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Abstract

In this paper we study the well-posedness and stability of a class of switched linear
passive systems. Instrumental in our approach is the result, also of interest in its own
right, that any linear passive input-state-output system with strictly positive storage
function can be written as a port-Hamiltonian system.

1 Introduction

In this paper we study the well-posedness and stability of switched linear passive systems,

where the switches are terminating some of the ports of the system. Such systems are rather

abundant in applications, including power-converters with ideal switches.

Instrumental in our approach is the result, also of interest in its own right, that any linear

passive input-state-output system with strictly positive storage function can be written as a

port-Hamiltonian system. The resulting class of switched passive linear systems are therefore

formulated as Hamiltonian linear switched systems.

We derive an appealing result concerning well-posedness of these systems, and we pro-

vide a complete characterization of the possible jumps in the state vector at the switching

times. The jump vector is shown to have a direct interpretation in terms of the value of

the Hamiltonian of the system just before and just after the switching. The analysis com-

bines techniques from the study of linear complementarity systems, cf. [1, 2, 3], with the

Hamiltonian structure.

The Hamiltonian structure also enables the stability analysis of Hamiltonian switched

linear systems, by using the Hamiltonian as Lyapunov function.

2 Notation

R denotes the real numbers, R+ := [0,∞) the nonnegative real numbers and C the complex

numbers. By R(s) we mean the set of all rational functions with real coefficients. L2(t0, t1)

denotes the collection of all square integrable functions on the interval (t0, t1) and B the

collection of Bohl functions, i.e., functions having strictly proper rational Laplace transforms.

For a given function x(t) we denote x− = x(t̃−) = limt↑t̃ x(t) and x+ = x(t̃+) = limt↓t̃ x(t),

provided these limits exist.
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For a set X ⊆ Rn, we define X⊥ = {y ∈ Rn | xT y = 0 for all x ∈ X}. If two vectors

u, y ∈ Rk are orthogonal, i.e. uTy = 0, we write u ⊥ y. For an index set J ⊆ {1, .., k}, we

denote its complement by Jc, that is Jc = {j ∈ {1, .., k} |j �∈ J}.
Given a matrix A ∈ Rn×m and index sets I ⊆ {1, .., n} and J ⊆ {1, .., m}, the submatrix

AIJ of A is defined by the matrix whose entries lie in the rows of A indexed by I and the

columns indexed by J , i.e. AIJ = (Aij)i∈I,j∈J . If I = {1, .., n} we also denote the submatrix

AIJ by A•J . Similarly, if J = {1, .., m}, we write AI• for the submatrix AIJ .

Given a matrix M of size k × k and two nonempty subsets I and J of {1, .., k} of equal

cardinality, the (I, J)-minor of M is the determinant of the square submatrix MIJ . A minor

is a principal minor if I = J .

Given a matrix R ∈ Rn×n . R is positive definite, denoted by R > 0, if for all x ∈ Rn, x �= 0,

xT Rx > 0. R is positive semi-definite, denoted by R ≥ 0, if for all x ∈ Rn, xT Rx ≥ 0.

Negative definite and negative semi-definite matrices are defined in a similar way. A matrix

J is said to be skew-symmetric if J = −JT .

A triple of matrices (A, B, C) is minimal, when (A, B) is controllable and (C, A) is observable.

For any proposition P (σ) depending on the parameter σ, we say that “P (σ) holds for all

sufficiently large σ”, if there exists a σ0 ∈ R such that P (σ) holds for all σ > σ0.

3 Passive linear systems

In this section we discuss the notion of passivity (see [4]) for linear systems of the form

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t),
(3.1)

where x(t) ∈ Rn, u(t) ∈ Rk, y(t) ∈ Rk and A, B, C and D are matrices of appropriate

dimensions with constant coefficients.

Definition 3.1 (Passivity). The system (3.1) is called passive, or dissipative with respect

to the supply rate uT y, if there exists a nonnegative function V : Rn → R+, called a storage

function, such that for all t0 ≤ t1 and all time functions (u, x, y) ∈ Lk+n+k
2 (t0, t1) satisfying

(3.1) the following inequality holds

V (x(t0)) +

∫ t1

t0

uT (t)y(t)dt ≥ V (x(t1)) (3.2)

We say that the quadruple (A, B, C, D) is passive when the corresponding linear system is

passive.

