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Abstract

We consider linear controlled mechanical systems and show that controllability
enables one to use the method of controlled Lagrangians for feedback stabilization of
equilibria.

1 Introduction

The method of controlled Lagrangians for holonomic mechanical systems originated in Bloch,

Marsden, and Sánchez de Alvarez [7] and Bloch, Leonard, and Marsden [3], and was then

developed in Auckly, Kapitanski, and White [1], Bloch, Leonard, and Marsden [4, 5, 6],

Bloch, Chang, Leonard, and Marsden [2], and Hamberg [10, 11]. In [15, 16], Zenkov, Bloch,

Leonard, and Marsden extended this method to a class of nonholonomic systems.

This method is based on the requirement that the closed-loop dynamics is derived from

the new, controlled Lagrangian. This Lagrangian is typically represented as the difference in

modified kinetic and potential energy of the original system. The new terms that appear in

the equations of motion define the control inputs. The closed-loop dynamics obtained this

way has a natural conservation law—the energy associated with the controlled Lagrangian.

A controlled system is called underactuated if the control forces are allowed in certain

directions only. Asking that the controlled dynamics remains Lagrangian and that the

control forces appear in the desired directions only imposes certain matching conditions on

the original and controlled Lagrangians. The matching conditions are represented by an

overdetermined system of partial differential equations. Some results on the compatibility

of this system and on how one solves these equations can be found in Auckly, Kapitanski,

and White [1] and Chang [8].

For stabilization of an equilibrium of the original system, one needs to be able to con-

struct a controlled Lagrangian whose kinetic and potential energies are positive-definite at

this equilibrium. It is unclear whether compatibility of the matching conditions is sufficient

for existence of such a Lagrangian. In particular, if one uses the method of characteristics

for solving the matching conditions (see Hamberg [10]), the initial conditions for the con-

trolled kinetic and potential energies should produce a controlled Lagrangian whose energy

is positive-definite and thus have to satisfy certain restrictions.
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In the present paper we address the problem of existence of a stabilizing controlled Lagran-

gian for linear mechanical systems. The matching conditions in this situation are represented

by a matrix equation for the kinetic and potential energy forms. We prove that controlla-

bility of the original system implies the existence of solutions of this equation in the class

of symmetric positive-definite matrices. This result can be useful in obtaining the proper

initial values for the nonlinear matching conditions.

The paper is organized as follows: In section 2 we give a brief overview of the method of

controlled Lagrangians and the nature of the matching conditions. In section 3 we discuss

linear controlled mechanical systems and introduce the Hamiltonian representation for the

controlled dynamics. The main results are described in section 4; we first introduce the

feedback control inputs that place the eigenvalues of the system on the imaginary axis, and

then conclude that the controlled dynamics has a positive-definite quadratic conservation law

and construct a positive-definite controlled Lagrangian by modifying this conserved quantity.

2 An Overview of the Method of

Controlled Lagrangians

Consider a controlled mechanical system

d

dt

∂L

∂q̇i
=

∂L

∂qi
+ bk

i (q, q̇)uk, i = 1, . . . , n, k = 1, . . . ,m, (2.1)

where uk are the control inputs. Throughout the paper, all indices range from 1 to n unless

otherwise stated, and a summation over repeated indices is understood. The Lagrangian has

the form of kinetic minus potential energy:

L =
1

2
gij(q)q̇

iq̇j − U(q).

We assume that this system is underactuated, i.e., the number of control inputs, m, is

strictly smaller than the number of degrees of freedom of (2.1), n. Let q0 be an unstable

equilibrium of (2.1). The method of controlled Lagrangians suggests the following strategy

for stabilization of this equilibrium:

1. Introduce a new function L̃ = 1
2
g̃ij(q)q̇

iq̇j − Ũ(q) called the controlled Lagrangian.

2. Require that the original controlled dynamics (2.1) is equivalent to the uncontrolled

dynamics associated with L̃,

d

dt

∂L̃

∂q̇i
=

∂L̃

∂qi
, i = 1, . . . , n. (2.2)

This equivalence determines the control inputs (see theorem 2.1 below).

