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Abstract

Time-State Control Form was proposed as one of the control method for non-
holonomic systems. But this method needs input switching, so there is a drawback
that the switching conditions may spoil the stability of the system. From the above
backgrounds, this research considers the property of the control method based on
Time-State Control Form from the viewpoint of hybrid systems. Then, we derive the
switching conditions which stabilize the systems by using Lyapunov functions for each
mode. Furthermore, the controlled object is limited to chained system, and the condi-
tions to stabilize the system are shown by introducing the Lyapunov functions which
are invariant to input switching.

1 Introduction

The systems such as wheeled mobile robots or space robots are nonholonomic systems which

have particular mechanical constraint. Since the systems cannot be stabilized by contin-

uous static state feedback controller, it is well known that the systems are very hard to

control theoretically [1]. Recently, the various control methods for stabilizing the state of

nonholonomic systems are proposed [2].

As one in them, there is a control method which changes the differential equation of

the system into Time-State Control Form, and designs a stabilization controller [3]. This

method can apply general control theories easily according to various control specifications.

Therefore, the method has the advantage of being rich in the extendibility of a control system

design. But it is necessary to perform input switching in order to stabilize the state of the

system. So there is a problem that the switching conditions may spoil stability of the system.

On the other hand, since the control method using Time-State Control Form needs input

switching inevitably, the method is a kind of the hybrid controller which combined the

continuous time input and the discrete switching input. Many researches which systematize

the analysis / control scheme of a hybrid system are performed briskly in recent years [4][5].

However, since the class of the hybrid systems is very large, the present condition is having

not resulted in construction of the scheme. Therefore, it is effective in construction of the

control scheme of hybrid systems to consider the stability conditions of the systems including

input switching.

1



From the above backgrounds, in this paper, the control method based on Time-State

Control Form is treated from the framework as hybrid control systems, and the property of

the system is considered. Especially, it takes into consideration about the influence which the

input switching has on stability, and two kinds of conditions for guaranteeing the stability

of the systems are derived. In one of them, general nonholonomic systems are considered as

the controlled objects and input switching condition which guarantees the stability of the

systems are derived by using Lyapunov functions for each mode. In another, the controlled

object is limited to chained system, and the conditions to stabilize the systems are shown

by introducing the Lyapunov functions which are invariant to input switching.

2 Time-State Control Form

Consider the drift-less nonholonomic system described by the equation

dx

dt
=

m∑
i=1

gi(x)ui, (2.1)

where x ∈ Rn is the state variable, u = [u1, u2, . . . , um]T ∈ Rm is the control input, gi(·) :

Rn → Rn are smooth vector functions and assume m < n. It is known that if the system

(2.1) satisfies some conditions, it can be changed into Time-State Control Form described

by the following equations

dξ

dτ
= f0(ξ) +

m−1∑
i=1

fi(ξ)µi (2.2a)

dτ

dt
= µm (2.2b)

which are obtained by using some suitable coordinate and input transformations as follows:

[
ξ

τ

]
= T (x) (T (0) = 0) (2.3)

µi = Vi(x,u) (i = 1, 2, . . . , m). (2.4)

where T (·) : Rn → Rn and Vi(·, ·) : Rn × Rm → R.

Time-State Control Form (2.2) consists of two subsystems. The equation (2.2a) is called

state control part which has state variable ξ ∈ Rn−1. Note that the time scale of state

control part is not actual time t, but one of the state τ ∈ R obtained by the coordinate

transformation (2.3). The another equation (2.2b) is called time control part. The state of

this part is τ , which is the time scale of state control part. Using one of the new control

input µm, we can control the time scale of state control part arbitrary.

Let ξ = 0 be an equilibrium point for state control part, i.e. f0(0) = 0, and linearized

system in a neighborhood of the origin is controllable. Then, it is known that original
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nonlinear system (2.2a) is locally controllable in a neighborhood of the origin, and there exists

a continuous static state feedback controller which stabilizes the system asymptotically [6].

Therefore, we consider two state feedback controller for the system (2.2a) according to an

increase/decrease of time scale τ :

• A controller µi = αi(ξ) (i = 1, . . . ,m− 1), which stabilizes state control part (2.2a)

locally when time scale τ increases.