The inequality (3.2) is called the dissipation inequality. V (x) represents a notion of the

“stored energy” of the system (3.1) in state x and
∫ t1

t0
uT (t)y(t)dt is the total externally

supplied energy during the time interval [t0, t1]. Hence, there can be no internal “creation of

energy”; only internal dissipation of energy is possible.
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4 Port-Hamiltonian linear systems

Port-Hamiltonian linear systems are linear systems given by (3.1) in which the system ma-

trices A, B, C, D have an additional structure. We refer to e.g. [5] for a treatment of general

(not necessarily linear) port-Hamiltonian systems. Such a system is given by1

ẋ(t) = (J − R)Qx(t) + (B̃ + K̃)u(t)

y(t) = (B̃ − K̃)T Qx(t) + Du(t),
(4.3)

where J is a skew-symmetric n× n matrix, R is an n× n matrix with R = RT , and Q is an

n × n matrix with Q = QT > 0. The Hamiltonian H(x) (the energy of the system) is given

by H(x) = 1
2
xT Qx.

We write B̃ and K̃ in order to avoid confusion with matrices B and K which we use for

other purposes. In many applications the k × k matrix D is skew-symmetric.

Furthermore, port-Hamiltonian linear systems satisfy

Assumption 1. The system matrices of the port-Hamiltonian linear system (4.3) satisfy

the following condition: [
R −K̃

−K̃T 1
2
(D + DT )

]
≥ 0 (4.4)

This assumption corresponds to a non-negative internal energy dissipation. Indeed, if

K̃ = 0, then Assumption 1 reduces to R ≥ 0 and D + DT ≥ 0.

Important examples of port-Hamiltonian linear systems are 1D− mechanical systems and

electrical networks (see [5] for further references). Indeed, in [6] it is stated that an electrical

n-element LC-circuit with k external ports can always be written in the Hamiltonian form

given by (4.3) with K̃ = 0 and R = 0 if the total energy is given by the Hamiltonian

H(x) = 1
2
xT Qx where the state vector x ∈ Rn consists of the independent (no algebraic

constraints due to “excess” elements appear) inductance fluxes φL and capacitor charges qC

and Q is a diagonal matrix containing the circuit parameters 1
Ci

, 1
Li

. Moreover, u ∈ Rk is the

vector of external inputs (voltages or currents of the external ports) and y ∈ R
k is the vector

of external outputs (conjugate currents and voltages). This can be immediately extended to

LCTG-circuits, and to RLCTG-circuits by considering the general form (4.3).

5 Equivalence of passive and port-Hamiltonian systems

In this section we shall show an equivalence between passive and port-Hamiltonian linear

systems. This equivalence (Theorem 5.1) is important because any statement for port-

Hamiltonian linear systems on e.g. well-posedness (the existence and uniqueness of solutions)

and stability is now also valid for passive linear systems and vice versa.

1This definition generalizes the definition of a port-Hamiltonian linear system given in [5] for K̃ = 0
and D = 0; it does fit however within the general definition given in [5] of a port-Hamiltonian system with
respect to a Dirac structure.
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Theorem 5.1 (Equivalence). 1. If the system (3.1) is passive with quadratic storage

function 1
2
xT Qx satisfying Q > 0, then (3.1) can be rewritten into the port-Hamiltonian

form (4.3).

2. The port-Hamiltonian linear system (4.3) is passive.

Proof

(1). By differentiating the dissipation inequality (3.2) as used in [4] (note that minimality

of (A, B, C) is not needed here) we derive the following LMI (time arguments left out for

brevity)

(
xT uT

)(
AT Q + QA QB − CT

BT Q − C −(D + DT )

) (
x

u

)
≤ 0,

for all x ∈ R
n, u ∈ R

k,

(5.5)

or equivalently

(
(Qx)T uT

) (
Q−1AT + AQ−1 B − Q−1CT

BT − CQ−1 −(D + D)T

) (
Qx

u

)
≤ 0,

for all x ∈ R
n, u ∈ R

k.

(5.6)

Define

S̄ :=

(
AQ−1 B

−CQ−1 −D

)
. (5.7)

Then clearly the linear system (3.1) can be rewritten as

(
ẋ

−y

)
= S̄

(
Qx

u

)
. (5.8)

Furthermore, (5.6) is equivalent to

S̄ + S̄T ≤ 0. (5.9)

Hence, if we write

S̄ = J̄ − R̄, J̄ = −J̄T , R̄ = R̄T , (5.10)

then R̄ ≥ 0. Now, denote

J̄ =

(
J B̃

−B̃T −DJ

)
, R̄ =

(
R −K̃

−K̃T D̃

)

J = −JT , DJ = −DT
J , R = RT , D̃ = D̃T .

