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Abstract

In this paper we discuss the stabilization by means of structure preserving feedback laws (i.e.,

matching) of constrained systems described as implicit port-controlled Hamiltonian systems.

The theory is applied to underactuated mechanical systems with kinematic constraints.

1 Introduction

In recent literature new methods have been described for the stabilization of underactuated me-

chanical systems. The key idea of these methods is to look for stabilizing feedback controllers

which preserve the mathematical structure of the system. The controlled Lagrangians method

[5, 6, 10, 7, 1] considers underactuated mechanical systems described as Euler-Lagrange systems

and looks for controllers which preserve the Euler-Lagrange format in closed-loop. The conditions

under which such a controller exists are called matching conditions. The method has been ex-

tended to general Euler-Lagrange systems in [11]. On the Hamiltonian side an analogous method

has been described for mechanical systems in [14]. This method originates from the more general

interconnection and damping assignment passivity based control (IDA-PBC) method as described

in [15, 16]. The latter is applicable to the general class of port-controlled Hamiltonian systems,

including mechanical systems but also electrical or electromechanical systems (e.g. power conver-

ters, synchronous motors, see [15, 16] for examples). We refer to [3, 4, 8] for a discussion on the

connections between the two methods.

In this paper we present the interconnection and damping assignment passivity based control

method for constrained systems. We consider the class of implicit port-controlled Hamiltonian

systems and derive the matching conditions for these systems. The result is applied to the class

of underactuated mechanical systems with (possibly nonholonomic) kinematic constraints. Our

exposition will be closely related to the work of [12] on the controlled Lagrangians method for

constrained mechanical systems, see also [20] for some work in this direction.

2 Constrained systems

In this paper we consider constrained systems described as implicit port-controlled Hamiltonian

systems of the following form

ẋ = J(x)
∂H

∂x
(x) + g(x)λ + b(x)u, (2.1)

0 = gT (x)
∂H

∂x
(x), (2.2)

y = bT (x)
∂H

∂x
(x), (2.3)
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where x ∈ X (the state-space manifold), J : T ∗X → TX is a skew-symmetric vector bundle map,

g(x) : R
l → TxX the (independent) constrained vector fields (i.e., g(x)λ (λ ∈ R

l) are the reaction

forces), u ∈ F (the input-space, assumed to be a vector space), b(x) : F → TxX represents the

(independent) input vector fields, y ∈ F ∗ are the ouputs. H(x) ∈ C∞(X ) is the Hamiltonian, or

energy, function of the system.

Remark 2.1. The system (2.1)–(2.3) can be written in a coordinate free way as an implicit port-

controlled Hamiltonian system (X ,F ,D,H), where the geometric structure corresponding to J, g, b

is described by a so-called Dirac structure D. We refer to [17, 2] and references therein for more

details.

The constraints are given by (2.2) and define the constraint manifold

Xc = {x ∈ X | gT (x)
∂H

∂x
(x) = 0}. (2.4)

We assume that the constraints satisfy the following assumption:

Assumption 2.1. Let g(x) = [g1(x), . . . , gl(x)], with g1(x), . . . , gl(x) independent vector fields over

X . Assume that the l × l matrix [Lgi
Lgj

H(x)]i,j=1,...,l is invertible for all x ∈ Xc.

Define the (full rank) distributions G0(x) = Im g(x) ⊂ TxX and B(x) = Im b(x) ⊂ TxX .

Assumption 2.2. We assume that (G0∩B) |Xc
= {0}, that is, the control directions do not coincide

with the directions of the constraint forces.

As shown in [19, 2] under Assumption 2.1 the constraints can be eliminated and the system

(2.1)-(2.3) can be written as an explicit generalized Hamiltonian system on Xc in the following

way:

In [19, 2] it is shown that Assumption 2.1 implies that Txc
Xc∩G0(xc) = {0},∀xc ∈ Xc. Therefore,

the tangent bundle to X restricted to Xc can be written as a direct sum

Txc
X = Txc

Xc ⊕G0(xc), ∀xc ∈ Xc. (2.5)

Define the projection map π(xc) : Txc
X → Txc

Xc according to the decomposition in (2.5). Dually

to (2.5) we have

T ∗xc
X = T ∗xc

Xc ⊕ (G0(xc))
∗, ∀xc ∈ Xc, (2.6)

which defines a projection Π(xc) : T ∗xc
X → T ∗xc

Xc. Notice that the projection π on the tangent

bundle defines the inclusion π∗ : T ∗Xc ↪→ T ∗X |Xc
on the cotangent bundle. In fact,

π∗ ◦Π |(ann G0|Xc)= identity = Π ◦ π∗. (2.7)

Define the skew-symmetric vector bundle map

Jc = π ◦ J |Xc
◦ π∗ : T ∗Xc → TXc. (2.8)

By Assumption 2.2 the distribution B projects to a nonzero full rank distribution Bc = πB on Xc.
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Proposition 2.1. The system (2.1)-(2.3) when restricted to the constraint manifold can be written

as the following explicit generalized Hamiltonian system

ẋc = Jc(xc)
∂Hc

∂xc
(xc) + bc(xc)u, (2.9)

y = bT
c (xc)

∂Hc

∂xc
(xc), (2.10)

xc ∈ Xc, where Hc = H |Xc
, bc is defined by bc = πb so that Bc = Im bc.

