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Abstract

In this paper we shall present a parametrization of all symmetric, possibly non-
square minimal factorizations of a positive semidefinite rational matrix function. It
turns out that a pole-pair of such a nonsquare factor is the same as a pole pair for a
specific square factor. The location of the zeros is then determined by a solution to a
certain algebraic Riccati inequality.

We shall also consider the case where the function we wish to factorize in a sym-
metric way has only constant signature. A connection with Bezoutians is given as
well.

1 Introduction

Consider an m×m rational matrix function, Φ(λ), that has positive semidefinite values on

the imaginary axis, iR and is regular. Note that, in this case, it is possible that Φ may have

poles or zeros on iR. Furthermore, we shall mostly assume that Φ(∞) = Im. The McMillan

degree of Φ is always even as is well known and is denoted by 2n. We say that an m × p
rational matrix function W (λ) is a minimal spectral factor of Φ(λ) if

Φ(λ) = W (λ)W (−λ)∗ (1.1)

is a minimal factorization. In other words, the McMillan degree of Φ is twice that of W.

Here we denote the McMillan degree of W by δ(W ).

Square spectral factors (i.e., with p = m) have been studied from many points of view in

the past (see [1, 5, 6, 7, 8, 9, 10, 11, 14, 24, 26, 27, 28, 29, 33, 35, 36, 37, 39].) Our present

interest lies in giving a simple parametrization of all, possibly nonsquare, spectral factors.

Such parametrizations were obtained for the stable spectral factors in [12, 13, 30]. In the
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present paper we summarize the main results of [31] and [32] which deal with the general

case.

We shall also consider the case where Φ(λ) has constant signature on iR, and where

Φ(∞) = J . Here, J is a selfadjoint invertible matrix. In that case we may expect a

factorization of the form

Φ(λ) = W (λ)J̃W (−λ)∗ (1.2)

for some selfadjoint J̃ and m× p rational matrix function W (λ). In contrast to the positive

semidefinite case such factorization with a square W may fail to exist, as is well-known. We

shall assume existence of one square factorization of this type and give a parametrization

of all possibly non-square factorizations of this type for which the poles of the non-square

factor are the same as the ones of the given square factor. Such J-symmetric factorizations

were studied from several points of view in earlier papers, see, e.g., [15, 17, 19, 20, 38, 40].

2 Preliminaries

If W (λ) is a rational matrix function with W (∞) = D, a realization of W (λ) is a represen-

tation of W in the form

W (λ) = D + C(λIn − A)−1B.

As is well known, this always exists. It is called a minimal realization if the number n is as

small as possible. In that case n is called the McMillan degree of W , which we denote by

δ(W ).

If D is invertible, then

W (λ)−1 = D−1 −D−1C(λ− A×)−1BD−1,

where A× = A−BD−1C.

If the realization is minimal then the eigenvalues of A are the poles of W (λ) and eigenvalues

of A× are the zeros of W (λ).

In general if W (λ) = W1(λ)W2(λ) then δ(W ) ≤ δ(W1) + δ(W2). In case equality holds

we say that the factorization is minimal. Let W (λ) = D + C(λIn − A)−1B be a minimal

realization. AssumeD is invertible. LetM be A-invariant,M× A× invariant andM⊕M× =

C
n. Let Π be the projection onto M along M× and let D = D1D2. Put

W1(λ) = D1 + C|M(λ− A|M)−1(I − Π)BD−1
2

W2(λ) = D2 +D−1
1 CΠ(λ− ΠAΠ)−1B

Then W = W1W2 is a minimal factorization with square factors and all minimal factoriza-

tions with square factors are obtained this way (see [3, 4]).

A pair of matrices (C,A) is called a pole pair for the rational matrix function W (λ) if

there is a matrix B such that

W (λ)− C(λI − A)−1B
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is analytic over the whole complex plane, and (A,B,C) is minimal. For the theory of pole

and zero pairs, and more generally, spectral triples, see [2].