• A controller µi = βi(ξ) (i = 1, . . . , m− 1), which stabilizes state control part (2.2a)

locally when time scale τ decreases.

Since we can control the change of time scale τ by using the control input µm, we can

choose these feedback controllers αi(ξ) and βi(ξ) suitably. Repeating the change of time

scale τ and choice of the feedback controllers, the state ξ can be converged asymptotically.

We now treat Time-State Control Form from as the framework of hybrid control systems

by using BBM model which is one of the general description of hybrid systems. Details of

BBM model are in the reference [7]. Suppose that the inputs µm for time control part (2.2b)

are given according to the time increase mode and the time decrease mode respectively as

follows:
{

µ+
m ∈ {µm|µm ∈ R, µm > 0}

µ−m ∈ {µm|µm ∈ R, µm < 0} . (2.5)

Moreover, assume that the state feedback controllers which stabilize state control part (2.2a)

are already designed by some suitable method as follows:

{
µ+

i = αi(ξ)

µ−i = βi(ξ)
(i = 1, 2, . . . ,m− 1). (2.6)

By the way, combining the two subsystems (2.2a) and (2.2b), Time-State Control Form

(2.2) is given by:

d

dt

[
ξ

τ

]
=

[
f0(ξ)

1

]
µm +

m−1∑
i=1

[
fi(ξ)

0

]
µiµm.

Moreover, let κ(t) ∈ {0, 1} be a discrete state variable which describes the mode of the

system. We define that κ(t) = 0 denotes the time scale increase mode and κ(t) = 1 denotes

the time scale decrease mode. Using this state variable, closed loop systems of each mode

can be combined as follows:

d

dt

[
ξ

τ

]
=

[
f0

1

]
{(1− κ)µ+

m + κµ−m}

+
m−1∑
i=1

[
fi

0

]
{(1− κ)αiµ

+
m + κβiµ

−
m}.

3



From the above discussion, Time-State Control Form (2.2) described by BBM model is

given by

d

dt




ξ

τ

κ


 =




f0

1

0


 {(1− κ)µ+

m + κµ−m}

+
m−1∑
i=1




fi

0

0


 {(1− κ)αiµ

+
m + κβiµ

−
m} (2.7a)




ξ

τ

κ




+

=




ξ

τ

g(ξ, τ, κ)


 (2.7b)

where the equation (2.7a) is a ordinary continuous time system which describes the contin-

uous change of state, and the equation (2.7b) describes the discrete change of state. The

mapping g : Rn−1 × R× {0, 1} 7→ {0, 1} is a function of mode swiching condition.

3 Switching Condition for a Guaranty of Stability

In this section, we discuss switching conditions which guarantee stability of the system (2.7).

First of all, for the system (2.7), we define mode switching time.

Definition 3.1 (Mode switching time). Consider the system (2.7). The time T is called

mode switching time (simply called switching time) if it satisfies:

κ( lim
ε→−0

(T + ε)) 6= κ( lim
ε→+0

(T + ε)).

Moreover, T0 denotes the initial time and Tn denote the nth switching time.

Since the inputs µi are given by (2.6), asymptotic stability of the state ξ is guaranteed if

any mode switching don’t occur. Then, we can consider the Lyapunov function Vβ(ξ) which

corresponds to the time scale decrease mode.

But, monotone decreasing of Vβ(ξ) is not guaranteed when time scale τ increase. However,

since state control part (2.2a) is asymptotically stabilized by the input (2.6), the state ξ can

converge to zero if time scale τ enough increase. The convergence of the state ξ makes Vβ(ξ)

decrease (note that it isn’t always monotonous). So the following lemma is realized.

Lemma 3.1. Let U ⊂ Rn−1 be some neighborhood containing the origin ξ = 0 and assume

that the time scale τ increase monotonously. Then for all initial state ξ0 = ξ(τ0) ∈ U and

γ(0 < γ < 1), there exists τ̄ > 0 such that:

Vβ(ξ(τ0 + τ)) ≤ γVβ(ξ0), ∀τ > τ̄ .
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The previous lemma guarantees Vβ(ξ) to be less than initial value Vβ(ξ0) if time scale τ

increase enough (more than τ̄). From this lemma, a sufficient condition of the switching

function g for stabilization of system (2.7) is given as follows.