Proof. Consider (2.1), XH − J dH − bu ∈ G0, where ẋ = XH ∈ TX |Xc
. Under the projection by

π this results in πXH − πJ |Xc
dH − πbu = 0. The constraint manifold (2.4) can be equivalently

defined as

Xc = {x ∈ X | dH(x) ∈ ann G0(x)}. (2.11)

Let Hc = H |Xc
be the restriction of the Hamiltonian to the constrained manifold. Then from

(2.11) it follows that ΠdH = d(H |Xc
) = dHc, which by (2.7) implies dH |Xc

= π∗dHc. Finally, let

XHc
= πXH , then it follows that ẋc = XHc

= JcdHc + bcu, which equals (2.9). Equation (2.10)

follows from y = ibdH = ibπ
∗dHc = iπbdHc = ibc

dHc.

Remark 2.2. The system (2.9, 2.10) can be written as a port-controlled Hamiltonian system

(Xc,F ,Dc,Hc) in a coordinate free way as the restriction of (X ,F ,D,H) to the constraint manifold

Xc, see [2].

3 Matching and stabilization

As stated in the introduction, the principal idea of the controlled Lagrangians and the IDA-PBC

method is to consider stabilizing feedback control laws which preserve the mathematical structure

of the system. Therefore we assume that the closed loop system is described by

ẋ = J̃(x)
∂H̃

∂x
(x) + g̃(x)µ + b(x)v, (3.1)

0 = g̃T (x)
∂H̃

∂x
(x), (3.2)

ỹ = bT (x)
∂H̃

∂x
(x). (3.3)

(For simplicity we restrict our attention to affine static state feedback controllers of the form

u(x, v) = α(x) + v.) Following [12] we define the notion of constraint related systems:

Definition 3.1. The systems (2.1)–(2.3) and (3.1)–(3.3) are said to be constraint related if i) the

constraint manifolds coincide, i.e. , (2.2) is equivalent to (3.2), and ii) the distributions G0 = Im g

and G̃0 = Im g̃ coincide.

In particular, when the systems are constraint related then the projections π and π̃, as well as

the projections Π and Π̃, are the same, which corresponds to the definition given in [12].
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Assume that the first condtion in Definition 3.1 is satisfied, that is, the constraint manifold of

(3.1)–(3.3) is given by Xc. Then, under Assumption 2.1, the system (3.1)–(3.3) can be restricted

to an explicit generalized Hamiltonian system on Xc by Proposition 2.1

ẋc = J̃c(xc)
∂H̃c

∂xc
(xc) + bc(xc)v, (3.4)

ỹ = bT
c (xc)

∂H̃c

∂xc
(xc). (3.5)

Definition 3.2. The systems (2.1)-(2.3) and (3.1)-(3.3) are called matching if the restricted sys-

tems (2.9, 2.10) and (3.4, 3.5) are matching; that is, there exists a feedback law u(xc, v) = α(xc)+v

such that (2.9, 2.10) becomes the closed loop system (3.4, 3.5).

Consider the matching conditions for the restricted systems (2.9, 2.10) and (3.4, 3.5). From the

above definition it is clear that these systems are matching if and only if there exists an α(xc) ∈ F
such that

Jc(xc)
∂Hc

∂xc
(xc) + bc(xc)α(xc) = J̃c(xc)

∂H̃c

∂xc
(xc), ∀xc ∈ Xc. (3.6)

Let b⊥c ⊂ T ∗Xc denote a full rank left annihilator of bc, i.e., b⊥c bc = 0, then (3.6) is equivalent to

b⊥c (xc)

(

Jc(xc)
∂Hc

∂xc

(xc)− J̃c(xc)
∂H̃c

∂xc

(xc)

)

= 0. (3.7)

These are the matching conditions for the restricted systems (2.9, 2.10) and (3.4, 3.5). They corre-

spond to the matching conditions for explicit port-controlled Hamiltonian systems as described in

the IDA-PBC method, see [15].

For constraint related systems we can translate the matching conditions (3.7) into conditions

for the original implicit port-controlled Hamiltonian systems as follows: Using the results of the

previous section (3.7) can be written as

(π∗b⊥c )
(

J |Xc
dH |Xc

−J̃ |Xc
dH̃ |Xc

)

= 0. (3.8)

Notice that π∗b⊥c ⊂ T ∗X |Xc
is a left annihilator of b |Xc

, i.e., (π∗b⊥c )(b |Xc
) = b⊥c (πb) = b⊥c bc = 0.