3 The positive semidefinite case

The parametrization we have in mind starts from a minimal realization

Φ(λ) = Im + C(λI − A)−1B.

It is well-known that the minimality implies the existence of an invertible skew-hermitian

matrixH such thatHA = −A∗H andHB = C∗. The first of these relations can be rephrased

as saying that iA is selfadjoint in the indefinite inner product given by iH. This allows us to

use the results and techniques of the theory of indefinite inner product spaces. One element

of this theory is the following. A subspace M is called H-Lagrangian if HM = M⊥. It is

well-known that in the parametrization of all square spectral factors invariant Lagrangian

subspaces play a crucial role. In fact, introduce also A× = A − BC, then it is easily seen

that also HA× = −(A×)∗H. Then we have the following result [36].

Theorem 3.1. There is a one-one correspondence between all square spectral factors W (λ)

with W (∞) = Im and all pairs of subspaces M,M×, where M is A-invariant, M× is

A×-invariant, and both these subspaces are H-Lagrangian.

For given M and M× of this type, let Π be the projection onto M along M×. Then the

corresponding factor W is given by W (λ) = I + C(λI − A)−1ΠB.

In many cases Φ arises as a product

Φ(λ) = W1(λ)W1(−λ̄)∗,

where this is minimal, and we have a minimal realization for W1(λ):

W1(λ) = Im + C(λIn − A)−1B.

We are then looking for all W (λ) such that Φ(λ) = W (λ)W (−λ̄)∗ minimally, and for which

(C,A) is a pole pair for W (λ) . This problem was considered in [33], from which we sum-

marize the following.

From the realization for W1 we build a minimal realization for Φ:

Φ(λ) = Im +
(
C −B∗

)(
λI2n −

(
A −BB∗
0 −A∗

))−1(
B

C∗

)
.

Then M = Im

(
I

0

)
, A× =

(
A−BC 0

−CC∗ −A∗ + C∗B∗

)
, H =

(
0 I

−I 0

)
. An H-

Lagrangian A×-invariant subspace is of the formM× = Im

(
X

I

)
, where X = X∗ satisfies

the algebraic Riccati equation

XCC∗X +X(A−BC) + (A∗ − C∗B∗)X = 0.
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The converse also holds. If X is a selfadjoint solution to the algebraic Riccati equation, then

the corresponding W (λ) is given by:

W (λ) = Im + C(λIn − A)−1(B −XC∗).

Now consider
W1(µ)W1(−λ̄)∗ −W (µ)W (−λ̄)∗

µ− λ
A straightforward computation gives that this can be written as

C(µ− A)−1T(λ+ A∗)−1C∗

for some hermitian T which is called the Bezoutian. It turns out that in the present case we

have T = X. Moreover, Ker X describes the common right zero structure of W and W1. For

the definition and properties of the Bezoutian, see, e.g., [16, 18, 25]. For the application to

symmetric factorization see, e.g., [21, 22, 23, 24].

4 Minimal realizations for nonsquare minimal symmet-

ric factors

Consider again positive semidefinite Φ(λ), with minimal realization

Φ(λ) = Im + C(λI2n − A)−1B

and the corresponding H = −H∗ for which HA = −A∗H and HB = C∗. Now we are

looking for all possibly nonsquare minimal symmetric factorizations:

Φ(λ) = W (λ)W (−λ̄)∗.

This problem was studied in [31], from which we present the main results. See also [12,

13, 30, 32] for other approaches and additional results. The first step is the following key

observation:

Proposition 4.1. If W is a minimal (possibly nonsquare) symmetric factor, then there is

an A-invariant H-Lagrangian subspace M such that (C|M, A|M) is a pole pair for W .

If W is a minimal symmetric factor of Φ then W (∞) = V is a co-isometry, i.e., V V ∗ = Im.

With respect to appropriate bases we can take V =
(
Im 0

)
. We describe all minimal

symmetric factors for which W (∞) =
(
Im 0

)
, thereby describing all minimal symmetric

factors up to choice of bases.