Theorem 3.1. Let U ⊂ Rn−1 be some neighborhood containing the origin ξ = 0. For all

initial state ξ(T0) ∈ U and τ(T0), the system (2.7) is locally stable if there exists switching

function g such that the following two conditions are satisfied.

i) τ(Tn)τ(Tn+1) ≤ 0 ∀n ≥ 0

ii) Vβ(ξ(Tn+1)) ≤ γVβ(ξ(Tn))

∀n ∈ {n ≥ 0|κ(t) = 0, Tn < t < Tn+1},

where γ is a scalar such that 0 < γ < 1.

The condition ii) is more important out of two conditions in the previous theorem. Lemma

1 guarantees the existence of switching time Tn+1 satisfying the condition ii). This condition

implies that the Lyapunov function Vβ(ξ) decrease at the each switching times. We can

avoid the probability to spoil the stability of the system which is caused by mode switching.

The condition i) makes the time scale τ to pass the origin τ = 0 for each modes. This

condition guarantees that the time scale τ can converge to zero after the state ξ converge to

the origin.

Remark 3.1. We can also treat the above discussion by using another Lyapunov function

Vα(ξ) which corresponds to the time scale increase mode.

Now we show the simulation result. Consider the 3-dimensional 2-input nonholonomic

system described by Time-State Control Form as follows:

dξ

dτ
=

[
0 1

0 0

]
ξ +

[
0

1

]
µ1

dτ

dt
= µ2.

The following control inputs µ1 and µ2 for time increase mode and time decrease mode are

designed respectively:

{
µ+

1 = [−1.00 − 1.73]ξ , µ+
2 = 1

µ−1 = [−1.00 1.73]ξ , µ−2 = −1
.

The inputs µ1 which stabilize state control part are designed by LQ optimal control theory.

Lyapunov function Vβ(ξ) which corresponds to the time scale decrease mode is given by

Vβ(ξ) = ξT Pξ, where P is a positive definite solution of Riccati equation. The γ shown in

the condition ii) is γ = 0.9 and initial value of the states ξ and τ are −1 respectively.
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Figure 1: Simulation result(1)
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Fig.1 shows the simulation result controlled by above controller. The above is the change

of the state ξ and time scale τ . We can show that the change of τ is like a triangular wave

because of mode switching and ξ converges to zero.

The bottom is the change of the Lyapunov function Vβ(ξ). We know that Vβ(ξ) decrease

monotonously when time scale τ decrease because of its property. When time scale τ increase,

Vβ(ξ) decrease but not monotonously. However, since the switching condition ii), Vβ(ξ) is

at least less than last switching time.

4 Stability Condition for Chained System

In this section, the controled object is limited to chained system, which is one of the canon-

ical forms of nonholonomic systems, and the conditions to stabilize the system are shown.

Chained system is the n-dimensional (n ≥ 3) 2-input nonholonomic system described by the

following equation:

d

dt




x1

x2

x3

...

xn




=




1

0

x2

...

xn−1




u1 +




0

1

0
...

0




u2. (4.8)

For this system, we apply the following coordinate and input transformations.




ξ

τ


 =




xn

...

x2

x1


 ,

[
µ1

µ2

]
=

[
u2/u1

u1

]

Then we obtain the following Time-State Control Form:

dξ

dτ
= Aξ + Bµ1 (4.9a)

dτ

dt
= µ2, (4.9b)

where

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

. . . . . .
...

...
. . . 1

0 0 0 · · · 0




B =




0

0
...

0

1




.
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Let µ+
1 be a following feedback controller which stabilizes state control part (4.9a) when

time scale τ increase.

µ+
1 = K+ξ =

[ −k1 · · · −kn−1

]
ξ (4.10)

It is easy to check that if the controller for time increase mode is given by (4.10), the

closed loop system controlled by the following controller µ−1 in time decrease mode has poles

as same as those of closed loop system controlled by (4.10) in time increase mode.