By construction it also annihilates G0. Therefore π∗b⊥c ⊂
(

b⊥ ∩ ann G0

)

|Xc
, where b⊥ is a full

rank left annihilator of b. In fact, a dimension argument learns that equality holds, that is, π∗b⊥c =
(

b⊥ ∩ ann G0

)

|Xc
. Together with (3.8) this yields

[

(

b⊥ ∩ ann G0

)

(

J
∂H

∂x
− J̃

∂H̃

∂x

)]

|Xc
= 0, (3.9)

which are the matching conditions for the implicit systems (2.1)-(2.3) and (3.1)-(3.3). In conclusion:

Proposition 3.1. The constraint related systems (2.1)-(2.3) and (3.1)-(3.3) are matching if and

only if the matching conditions (3.9) hold.

Remark 3.1. Applied to the class of underactuated mechanical systems with kinematic con-

straints, Proposition 3.1 yields Theorem 9 in [12]. See also the next section.
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If the matching conditions are satisfied then the corresponding feedback law can be obtained

from (3.6) as

α = (bT
c bc)

−1bT
c

(

J̃cdH̃c − JcdHc

)

= (bT
c bc)

−1bT
c π

(

J̃dH̃ − JdH
)

|Xc
. (3.10)

The control law is then given by u(xc, v) = α(xc) + v. Notice that the control law is only defined

on the constraint manifold Xc, where the actual motion takes place.

Now, let x∗ ∈ Xc be a stationary point of the original constrained Hamiltonian Hc, i.e., ∂Hc

∂x
(x∗) =

0. Then x∗ is an equilibrium point of (2.9, 2.10), or equivalenlty (2.1)-(2.3), with u = 0, which

possibly is unstable. If we can find a matching control law such that x∗ is a strict local minimum

for the new constrained Hamiltonian H̃c, then x∗ is a Lyapunov stable equilibrium point of the

closed loop dynamics (3.1)-(3.3), with v = 0. Indeed, the Lyapunov function is given by H̃c and

satisfies d
dt

H̃c(x(t)) = d
dt

H̃(x(t)) = 0 along solutions of (3.1)-(3.3) with v = 0. Furthermore, if we

apply the negative output feedback v = −ỹ = −bT ∂H̃
∂x

, then we get the energy balance

d

dt
H̃c(x(t)) =

d

dt
H̃(x(t)) = −∂H̃

∂x

T

(x(t))b(x(t))bT (x(t))
∂H̃

∂x
(x(t)) ≤ 0, (3.11)

which shows that the energy of the system is monotonically decreasing along the trajectories of

the system. By LaSalle’s theorem any trajectory starting close enough to x∗ will converge to the

largest invariant set Ωinv (with respect to (3.1)-(3.3) with v = 0) contained in

Ω = {x ∈ Xc | bT (x)
∂H̃

∂x
(x) = 0}. (3.12)

If Ωinv turns out to be exactly x∗, then x∗ is an asymptotically stable equilibrium point of the

closed loop system.

In conclusion, we have obtained the following result, which can be regarded as an extension of

the interconnection and damping assignment passivity based control (IDA-PBC) method [15, 16] to

the class of constrained systems.

Theorem 3.1. Consider the constrained system (2.1)-(2.3), and let x∗ ∈ Xc be a stationary point

of the Hamiltonian Hc = H |Xc
. Suppose we can find a function H̃ and a matrix J̃ , such that

(3.2) with g̃(x) , g(x) is equivalent to (2.2) and such that the matching conditions (3.9) hold.

Furthermore, suppose that we can choose H̃ in such a way that x∗ is a strict local minimum of

H̃c = H̃ |Xc
. Then the state feedback law

u(xc) = α(xc)− bT (xc)
∂H̃

∂x
(xc), xc ∈ Xc, (3.13)

with α(xc) defined by (3.10), stabilizes the equilibrium point x∗. In other words, x∗ is a Lyapunov

stable equilibrium point of the closed loop system. Furthermore, all trajectories starting close enough

to x∗ will converge to the largest invariant subset Ωinv in Ω (3.12).
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Remark 3.2. Applying negative output feedback is equivalent to the introduction of damping in

the system. Indeed, (3.1)-(3.3) with v = −ỹ = −bT ∂H̃
∂x

can be equivalently written as

ẋ = (J̃(x)−R(x))
∂H̃

∂x
(x) + g̃(x)µ, (3.14)

0 = g̃T (x)
∂H̃

∂x
(x), (3.15)

(leaving out the outputs (3.3)), where R(x) = b(x)bT (x) ≥ 0. The introduction of the dissipation

(or, damping) matrix R is called damping assignment.