(5.11)
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Then (5.8) can be written as

(
ẋ

−y

)
= (

(
J B̃

−B̃T −DJ

)
−

(
R −K̃

−K̃T D̃

)
)

(
Qx

u

)
, (5.12)

or equivalently

{
ẋ = (J − R)Qx + B̃u + K̃u

y = (B̃T − K̃T )Qx + (DJ + D̃)u,
(5.13)

which is a system with Hamiltonian dynamics (4.3) satifying Assumption 1 due to (5.9).

(2). We show that port-Hamiltonian linear systems (4.3) are passive with the Hamiltonian

H(x) = 1
2
xT Qx being a storage function. Along trajectories of the port-Hamiltonian linear

system we have (time arguments left out for brevity):

d

dt
H(x) = xT Qẋ

= xT Q(J − R)Qx + xT Q(B̃ + K̃)u

= xT QJQx − xT QRQx + xT Q(B̃ + K̃)u

= −xT QRQx + xT Q(B̃ + K̃)u

(J skew-symmetric)

= −xT QRQx + yT u − uTDT u + 2xT QK̃u

(Q = QT )

= yTu

− ((Qx)T uT )

[
R −K̃

−K̃T 1
2
(D + DT )

](
Qx

u

)

≤ yTu (Assumption 1 ).

(5.14)

Integration leads to the dissipation inequality (3.2).

Remark 5.2. Note that Q ≥ 0 is sufficient for the port-Hamiltonian linear system to be

passive. However, to write a passive system as a port-Hamiltonian linear system we need

Q > 0. Hence, the equivalence between port-Hamiltonian and passive linear systems is valid

under strict positiveness of Q. Moreover, we shall need Q > 0 in deriving well-posedness

results for port-Hamiltonian linear systems interconnected with switches.

6 Interconnection of linear systems and switches

In this section, we introduce Linear Switched Systems (LSS). These are linear systems given

by (3.1) in which the input and output variables satisfy certain additional conditions. We

5



also introduce Hamiltonian LSS. These are LSS in which the underlying dynamics are Hamil-

tonian.

6.1 Linear Switched System

Definition 6.1 (LSS). An LSS is described by the linear system (3.1) in which the input u

and the output y satisfy a switch condition

ẋ(t) = Ax(t) + Bu(t), (6.15a)

y(t) = Cx(t) + Du(t), (6.15b)

∀ i ∈ {1, .., k} (ui(t) = 0) ∨ (yi(t) = 0), (6.15c)

where ∨ is the non-exclusive “or”.

Remark 6.2. Note, that in fact LSS are nonlinear systems in which u and y are not input

and output variables in the classical sense due to the presence of the switch condition (6.15c).

Definition 6.3 (Hamiltonian LSS). A Hamiltonian LSS is an LSS (Definition 6.1) in

which the underlying linear system has a Hamiltonian structure as in (4.3), i.e.

ẋ(t) = (J − R)Qx(t) + (B̃ + K̃)u(t), (6.16a)

y(t) = (B̃ − K̃)T Qx(t) + Du(t), (6.16b)

∀ i ∈ {1, .., k} (ui(t) = 0) ∨ (yi(t) = 0). (6.16c)

An example of an input-output pair satisfying the switch condition (6.15c), is the current-

voltage pair of an ideal electrical switch. If the switch is open, i.e. in “non-conducting

mode”, the current is equal to zero, whereas no restriction is imposed on the voltage over

the switch. If the switch is closed, i.e. in “conducting mode”, the voltage is equal to zero

and a current is possible in both directions.

An electrical network with several switches can operate in several modes (also called “dis-

crete states” or ”locations”). A change of mode is called an event. The operating mode

of the network is determined by the particular positions of the switches. It is easily seen,

that an electrical network with k switches can operate in 2k different modes. The electrical

network changes from operating mode whenever one or more switches are externally being

closed or opened. As such a mode change is forced by an external device, it can be considered

a time-event.

The motivation to study the class of port-Hamiltonian linear systems with switches is

two-fold. First of all, due to the equivalence relation discussed in Theorem 5.1, results for

Hamiltonian LSS on well-posedness and stability are also valid for passive LSS. The structure

of the system matrices in Hamiltonian LSS gives more insight in these results. Secondly,

important examples of LSS are electrical networks with switches and diodes. In [6] it is
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stated that an electrical n-element RLCTG-circuit with k external ports can be written in

the port-Hamiltonian form given by (4.3) if the capacitors and inductors are independent

(no elements in excess). Now, in [7] it is stated that non-energetic elements, as switches

and diodes, can be considered as external ports. Therefore, RLCTG-circuits with switches

yield Hamiltonian LSS. Important applications of electrical networks are power converters.