µ−1 = K−ξ =
[

(−1)n−2k1 · · · (−1)0kn−1

]
ξ (4.11)

The closed loop systems of state control part (4.9a) for each mode are given by the following

equations:




dξ

dτ
= [A + BK+]ξ

dξ

dτ ′
= [−A−BK−]ξ

, (4.12)

where, in time decrease mode, τ ′ := −τ is new time scale. From the definition of τ ′, time

scale τ ′ increase monotonously.

By the way, since the feedback controllers for each mode (4.10) and (4.11) are given to

have same poles of closed loop respectively, we obtain:

−A−BK− = En−1[A + BK+]En−1,

where

En = E−1
n = diag

[
1 −1 · · · (−1)n−1

]
.

The above equation implies that the system (4.12) can be described by:




dξ

dτ
= [A + BK+]ξ

dξ̄

dτ ′
= [A + BK+]ξ̄

(4.13)

with the following coordinate transformation.

ξ̄ = En−1ξ (4.14)

Therefore, we can identify the mode change occurred by input switching with the state jump

which is defined by the coordinate transformation (4.14).

From the above discussion, if there exists a candidate of Lyapunov function which is

invariant to coordinate transformation (4.14), we can use it as common Lyapunov function

for each mode. The following lemma gives us the necessary and sufficient condition of positive

definite matrix P which generate the common Lyapunov function.
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Lemma 4.1. Let V (ξ) = ξT Pξ (P > 0) be a candidate of Lyapunov function for system

(4.9a). Then, V (ξ) is invariant to the coordinate transformation (4.14), i.e. V (ξ) = V (ξ̄)

is satisfied for all ξ, if and only if P satisfies following equation:

Pij = 0, ∀i, j ∈ {i, j|i + j = 2l + 1,

1 ≤ l ≤ n− 1, l ∈ N}, (4.15)

where Pij is ij-th component of the matrix P .

The equation (4.15) implies that P must have zero on its ij-th component, where i+j is odd

number. Using the matrix P , we obtain the sufficient condition of state feedback controller

which stabilizes state control part (4.9a). The condition is independent of switching function

g.

Theorem 4.1. If there exists symmetric matrix P > 0 and vector K+ ∈ Rn−1 such that

they satisfy:

(A + BK+)T P + P (A + BK+) ≤ 0 (4.16)

and P satisfies (4.15), then the feedback controller defined by (4.10) and (4.11) stabilize the

system (4.9). The stability is independent of time scale switching function g(·).
It is difficult to solve the condition (4.16) because it is a nonlinear matrix inequality

condition (NLMI) with respect to the matrices P and K+. But by using following matrix

transformation

X := P−1 , G := K+P−1,

we can reduce the condition (4.16) to the following linear matrix inequality (LMI).

AX + XAT + BG + GT BT ≤ 0 (4.17)

If the LMI condition (4.17) is feasible, we can obtain the matrices P and K+ as follows.

P = X−1 , K+ = GX−1

Now we show the simulation result. Controlled object is same in the previous simulation,

i.e. 3-dimensional chained system. The control inputs µ1 and µ2 are given by:
{

µ+
1 = [−0.70 − 1.29]ξ , µ+

2 = 1

µ−1 = [−0.70 1.29]ξ , µ−2 = −1

which is obtained by numerical solutions of the LMI condition (4.17) which is transformed

from (4.16) where P satisfies the condition (4.15). Switching condition g is given by simple

rule, i.e. the time scale τ goes and returns between τ = 0 and τ = 2. The initial states are

x1(T0) = 0(= τ), x2(T0) = x3(T0) = −1.
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Figure 2: Simulation result(2)
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Fig.2 shows the simulation result controlled by above controller. The aspect of Fig.2 is

as same as Fig.1. As in the previous simulation, τ changes like a triangular wave and ξ

converges to zero.

Unlike before, however, the Lyapunov function V (ξ) = ξT Pξ decrease monotonously for

each mode. So V (ξ) plays a role as the common Lyapunov function. This property is

independent from the mode switching condition g(·).

5 Conclusion

In this paper, we treat the control method for nonholonomic systems based on Time-State

Control Form with a viewpoint of hybrid control systems. This control method has a draw-

back that the switching conditions may spoil the stability of the system. Then, we introduce

two conditions which guarantee the stability of the system. And the effectiveness of intro-

duced condition are shown by some numerical simulations.
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