4 Constrained mechanical systems

In this section we will apply the theory to underactuated mechanical systems with kinematic

constraints. The Hamiltonian, or energy, function is given by the sum of kinetic and potential

energy

H(q, p) =
1

2
pTM−1(q)p + V (q), (4.1)

where q ∈ R
n are the configuration coordinates and p = M(q)q̇ ∈ R

n are the generalized momenta,

and M(q) = MT (q) describes the generalized mass matrix of the system, assumed to be positive

definite. The system is underactuated in the sense that the externally supplied forces Fexternal are

assumed to lie in the image of a full rank matrix B(q) : R
l → R

n describing the admissible force

fields. Suppose that the system has to satisfy the kinematic constraints described by AT (q)q̇ = 0,

where A(q) is a full rank k× n matrix (k < n). Depending on the matrix A(q) the constraints can

be holonomic or nonholonomic. If we assume that the constraints are ideal, i.e., produce no work,

then the constraints generate constraint forces Fconstraint ∈ Im A(q). The system can be described

as an implicit port-controlled Hamiltonian system in the following way

[

q̇

ṗ

]

=

[

0 In

−In 0

][

∂qH

∂pH

]

+

[

0

B(q)

]

u +

[

0

A(q)

]

λ, (4.2)

0 = [0 AT (q)]

[

∂qH

∂pH

]

, (4.3)

y = [0 BT (q)]

[

∂qH

∂pH

]

. (4.4)

The constraint manifold is defined by

Xc = {(q, p) ∈ R
n × R

n | AT (q)M−1(q)p = 0}. (4.5)

Since in this case the matrix [Lgi
Lgj

H(x)]i,j=1,...,l is given by AT (q)M−1(q)A(q), which has full

rank, Assumption 2.1 is satisfied and we can restrict the system (4.2)–(4.4) to an explicit gen-

eralized Hamiltonian system of the form (2.9, 2.10). Define the new coordinates (q, p̂1, p̂2) =

(q, ST (q)p,AT (q)p) ∈ R
n × R

n−k × R
k, where S(q) is any full rank n × (n − k) matrix such that

AT (q)S(q) = 0. Then the constraints are given by ∂Ĥ
∂p̂2

(q, p̂1, p̂2) = 0, where Ĥ(q, p̂1, p̂2) = H(q, p).
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By Assumption 2.1 and the Implicit Function Theorem, on the constraint manifold p̂2 can be writ-

ten as a function of q, p̂1. It follows that (q, p̂1) are local coordinates for Xc. Because of (4.1) it

follows that the constrained Hamiltonian Hc = H |Xc
has the form

Hc(q, p̂1) =
1

2
p̂T
1 M−1

c (q)p̂1 + V (q), Mc(q) > 0. (4.6)

In [18, 13] it is shown that the restricted skew-symmetric matrix Jc and the restricted input vector

fields bc have the form

Jc(q, p̂1) =

[

0 S(q)

−ST (q) (−pT [Si, Sj](q))i,j

]

, bc(q) =

[

0

ST (q)B(q)

]

, (4.7)

where p is expressed as a function of q, p̂1, and [Si, Sj ](q) denotes the Lie bracket between the

i-th and j-th column of the matrix S(q). Furthermore, in [18] it has been shown that the Poisson

bracket corresponding to the structure matrix Jc satisfies the Jacobi identities (i.e., the integrability

conditions) if and only if the kinematic constraints are holonomic.

4.1 Matching of constrained mechanical systems

According to the principal idea of the IDA-PBC method, consider a closed loop kinematically

constrained underactuated mechanical system with new energy function given by

H̃(q, p) =
1

2
pTM̃−1(q)p + Ṽ (q), (4.8)

where M̃(q) = M̃T (q) is the new generalized mass matrix, assumed to be positive definite, and

Ṽ (q) the new potential energy function. The closed loop system should also satisfy the kinematic

constraints AT (q)q̇ = 0 which can be written as AT (q)M−1(q)M̃ (q)∂pH̃(q, p) = 0. Since in (4.2) q

is a nonactuated coordinate, the relation q̇ = M−1(q)p should also hold in closed loop. It follows

that the closed loop system can be written in the form

[

q̇

ṗ

]

=

[

0 M−1M̃

−M̃M−1 J2(q, p)

][

∂qH̃

∂pH̃

]

+

[

0

B

]

v +

[

0

M̃M−1A

]

µ, (4.9)

0 = [0 AT M−1M̃ ]

[

∂qH̃

∂pH̃

]

, (4.10)

ỹ = [0 BT ]

[

∂qH̃

∂pH̃

]

, (4.11)

where J2(q, p) is an arbitrary skew-symmetric matrix. Since Assumption 2.1 holds, the system

(4.9)–(4.11) can be written as an explicit generalized Hamiltonian system of the form (2.9, 2.10)

on the constraint manifold (4.5). The expression for J̃c, analogously to (4.7) (and written in the

coordinates q, p̂1!), is quite involved and will not be given here. The restricted systems are matching

if the matching conditions (3.7) hold.