3. Adjusting L̃ if necessary, make the equilibrium q0 of (2.2) neutrally stable.
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4. If asymptotic stabilization is desired, add dissipation emulation terms to the control

inputs uk.

The conditions for equivalence of systems (2.1) and (2.2) are called the matching conditions.

They are specified in the following theorem (see Hamberg [10] for details).

Theorem 2.1. Equations (2.1) and (2.2) are equivalent if and only if the following matching

conditions hold:

ci
βgij(Γ

j
ab − Γ̃j

ab) = 0, ci
β

(
∂U

∂qi
− gij g̃

jk ∂Ũ

∂qk

)
= 0, β = 1, . . . , n−m. (2.3)

The control inputs in this case can be obtained from the equations

bk
i (q, q̇)uk =

∂U

∂qi
− gij g̃

ja ∂Ũ

∂qa
+ gij(Γ

j
ab − Γ̃j

ab)q̇
aq̇b, k = 1, . . . ,m.

In (2.3), Γj
ab and Γ̃j

ab represent the Christoffel symbols for the metrics gij and g̃ij, respectively,

and the coefficients ci
β are determined by

bj
ic

i
β = 0, j = 1, . . . ,m, β = 1, . . . , n−m.

3 Linear Lagrangian Systems

In this section we introduce linear Lagrangian systems along with some useful coordinate

transformations and write out the matching conditions for these systems.

Linear Controlled Lagrangian Systems. Consider a quadratic Lagrangian

L =
1

2
(gij q̇

iq̇j − aijq
iqj), i, j = 1, . . . , n, (3.4)

and the linear controlled mechanical system associated with (3.4):

d

dt

∂L

∂q̇i
=

∂L

∂qi
+ bk

i uk, (3.5)

where (u1, . . . , um) are the control inputs. Here and below, gij is a positive-definite constant

matrix, and aij and bk
i are constant matrices. In the absence of controls the origin is an

unstable equilibrium of (3.5). We assume that system (3.5) is controllable, that is, after

rewriting (3.5) as a system of first order ordinary differential equations

ż = Az + Bu, (3.6)

the controllability rank condition

rank
(
B, AB, A2B, . . . , A2n−1B

)
= 2n (3.7)

is satisfied. For an underactuated system, the number of independent control inputs equals

rank bk
i . We thus assume rank bk

i = m.
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The Matching Conditions. To stabilize the equilibrium q = 0 of (3.5), we introduce the

quadratic controlled Lagrangian

L̃ =
1

2
(g̃ij q̇

iq̇j − ãijq
iqj).

The matching conditions (2.3) reduce to the following equation for matrices g̃jk and ãjk:

ci
β(gij g̃

jk − aij ã
jk) = 0, β = 1, . . . , n−m, k = 1, . . . , n.

The solutions of this equation should belong to the class of symmetric positive-definite

matrices. Below we show that such solutions exist if the controllability condition (3.7) holds.

Let Λ1, . . . , Λn be the roots of the equation det(aij−λgij) = 0. There always exists a linear

substitution q = Tx that transforms the matrices gij and aij into the unit matrix I and the

diagonal matrix Λ = diag(Λ1, . . . , Λn), respectively.

The Hamiltonian Representation. One of the ways to represent (3.5) as (3.6) is to

rewrite the original system as a Hamiltonian one (we refer the reader to [9] and [14] for details

on Lagrangian and Hamiltonian representations of mechanical control systems). Introduce

the Hamiltonian

H =
1

2

n∑
i=1

(y2
i + Λi x

2
i ).

As usual, yi = ∂ẋi
L = ẋi are the conjugate momenta. The equations of motion written in

the variables (x, y) become

ẋ = y, ẏ = −Λx + Bu. (3.8)

These have the form of (3.6) if we put

z = (x, y), A =

(
0 I

−Λ 0

)
, B =

(
0

b

)
.

4 Existence of Stabilizing Quadratic

Controlled Lagrangians

In this section we prove that the origin equilibrium of a linear controllable mechanical system

can be stabilized by the method of controlled Lagrangians.

