π0
1)2

J1
0 0 Φ23

e (Π0
1)

2 0 0 0 0
0 m−m̄

α − 1
J1

0 m̄∆
α 0 0 − m̄∆

α 0

0 0 1
J3
− 1

J1
0 0 0 0 m̄∆Π0

1
J1J3

Φ23
e (Π0

1)
2 m̄∆

α 0 a44 0 0 −J2
α 0

0 0 0 0 1
m + Φ1

e 0 0 0
0 0 0 0 0 1

m + Φ1
e 0 0

0 0 0 0 0 0 mJ2
m̄α 0

0 0 m̄∆Π0
1

J1J3
0 0 0 0 a88































where

α = (m− m̄)J2 −mm̄∆2

a44 =
J2 − m̄∆2

α
+ Φ1

e + Φ22
e (Π0

1)
2, and

a88 =
(m̄∆Π0

1)
2

J3J2
1

+ k.
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Consider the case where the axis of rotation is the major axis; that is, J1 > J2 and J1 > J3.
It is straightforward to check that choosing the function Φ to satisfy

Φ23
e = 0 and Φ1

e + Φ22
e (Π0

1)
2 >

1
α

(

−(J2 − m̄∆2)2 +
J1(m̄∆)2

(m− m̄)J1 − α

)

makes the second derivative of HΦ positive definite at the equilibrium provided

k >
(m̄∆Π0

1)
2

J2
1 (J1 − J3)

. (7)

For such a choice of Φ, the equilibrium is a minimum of HΦ. Thus, by Lyapunov’s stability
theorem, steady major axis rotation is stable provided the spring is sufficiently stiff.

To sharpen the stability condition, one may consider the linearized dynamics. The char-
acteristic polynomial of the system linearized about (5) is

(m̄αJ2
1J3) λ4 + (m̄(Π0

1)
2(J1 − J2)((m− m̄)(J1 − J3)−mm̄∆2J3) + kmJ2

1J2J3) λ2

+m(Π0
1)2

J2
1

(J1 − J2) (kJ2
1 (J1 − J3)− (m̄∆Π0

1)
2) . (8)

One can easily see from the last term, i.e., the coefficient of λ0, that condition (7) is both
necessary and sufficient, disregarding the case of equality.

Theorem 3.1 If J1 > J2 and J2 > J3, then the equilibrium (5) of the dynamics (2) with (4)
is leafwise stable if and only if

k >
(m̄∆Π0

1)
2

J2
1 (J1 − J3)

.

Referring to the characteristic polynomial (8), one may also show that the following con-
ditions are sufficient for instability of the equilibrium (5) when k > 0:

i) J2 < J1 < J3

ii) (J2 − J1) < J3 < J1 < J2

iii) J1 < J2, J1 < J3, and
mm̄∆2(J1 + J3 − J2) > (m− m̄)(J2 − J1)(J3 − J1) + kmJ2

1J2J3.

These conditions follow from a rudimentary spectral stability analysis; a more thorough
analysis may yield sharper conditions.

Remark 3.2 Condition (iii) above may have interesting implications for the demise of Ex-
plorer I, which is widely blamed on energy dissipation due to internal damping [6]. Explorer
I was a prolate, axisymmetric spacecraft with four radial whip antennae. It was intended that
the spacecraft rotate about its axis of symmetry, i.e., the minor axis, however the spacecraft
quickly tumbled away from the desired equilibrium. Modeling this system as in Section 2.1,
with three of the antennae rigidly fixed, condition (iii) above becomes

m̄∆2

J1
>

m− m̄
m

(

J2 − J1

J1

)2

+ kJ2
2 .

This condition is met when ∆ is large, J1 ≈ J2, and k is small. Thus, minor axis rotation
of a rigid body with a flexible mode can be unstable even in the absence of dissipation.
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4 Concluding Remarks

Two noncanonical Hamiltonian models have been presented for the dynamics of a rigid body
with a single moving point mass. One of these models was used to obtain conditions for
stability of steady principal axis rotation of the rigid body. The analysis gives necessary and
sufficient conditions for stability of steady major axis rotation, as well as sufficient conditions
for instability of steady intermediate and minor axis rotation. The latter result implies that
minor axis rotation of a rigid body can be destabilized by a simple point mass oscillator,
even without any damping in the system.

The models presented here can easily be extended to allow for multiple moving masses.
In [11], a very similar system was presented in which both point masses are controlled in
the 1-axis direction. A control law was developed, based on the linearized dynamics, which
succeeded in (locally) asymptotically stabilizing steady minor axis rotation. This approach
was dubbed “principal axis misalignment.” Ongoing research may reveal a more general
form of principal axis misalignment in terms of kinetic-shaping feedback.

Acknowledgement: Research sponsored in part by the National Science Foundation under
Grant CMS-0133210 and by the Office of Naval Research under Grant N00014-01-1-0588.
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