However, if the systems (4.2)–(4.4) and (4.9)–(4.11) are constraint related, then we can use

Proposition 3.1 to obtain a much simpler form of the matching conditions. Since by construction
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the constraint manifolds are equal, i.e., (4.3) is equivalent to (4.10), the systems are constraint

related if and only if G0 = G̃0, i.e., if and only if

Im A(q) = Im M̃(q)M−1(q)A(q). (4.12)

Notice that (4.12) gives quite a strong condition on M̃ , see also Example 4.2 at the end of this

paper of a nonholonomically constrained particle stabilized by a control law corresponding to a

closed loop constraint related mechanical system.

Next, let us work out explicitly the matching conditions (3.9). Let Λ(q) be a full rank matrix

such that Im Λ(q) = Im A(q)⊕ Im B(q), and let Λ⊥(q) denote a full rank (matrix) left annihilator

of Λ(q). Then b⊥ ∩ ann G0 = ann (Im b ⊕ G0) =

[

In 0

0 Λ⊥(q)

]

. The matching conditions (3.9)

become
[

In 0

0 Λ⊥(q)

]([

0 In

−In 0

][

∂qH

∂pH

]

−
[

0 M−1M̃

−M̃M−1 J2(q, p)

][

∂qH̃

∂pH̃

])

= 0, ∀(q, p) ∈ Xc. (4.13)

Since the first line of (4.13) is trivially satisfied, the matching conditions take the form

Λ⊥
(

∂qH − M̃M−1∂qH̃ + J2M̃
−1p
)

= 0, ∀(q, p) ∈ Xc. (4.14)

The matching conditions (4.14) are very much alike the matching conditions for unconstrained

mechanical systems as described in [14]. The conditions (4.14) represent the Hamiltonian analogue

of the matching conditions given in Theorem 9 [12]. Now notice that for each q ∈ R
n the state

(q, p = 0) ∈ Xc. Then as in the case of unconstrained mechanical systems, using (4.1) and (4.8)

the matching conditions (4.14) can be equivalenlty written as a set of the following two equations

(representing the p-dependent, respectively the p-independent, part of (4.14))

Λ⊥(q)
(

∂q(
1

2
pT M−1(q)p)− M̃(q)M−1(q)∂q(

1

2
pT M̃−1(q)p)

+ J2(q, p)M̃−1(q)p
)

= 0, ∀(q, p) ∈ Xc, (4.15)

and

Λ⊥(q)
(

∂qV (q)− M̃(q)M−1(q)∂qṼ (q)
)

= 0, ∀q ∈ R
n. (4.16)

In conclusion:

Proposition 4.1. Assume that the systems (4.1),(4.2)–(4.4) and (4.8),(4.9)–(4.11) are constraint

related, i.e., condition (4.12) is satisfied. Then the systems are matching if and only if the matching

conditions (4.15) and (4.16) hold.

Remark 4.1. With respect to the matching conditions as described in the controlled Lagrangians

framework by [12], the Hamiltonian analogue described above includes an extra degree of freedom

of design represented by the parameter J2. In [3] it is shown that the “unconstrained” closed loop

structure matrix

J̃(q, p) =

[

0 M−1(q)M̃ (q)

−M̃(q)M−1(q) J2(q, p)

]

(4.17)
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satisfies the integrability conditions if and only if

J2 =M̃M−1
(

[∂q(MM̃−1p)]T − ∂q(MM̃−1p)
)

M−1M̃

+ M̃M−1
(

[∂qQ]T − ∂qQ
)

M−1M̃, (4.18)

for some smooth R
n-valued function Q(q). The function Q(q) respresents the introduction of

gyroscopic terms in the closed loop system. We remark that it is possible to include the extra degree

of freedom represented by J2 in the constrained controlled Lagrangians framework, by taking into

account (“uncontrollable”) external forces. This has been done in the unconstrained case in [8].

Secondly, the form (4.15, 4.16) of the matching conditions gives the possibility to extend the

so-called λ-method of [1] to constrained mechanical systems, see section 4.2 of [3].

Let (q∗, p̂1 = 0) be a stationary point of the constrained Hamiltonian (4.6), i.e., ∂V
∂q

(q∗) = 0.