In [7] the Čuk-circuit is written as a Hamiltonian LSS.

6.2 Mode dynamics

Equation (6.15c) or equivalently (6.16c) implies that, for all t, and for every i = 1, . . . , k

ui(t) = 0 or yi(t) = 0 must be satisfied (the switch is closed or open). As mentioned earlier

this results in a multimodal system with 2k modes, where each mode is characterized by a

subset I of {1, . . . , k}, indicating that yi(t) = 0 if i ∈ I and ui(t) = 0 if i ∈ Ic. For each

such mode the laws of motion of the LSS are given by the following differential and algebraic

equations (we omit time arguments for brevity)

ẋ = Ax + B•IuI (6.17a)

0 = CI•x + DIIuI = yI (6.17b)

together with the “output” equations

yIc = CIc•x + DIcIuI (6.18a)

uIc = 0. (6.18b)

The mode will vary during the time evolution of the system (switches are opened or closed).

The LSS evolves in a certain mode until the external device imposes a mode transition. So,

we need to specify a switching sequence, i.e. a sequence of event times and the corresponding

mode transitions.

Definition 6.4. A switching sequence of an LSS (6.15) is given by a set σ = {(τj , Ij)},
j = 0, .., l, where l may be finite, meaning that the system operates in mode Ij for t ∈ [τj , τj+1].

If l is finite, we take τl+1 = ∞. A switching sequence {(τj , Ij)} is called allowable if for all

j = 0, .., l:

τj+1 − τj > δ > 0 (6.19)

By considering only allowable switching sequences, we exclude
∑

j(τj − τj+1) < ∞, i.e. we

exclude so-called Zeno-behaviour2.

2Zeno-behaviour denotes the phenomenon of an infinite number of events (mode transitions) in a finite
length time interval.
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7 Solution concept

In this section we look for a solution (x, uI) for the system in mode I (6.17) (we leave out

the output-equations (6.18) for the moment as they form no restriction). In the next section

we shall discuss well-posedness for arbitrary allowable switching sequences.

Definition 7.1. A state x0 is said to be consistent for (A, B, C, D) in mode I if smooth

functions uI and x exist such that x(0) = x0 and (6.17) is satisfied. The set of all consistent

states for (A, B, C, D) in mode I is denoted by V I and is called the consistent subspace of

mode I.

The following sequence of subspaces converges in at most n (dimension of state) steps to

V I (for a proof see [8]):

V I
0 = R

n

V I
i+1 = {x ∈ R

n | ∃uI ∈ R
|I| such that

Ax + B•IuI ∈ V I
i , CI•x + DIIuI = 0}.

Definition 7.2. The quadruple (A, B, C, D) is called autonomous in mode I, if for every

consistent state x0 the system (6.17) has a unique solution (x, uI). �

The system (6.17) is autonomous in mode I, if the full-column-rank condition

Ker

[
B•I
DII

]
= {0} (7.20)

holds together with

V I ∩ T I = {0} (7.21)

where T I is the subspace that is obtained as the limit of the sequence

T I
0 = {0}

T I
i+1 = {x ∈ R

n | ∃uI ∈ R
|I|, ∃x̄ ∈ T I

i such that

x = Ax̄ + B•IuI , CI•x̄ + DIIuI = 0}.
(7.22)

This sequence converges in maximally n (dimension of state) steps (proof can be found

in [8]). Not all states are consistent. At the event of a mode transition, the system may

in principle display jumps of the state variable x. Jumping phenomena are well-known in

electrical networks (see e.g. [9, 10, 11, 12, 13, 14, 15]) and consequently, a distributional

framework will be needed to obtain a mathematically precise solution concept. We restrict

ourselves to the Dirac distribution (supported at t = 0) denoted by δ and its derivatives,

where δ(i) denotes the i-th (distributional) derivative of δ. Note the different font used for

distributions.
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Definition 7.3. [8] An impulsive-smooth distribution is a distribution u of the form u =

uimp + ureg, where

• uimp is a linear combination of δ and its derivatives, i.e.,

uimp =

l∑
i=0

u−iδ(i)

for vectors u−i ∈ Rk, i = 0, . . . , l, and

• ureg is an arbitrarily often differentiable function from (0,∞) to Rk such that u
(m)
reg (0+) :=

limt↓0
dmureg

dtm
(t) exists and is finite for all m = 0, 1, 2, . . ..