The Feedback Choice. We choose the feedback control u in (3.8) such that all eigen-

values of (3.8) are distinct pure imaginary conjugate pairs. The controllability assumption

enables us to do that. Moreover, we can choose u that depends linearly on the configuration

coordinates x only and does not depend on the momenta y.

Lemma 4.1. There exists an m×n matrix K such that the linear positional feedback control

u = Kx places the eigenvalues of (3.8) on the imaginary axis.
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Proof. If u = Kx, equations (3.8) are equivalent to

ẍ = (−Λ + bK)x,

and therefore the characteristic polynomial of (3.8) with u = Kx may be written as

p(λ) = det(λ2I − (−Λ + bK)).

One can check that the controllability condition (3.7) is equivalent to

rank(b, Λb, Λ2b, . . . , Λn−1b) = n.

Therefore the eigenvalues of the matrix −Λ + bK may be assigned any values by an appro-

priate choice of the matrix K. In our case, making the eigenvalues of −Λ + bK distinct

negative real numbers places the eigenvalues of (3.8) on the imaginary axis.

The Structure of the Controlled System. With this choice of controls, (3.8) becomes

the system of 2n linear ordinary differential equations

ż = Az. (4.9)

The matrix of this system is

A =

(
0 I

F 0

)
, where F = −Λ + bK.

Since all eigenvalues of our controlled system are distinct pure imaginary pairs, this system

has a positive-definite quadratic integral

f(x, y) =
1

2
zTBz, (4.10)

where B is a symmetric 2n× 2n matrix, which we write as

B =

(
C E

ET D

)
, C = CT , D = DT .

The origin is a stable equilibrium of (4.9). Observe that C and D are positive-definite n×n

matrices.

According to Kozlov [12, 13], a non-degenerate system of 2n linear differential equations

(4.9) that has a quadratic integral (4.10) is Hamiltonian: The matrix

Ω = BA−1 (4.11)

is non-degenerate and skew-symmetric and therefore defines a symplectic structure, which

allows one to represent equations (4.9) as

ż = Ω−1df(z).

In the next paragraph we will construct the controlled Lagrangian from the Hamiltonian

(4.10).
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The Controlled Lagrangian. We now prove that the equilibrium q = 0 of (3.5) can be

stabilized by a suitable choice of a quadratic controlled Lagrangian.

Theorem 4.1. If the system
d

dt

∂L

∂ẋi
=

∂L

∂xi
+ bk

i uk (4.12)

is controllable, then there exists a controlled Lagrangian L̃ = (ẋT G̃ẋ − xT Ãx)/2 such that

the system

d

dt

∂L̃

∂ẋi
=

∂L̃

∂xi

is equivalent to (4.12) and the energy Ẽ = (ẋT G̃ẋ + xT Ãx)/2 associated with L̃ is positive-

definite. The control law is given by u = Kx, where K is determined by the equation

bK = Λ− G̃−1Ã. (4.13)

Proof. According to lemma 4.1, the controllability of (4.12) implies the existence of a positive-

definite Hamiltonian (4.10) and a symplectic structure (4.11). We now write out explicitly

the condition for (4.10) to be an integral of (4.9). Differentiating (4.10) along the flow (4.9),

we obtain

zT

(
EF C

DF ET

)
z ≡ 0.

The matrix (
EF C

DF ET

)
is therefore skew-symmetric, which implies

C = −DF, E = −ET , (EF )T = −EF. (4.14)

Next, we set E = 0 and obtain a new positive-definite quadratic integral

H̃ =
1

2
(yT Dy + xT Cx)

of (4.9). We then define the controlled Lagrangian L̃ by setting G̃ = D and Ã = C:

L̃ =
1

2
(ẋT Dẋ− xT Cx). (4.15)

Consider now a Lagrangian system associated with (4.15):

Dẍ = −Cx.

This system may be rewritten as

ẍ = −D−1Cx,

which according to (4.14) becomes

ẍ = Fx.

The last system is equivalent to the original system (4.12) with the control u = Kx. The

equations F = −Λ + bK and (4.14) imply (4.13).
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