Equivalenlty, (q∗, p = 0) is a stationary point of the Hamiltonian (4.1). Indeed, p̂1 = ST p = 0

implies p = Aν for some ν ∈ R
k. However, since (q∗, p̂1 = 0) ∈ Xc it follows that AT M−1p =

AT M−1Aν = 0 which implies ν = 0 since AT M−1A is invertible, and therefore p = 0. If V (q)

has a strict local minimum at q∗, then the point (q∗, 0) is Lyapunov stable (since Mc is positive

definite). If not, then one can try to shape V (q) in such a way that the new, shaped, potential

energy function Ṽ has a strict local minimum at q∗. However, it is well know that even for

unconstrained underactuated systems it is generally not possible to stabilize the system by only

shaping the potential energy. In general, one also needs to change the kinetic energy of the system

(see e.g. the well know example of a cart and pendulum, where one tries to stabilize the upright

position of the pendulum by applying a controlled force to the cart). In fact, we can immediately

translate Theorem 3.1 to the class of mechanical systems.

Theorem 4.1. Consider the constrained mechanical system (4.1),(4.2)–(4.4), and let (q∗, 0) be a

stationary point of the total energy function H, i.e., ∂V
∂q

(q∗) = 0. Suppose we can find a positive

definite matrix M̃ ,1 a function Ṽ and a skew-symmetric matrix J2, such that (4.12) and the match-

ing conditions (4.15,4.16) hold. Furthermore, suppose that we can choose Ṽ in such a way that q∗

is a strict local minimum of Ṽ . Then the state feedback

u(q, p) =(BT SST B)−1BT SST
(

∂qH − M̃M−1∂qH̃ + J2M̃
−1p
)

−BTM̃−1p,

(q, p) ∈ Xc, (4.19)

(where we left out the argument q for clarity) stabilizes the equilibrium point (q∗, 0). In other

words, (q∗, 0) is a Lyapunov stable equilibrium point of the closed loop system. Furthermore, all

trajectories starting close enough to (q∗, 0) will converge to the largest invariant (with respect to

(4.8),(4.9)–(4.11) with v = 0) subset Ωinv in

Ω = {(q, p) ∈ R
2n | AT (q)M−1(q)p = 0 and BT (q)M̃−1(q)p = 0}. (4.20)

Remark 4.2. The IDA-PBC method for unconstrained mechanical systems, see [14], allowing the

shaping of the total energy of the system, is an extension of the classical passivity based control

method by means of potential energy shaping. Naturally, also the method presented above includes

1In fact, it is sufficient for M̃(q) to be positive definite locally around q∗.
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the method of potential energy shaping, e.g. [13], as a special case. Indeed, taking M̃(q) equal to

M(q) and J2 = 0 automatically satisfies (4.12, 4.15) and the matching conditions (4.16) become

Λ⊥(∂qV − ∂qṼ ) = 0, or equivalently, ∂qV − ∂qṼ ∈ Im A⊕ Im B. These conditions are equivalent

to the condition

ST (q)
∂(V − Ṽ )

∂q
(q) ∈ Im ST (q)B(q), (4.21)

which are the conditions as given in [13].

4.2 Fully actuated mechanical systems

It is instructive to specialize the results obtained above to the case of fully actuated constrained

mechanical systems, that is, when Im A(q)⊕ Im B(q) = R
n (equivalently, ST (q)B(q) is invertible).

In this case Λ⊥(q) = 0 and it follows that the matching conditions (4.15, 4.16) are trivialy satisfied.

In particular this means that we can always shape the potential energy function V (q) to a new

potential energy function Ṽ (q) having a strict minimum at the stationary configuration point q∗

(in fact, for any configuration point q∗ ∈ R
n we can find such a Ṽ ). By taking the new kinetic

energy matrix M̃(q) to be equal to M(q), condition (4.12) is automatically satisfied and Theorem

4.1 implies that there exists a state feedback control law which stabilizes the equilibrium point

(q∗, 0).

Furthermore, in this case the largest invariant subset Ωinv in (4.20) can be calculated to be

Ωinv = {(q, 0) ∈ R
2n | ST (q)

∂Ṽ

∂q
(q) = 0}, (4.22)

see e.g. [13]. Indeed, (q, p) ∈ Ω implies p = 0, which can be seen as follows: AT M−1p = 0 implies

that M−1p = Sν, for some ν ∈ R
n−k. Then BTM̃−1p = BT M̃−1MSν = 0. Now notice that

(4.12) is equivalent to Im M̃−1MS = Im S. This implies that BT M̃−1MSν = BTSLν = 0 for

some (n − k) × (n − k) invertible matrix L. Since BT S is invertible it follows that ν = 0, i.e.,

p = 0. So Ω = {(q, p) ∈ R
2n | p = 0}. Now consider a point (q, p = 0) ∈ Ω, then q̇ = M−1p = 0

and ṗ = −∂Ṽ
∂q

+ Aλ, which yields ST ṗ = −ST ∂Ṽ
∂q

. Notice that (q, p = 0) ∈ Ωinv if and only if

ṗ = 0. However, ṗ = 0 is equivalent to ST ṗ = 0. For if ST ṗ = 0, then ṗ = Az, for some z ∈ R
k.