The class of impulsive-smooth distributions is denoted by Ck
imp. For a distribution u ∈ Ck

imp,

uimp is called the impulsive part and ureg is called the smooth part. In case uimp = 0 we

call u a regular or smooth distribution. If the Laplace transform of an impulsive-smooth

distribution is rational, we call the distribution of Bohl type or a Bohl distribution. Note

that a smooth Bohl distribution is a Bohl function.

Having introduced the class Cimp, we can replace the system of equations (6.17,6.18) by

its distributional version

ẋ = Ax + Bu + x0δ (7.23a)

y = Cx + Du (7.23b)

yi = 0, i ∈ I (7.23c)

ui = 0, i ∈ Ic (7.23d)

in which the initial condition x0 appears explicitly, and we can look for a solution (u, x, y)

of (7.23) in the class of vector-valued impulsive-smooth distributions. The subspace T I can

now be interpreted as the jump space associated to mode I, i.e. the space along which fast

motions will occur that take an inconsistent initial state instantaneously to a point in the

consistent subspace V I . Indeed, in [8] it is shown that under the conditions (7.20) and (7.21)

there exists a unique solution (u, x, y) ∈ Ck+n+k
imp to (7.23) for all x0 ∈ V I +T I ; moreover, the

solution is such that x(0+) is equal to P T I

V I x0, the projection of x0 onto V I along the jump

space T I . In fact, x(0+) depends only on the impulsive part of uI : if uI,imp =
∑l

i=0 u−iδ(i),

then

x(0+) = x0 +

l∑
i=0

AiB•Iu−i
I . (7.24)

Proposition 7.4. The following statements are equivalent.

1. (A, B, C, D) is autonomous in mode I.
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2. The system (7.23) admits a unique impulsive-smooth distribution, which is a Bohl

distribution, for each initial condition.

3. V I ⊕ T I = Rn and Ker

[
B•I
DII

]
= {0}.

4. GII(s) := CI•(sI − A)−1B•I + DII is invertible as a rational matrix.

Note, that GII(s) is indeed the correct submatrix of the transfer matrix G(s) = C(sI −
a)−1B + D. If for each I ⊂ {1, .., k} GII(s) is invertible as a rational matrix, we say G(s) is

totally invertible.

Corollary 7.5. If G(s) is totally invertible, the system (7.23) admits a unique impulsive-

smooth distribution for each initial condition and each mode I.

We now first introduce the following assumption

Assumption 2.

Ker

[
B

D + DT

]
= {0} (7.25)

We then have the following theorem on the well-posedness of passive LSS from [16].

Theorem 7.6. Suppose Assumption 2 is satisfied, (A, B, C) is minimal and (A, B, C, D)

represents a passive system. Then the following holds.

For all I ⊆ {1, . . . , k} and for all initial states x0, there exists a unique solution (u, x, y) ∈
Ck+n+k

imp satisfying the dynamics for mode I given by (7.23) as equalities of distributions. We

denote this solution by (ux0,I , xx0,I , yx0,I).

The proof of this theorem relies on Corollary 7.5. The fact that (A, B, C) is minimal and

(A, B, C, D) is passive implies that G(s) is totally invertible. Please refer to [16] for the

detailed proof.

The solutions (ux0,I , xx0,I , yx0,I) have rational Laplace transforms, denoted by

(ûx0,I(s), x̂x0,I(s), ŷx0,I(s)), which satisfy

sx̂x0,I(s) = Ax̂x0,I(s) + Bûx0,I(s) + x0 (7.26a)

ŷx0,I(s) = Cx̂x0,I(s) + Dûx0,I(s) (7.26b)

ŷ
x0,I
I (s) = 0 (7.26c)

û
x0,I
Ic (s) = 0. (7.26d)

Since GII(s) is invertible as a rational matrix, the equations (7.26) can be solved explicitly.