We now state the main result

Theorem 4.1. There is a one-to-one correspondence between the set of minimal symmet-

ric factors W (λ) of Φ(λ) such that W (∞) =
(
Im 0

)
and the set of triples {M, X, B̂1}

described below.
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• M is an A-invariant H-Lagrangian subspace.

To describe X and B̂1, let A1 and C1 be given by A1 = A|M and C1 = C|M. Further-

more, suppose that M× is the A× = (A− BC)-invariant, H-Lagrangian subspace such that

σ(A×|M×) ⊂ C−.
Let π be the projection onto M along M× and denote a matrix representation for πB by

B̃1.

• Then X solves the Riccati inequality

XC∗1C1X −X(A1 − B̃1C1)∗ − (A1 − B̃1C1)X ≤ 0

• B̂1 satisfies

XC∗1C1X −X(A1 − B̃1C1)∗ − (A1 − B̃1C1)X = −B̂1B̂
∗
1 .

This correspondence is given by

W (λ) =
(
Im 0

)
+ C1(λI − A1)−1

(
XC∗1 + B̃1 B̂1

)
.

Some remarks are in order.

1. The proof uses that we have a minimal square symmetric factor

W1(λ) = I + C1(λI − A1)−1B̃1.

We know how to obtain this from the results of the previous section.

2. Observe that we can write

W (λ) =
(
W1(λ) 0

)
+ C1(λ− A1)−1

(
XC∗1 B12

)
.

3. Thus the co-isometry

U(λ) = W1(λ)−1W (λ)

is given by

U(λ) =
(
Im 0

)
+ C1(λ− (A1 − B̃1C1))−1

(
XC∗1 B12

)
.

5 J-symmetric factorization

Consider an m × m rational matrix function Φ(λ) with only selfadjoint (not nonnegative)

values on iR. Given is also an invertible hermitian m × m matrix J . A square rational

matrix function W (λ) is called a J-symmetric factor of Φ(λ) if

Φ(λ) = W (λ)JW (−λ̄)∗.

5



Obviously necessary is that the number of positive and negative eigenvalues of the matrix

Φ(λ) does not depend on λ ∈ iR (at least outside of poles and zeros), i.e., Φ(λ) has constant

signature.

Without loss of generality we can take W (∞) = J . Let Φ(λ) = J + C(λIn − A)−1B be a

minimal realization. Recall that there is an invertible matrix H with

H = −H∗, HA = −A∗H, HB = C∗.

Also we have

A× = A−BJ−1C.

Necessary conditions for existence of minimal J-symmetric factorization are the following

(see [38])

1. Φ(λ) has constant signature

2. there exists an A-invariant H-Lagrangian M

3. there exists an A×-invariant H-Lagrangian M×

However, we no longer have that automaticallyM⊕M× = C. So, even if these necessary

conditions are satisfied, a minimal J-symmetric factorization may fail to exist. As an example

consider

Φ(λ) =

(
0 1

1 λ−2

)
A minimal realization is

Φ(λ) =

(
0 1
1 0

)
+

(
0 0
1 0

)(
λ−

(
0 1
0 0

))−1(
0 0
0 1

)
.

In this case

H =

(
0 1

−1 0

)
, A× = A =

(
0 1

0 0

)
.

There is a unique invariant H-Lagrangian subspace M = span

(
1

0

)
. All necessary condi-

tions are satisfied, yet no minimal factorization exists.

We now turn to the case where we do have automatic matching of M and M×.

Φ(λ) is said to have a complete set of minimal J-symmetric factorizations if for any A-

invariant H-Lagrangian subspaceM and any A×-invariant H-Lagrangian subspaceM× we

have

M⊕M× = Cn.

The next result was proved in [19].

Theorem 5.1. The following are equivalent:
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1. there is a complete set of J-symmetric factorizations

2. for every A-invariant H-Lagrangian subspaceM, and for every nonzero vector x ∈M
we have

〈H(λ− A×)−1x, x〉 6≡ 0, λ ∈ ρ(A×),

3. for every A×-invariant H-Lagrangian subspace M×, and for every nonzero vector x ∈
M× we have

〈H(λ− A)−1x, x〉 6≡ 0, λ ∈ ρ(A).