Differentiate AT M−1p = 0 with respect to time and use p = 0 to obtain AT M−1Az = 0. Since

AT M−1A is invertible it follows that z = 0, i.e., ṗ = 0. In conclusion: Ωinv is exactly given by

(4.22).

To illustrate the above results, let us recall the example of a knife edge as treated in [13].

Example 4.1. Consider a knife edge moving in point contact on a plane surface. Setting all

parameters equal to one, the equations are given by

ẋ = px, ṗx = u1 cos φ + λ sinφ, (4.23)

ẏ = py, ṗy = u1 sinφ− λ cos φ, (4.24)

φ̇ = pφ, ṗφ = u2, (4.25)

px sinφ− py cosφ = 0, (4.26)
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where (x, y) denote the coordinates of the point of contact of the knife edge on the plane, φ

denotes the heading angle on the plane, and px, py, pφ denote the corresponding momenta. The

nonholonomic kinematic constraints are given by the condition that the knife edge is only allowed

to move in a direction on the plane tangential to the blade of the knife, and are described by

(4.26). The dynamic equations can be written in the form (4.2)–(4.4), with H(x, y, φ, px, py, pφ) =
1
2(p2

x + p2
y + p2

φ),

A(q) =







sinφ

− cosφ

0






, B(q) =







cos φ 0

sinφ 0

0 1






. (4.27)

When u1 = u2 = 0 the origin is an unstable equilibrium point of the system. Indeed, a solution

starting at (x0, y0, φ0, p0
x, p0

y, p
0
φ) = (0, 0, 0, 0, 0, ε), ε > 0, will satisfy φ̇(t) = ε and therefore runs of

to infinity, i.e., φ(t) →∞.

The system is fully actuated and therefore we can arbitrarily shape the potential energy of the

system. We choose Ṽ (x, y, φ) = 1
2(x2 + y2 + φ2) which has a strict minimum at the origin. We

leave the kinetic energy unchanged and choose J2 = 0. The corresponding feedback law (4.19) is

given by, see also [13],

u1 = −(x cos φ + y sinφ + px cos φ + py sinφ), (4.28)

u2 = −(φ + pφ). (4.29)

The origin is a Lyapunov stable equilibrium of the closed loop system. All trajectories will converge

to Ωinv (4.22), which in this case is given by (note that S(q) = B(q))

Ωinv = {(x, y, z, px, py, pz) | x = 0, φ = 0, px = 0, py = 0, pφ = 0}, (4.30)

i.e., the y-axis. Notice that by Brockett’s necessary condition we cannot find a smooth state

feedback control law which asymptotically stabilizes the origin of the system.

The next example is a nonholonomically constrained particle as treated in [12]. The system is

underactuated and can be stabilized by total energy shaping.

Example 4.2. Consider a particle in R
3 with mass 1. The vector q = (x, y, z) ∈ R

3 denotes the

coordinates of the particle, and p = (px, py, pz) ∈ R
3 are the corresponding momenta. The total

energy of the particle is defined by

H(x, y, z, px, py, pz) =
1

2
(p2

x + p2
y + p2

z)−
1

2
xz2 + yz. (4.31)

Assume the particle has to satisfy the nonholonomic kinematic constraints ẋ + zẏ = 0, or equi-

valenlty, px + zpy = 0. The particle is actuated by a force in the y-direction. Then the dynamics

can be written in the form (4.2)–(4.4), with

A(q) =







1

z

0






, B(q) =







0

1

0






. (4.32)
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When u = 0, the origin is an unstable equilibrium point of the system, as can be seen by calculating

the constraint multipliers λ and checking that the linearization of the system around the origin has

an unstable eigenvalue +1.

Notice that Λ⊥(q) = [0 0 1]. Stabilization of the origin by potential energy shaping only does

not work, since the matching conditions Λ⊥(∂qV −∂qṼ ) = 0 imply that Ṽ (q) = − 1
2xz2+yz+Φ(x, y)

for an arbitrary smooth function Φ(x, y). Since Ṽ (0, 0, 0) = Ṽ (0, 0, z) for all z, Ṽ (q) can never have

a strict local minimum in the origin.2 Therefore, in order to stabilize the system we need to shape

the total energy of the system.

Any symmetric matrix M̃(q) satisfying the condition (4.12) has the form

M̃(q) =







a + c(1− z2) cz −bz

cz a b

−bz b d






, (4.33)

where a, b, c, d are arbitrary smooth functions of q, see [12]. As in [12] we choose M̃ to be

M̃ (q) =







4 0 −z

0 4 1

−z 1 1






, (4.34)

which is positive definite as long as z ∈ ]−
√

3,
√

3[. If we choose

Ṽ (q) =
1

2
(x2 + y2 + (z − y)2), (4.35)

then the closed loop Hamiltonian H̃(q, p) (4.8) has a strict local minimum in the origin. Notice that

this choice of Ṽ (q) is slightly different than the one in [12]. The matching conditions (4.15, 4.16)

are satisfied with

J2(q, p) =
1

z2 − 3







0 0 zpx − py + 4p3

0 0 0

−(zpx − py + 4p3) 0 0






. (4.36)

The matrix (4.36) is different from the “integrable” choice (4.18), which in fact does not satisfy the

matching conditions for any Q(q). The necessity of matching by non-integrable closed loop structure

matrices (i.e., not corresponding to classical Euler-Lagrange systems) is reflected in Hambergs

concept of generalized (Euler-Lagrange) matching [11, 12]. Notice however that the possibility

of “non-integrable” matching comes natural in the IDA-PBC method by using the more general

framework of implicit port-controlled Hamiltonian systems. Furthermore, it is interesting to remark

that (4.36) is not the only choice for J2 for which the matching conditions hold. In fact, there is a

whole family of (non-integrable) skew-symmetric matrices J2 which solve the matching conditions

(4.15). This freedom might be used for additional goals other than stabilization.

2Strictly speaking this does not imply that stabilization by potential energy shaping is not possible at all, however,

it is not possible by the method described in Theorem 4.1. For example Φ(x, y) = x puts all the eigenvalues of the

linearized system in the origin, and more advanced methods are needed to decide on stability of the nonlinear system.
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The stabilizing feedback controller (4.19) is on the constraint manifold Xc = {(x, y, z, px, py, pz) ∈
R

6 | px = −zpy} given by

u(q, p) =− 1

2
z3 + yz2 + (4x + 4)z − 7y

+
1

z2 − 3

(

py − pz + zpz((z
2 + 1)py − 4pz)

)

, (4.37)

(i.e., ST (q) =

[

z −1 0

0 0 1

]

), which is defined as long as z ∈ ]−
√

3,
√

3[.

All trajectories of the closed loop system starting close enough to the origin (such that z(t) ∈
]−

√
3,
√

3[, ∀t) will converge to the largest invariant subset Ωinv contained in

Ω = {(x, y, z, px, py, pz) ∈ R
6 | px + zpy = 0, py − pz = 0}. (4.38)

We can calculate Ωinv as follows: The trajectories of any invariant subset in Ω should satisfy
d
dt

(px + zpy) = 0 = d
dt

(py − pz), that is

ṗx + zṗy + pzpy = 0, ṗy − ṗz = 0. (4.39)

The first of these equations defines the constraint multiplier µ. Using this, together with the fact

that px + zpy = 0, py − pz = 0, the second equation yields that 2y − (x + 1)z = 0. Setting the

time-derivative of this last equation to zero, etc., finally implies that pz = 0 and therefore also

px = py = 0. This means that any invariant subset contained in Ω necessarily is contained in the

set {(q, p) ∈ R
2n | p = 0}. Analogously to section 4.2 we can then show (using (4.12), which implies

that Im S = Im M−1M̃S) that the largest invariant subset Ωinv contained in Ω is actually defined

by (4.22), which in this case is given by

Ωinv = {(x, y, z, 0, 0, 0) ∈ R
6 | (x− 1)y = 0 and y = z}, (4.40)

i.e., the union of the line {x = 1, y = z} with the x − axis. In particular this implies that any

trajectory starting very close to the origin will converge to the x-axis.

One final remark is the following: Notice that the feedback (4.37) drives every trajectory starting

close enough to the origin to the invariant set (4.40). Its domain of attraction can be made arbitrary

large by taking instead of (4.34) the matrix

M̃(q) =







a 0 −z

0 a 1

−z 1 1






, (4.41)

with a an arbitrary positive constant. This matrix is positive definite as long as z ∈ ]−
√

a− 1,
√

a− 1[.

The matching conditions are satisfied with

J2(q, p) =
1

z2 − a + 1







0 0 zpx − py + ap3

0 0 0

−(zpx − py + ap3) 0 0






. (4.42)

The stabilizing feedback controller (4.19) drives every trajectory starting close enough to the origin

(such that z(t) ∈ ]−
√

a− 1,
√

a− 1[, ∀t) to the invariant set (4.40).
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5 Conclusions

In this paper we presented the extension of the interconnection and damping assignment passivity

based control (IDA-PBC) method to the class of constrained systems. The constrained systems

are modelled as implicit port-controlled Hamiltonian systems. The matching conditions for such

systems are given and sufficient conditions for stabilizability of these systems are obtained. The

stabilizing feedback law is explicitly calculated. The theory is applied to the class of underactuated

mechanical systems with (nonholonomic) kinematic constraints. We remark that the method is

depending on the solvability of a set of nonlinear PDEs (i.e., the matching conditions). However,

it seems clear that various methods obtained in recent literature for solving these PDEs in the

unconstrained case, such as the so-called simplified matching conditions [7], the λ-method [1, 3], or

the transformation to ODEs [9], can be directly extended to the case of constrained systems.
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