6 Minimal nonsquare J-symmetric factorization

Let Φ be as in the previous section. We assume the existence of a square minimal factor

Φ(λ) = W1(λ)JW1(−λ̄)∗.

We are then looking for all W (λ) such that

1. Φ(λ) = W (λ)

(
J 0

0 J22

)
W (−λ̄)∗,

for some J22 = J∗22, and this is a minimal factorization,

2. W has the same pole pair as W1.

Concerning this problem we have the following results (see [34])

Our first observation is that without loss of generality we may take J̃ in the J̃-spectral

factorization

Φ(λ) = W (λ)J̃W (−λ)∗. (6.3)

to be of the form

J̃ =

(
J 0

0 J22

)
, (6.4)

and at the same time we may assume that W (∞) =
(
I 0

)
.

Then the main result is the following theorem.

Theorem 6.1. Suppose that the rational matrix function Φ with constant signature and with

Φ(∞) = J has a minimal square J-spectral factor W1 given by the minimal realization

W1(λ) = Im + C1(λI − A1)−1B̃1. (6.5)

Put Z = A1 − B̃1C1. For any X = X∗ form XZ∗ +ZX −XC∗1JC1X and let X2 and J22 be

any matrices such that

XZ∗ + ZX −XC∗1JC1X = X2J22X
∗
2 . (6.6)
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Then for any such X, X2 and J22 the function

W (λ) =
(
Im 0

)
+ C1(λI − A1)−1

(
XC∗1J + B̃1 X2

)
(6.7)

is a J̃-spectral factor of Φ, where J̃ is given by (6.4).

Conversely, given J̃ as in (6.4) all J̃-spectral factors of Φ are given by (6.7) where X and

X22 satisfy (6.6).

For special choices of J̃ , i.e., special choices of J22, we obtain the following corollary.

Corollary 6.1. Let J̃ be given by (6.4). Under the assumptions of Theorem 6.1 the following

hold.

(a) Let Π+(J) = Π+(J̃), where Π+(J) (resp.,Π+(J̃)) denotes the number of positive eigen-

values of J (resp., J̃). There is a one-to-one correspondence between J̃-spectral factors

of Φ with pole pair (C1, A1) and with value
(
I 0

)
at infinity, and pairs of matrices

(X,X2) satisfying

XZ∗ + ZX −XC∗1JC1X ≤ 0

and

XZ∗ + ZX −XC∗1JC1X = −X2J22X
∗
2 .

This one-to-one correspondence is given by (6.7).

(b) Let Π−(J) = Π−(J̃), where Π−(J) (resp.,Π−(J̃)) denotes the number of negative eigen-

values of J (resp., J̃). There is a one-to-one correspondence between J̃-spectral factors

of Φ with pole pair (C1, A1) and with value
(
I 0

)
at infinity, and pairs of matrices

(X,X2) satisfying

XZ∗ + ZX −XC∗1JC1X ≥ 0

and

XZ∗ + ZX −XC∗1JC1X = X2J22X
∗
2 .

This one-to-one correspondence is given by (6.7).

(c) Let Π+(J) = Π+(J̃) and Π−(J) = Π−(J̃). There is a one-to-one correspondence be-

tween J̃-spectral factors of Φ with pole pair (C1, A1) and with value
(
I 0

)
at infinity,

and matrices X satisfying

XZ∗ + ZX −XC∗1JC1X = 0

This one-to-one correspondence is given by (6.7).
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Part (c) of the above corollary corresponds to the square case which, for instance, is

discussed in [19].

One can also show, like in the positive semidefinite case, that the solutions of the particular

algebraic Riccati equation arising in the parametrization of all J-nonsquare spectral factors

(see Theorem 6.1) can be interpreted as generalized Bezoutians in the sense of (see [16] and

[18]).

Also, in case J22 > 0, the kernel of the Bezoutian again describes the common right zero

structure of W and W1.
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