Hence, the solutions of the mode dynamics (7.23) are one-to-one related (by the Laplace

transform and its inverse) to solutions satisfying (7.26). On the basis of this relation, we

can prove that only Dirac impulses (and not its derivatives) show up in passive electrical

networks with switches. Note that this statement is implied by the fact that the Laplace

transforms (ûx0,I(s), x̂x0,I(s), ŷx0,I(s)) are proper for any x0 ∈ Rn and I ⊆ {1, . . . , k}.
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Proposition 7.7. Suppose that Assumption 2 is satisfied, (A, B, C) is minimal and (A, B, C, D)

represents a passive system. Then for each x0 ∈ Rn and I ⊆ {1, . . . , k} the Laplace transform

ûx0,I(s) is proper.

The proof is similar to the proof of Thm. IV.8 in [16]. To summarize the discussion so far,

it has been shown that instead of considering impulsive-smooth distributions as the solution

space within a mode, we can restrict ourselves to Bohl distributions with impulsive part

containing only Dirac impulses and not its derivatives (i.e., Bohl distributions with proper

rational Laplace transforms). Consider a solution to (7.23) for mode I and initial state x0.

As mentioned earlier, a nontrivial impulsive part of ux0,I will result in a re-initialization

(jump) of the state. If uimp = u0δ (i.e., u0 = lims→∞ ûx0,I(s)), then a jump will take place

according to

xreg(0+) := lim
t↓0

xreg(t) = x0 + Bu0. (7.27)

The proof can be found in [8].

8 Well-posedness of Hamiltonian and passive LSS

In this section we focus on the well-posedness of Hamiltonian linear switched systems given

by (6.16). To prove the well-posedness of Hamiltonian LSS we have to find a unique solution

for “every” switching sequence (every sequence of time-events) we apply to the system. We

first look for a solution if no events take place, i.e. if the system starts and stays in the same

mode. To keep the analysis simple, we assume the following

Assumption 3. The matrices of the Hamiltonian LSS satisfy

K̃ = 0, and

[
B̃

D + DT

]
is injective. (8.28)

If in an electrical circuit no algebraic constraints between energy-conserving elements,

external ports (current or voltage sources) and resistive elements appear, we indeed have

K̃ = 0. In [7] a circuit is given in which K̃ �= 0 due to the presence of a gyrator. To avoid

cumbersome notation we write B instead of B̃ from now on.

Theorem 8.1 (Well-posedness of switched systems). For all x0 and T > 0, under

Assumption 3, the Hamiltonian LSS (6.16) has a unique solution on the interval (0, T ) with

initial state x0 in a certain switch mode I, I arbitrary. This solution is smooth except for a

possible initial jump in the state trajectory on t = 0.

Remark 8.2. Note, that the difference between Theorem 8.1 and Theorem 7.6 is the absence

of the minimality restriction on the system matrices in the first.

Proof

The proof relies on Propositions 7.4 and 7.7. The transfer matrix
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G(s) := BT Q(sI − (J − R)Q)−1B + D

= BT (sQ−1 − (J − R))−1B + D
(8.29)

is totally invertible as a matrix over the field of rational functions, that is GII(s) is invertible

for almost all s > 0 and for all I ⊆ {1, .., k}). This follows from the fact, that P (s) =

(sQ−1 − (J − R)) is a positive definite and therefore invertible matrix for all s > 0. Hence,

BT
I•P (s)B•I ≥ 0. Recall that D ≥ 0. For those u with uT DIIu �= 0, we have uT GII(s)u > 0.

For those u with uTDIIu = 0 we have (DII + DT
II)u = 0. With Assumption 3 we derive that

B•Iu �= 0 for these u and again uT GII(s)u > 0. By Corollary 7.5 the Hamiltonian LSS has a

unique impulsive smooth solution (u, x, y) for each initial condition. From Proposition 7.7 it

follows that the Laplace transform of the solution û is proper, as minimality is not required

in the proof of the proposition (see also the proof of Thm. IV.8 in [16]). �

We have now proved that a unique global smooth solution, except for a possible state

jump on t = 0, exists for all initial conditions x0 in arbitrary mode I. Now, if we change the

switch configuration during operation, that is if we change the mode I of the Hamiltonian

LSS, we can connect these solutions similar to [17, 16]. So, each time we change the switch

configuration of the system, we can think of the system being re-initialized at the current

state. If we were in mode I1 and switch to mode I2, the current state may however not be

in VI2. The state then needs to jump. Hence, the solution to each switching sequence is

again unique, exists globally and is smooth except for possible state jumps at the switching

instances and the initial time 0.

As minimality is not required, we know by the equivalence relation from Theorem 5.1

that passive LSS are also well-posed under Assumption 3 only. We can therefore drop the

minimality assumption in the statements of Proposition 7.6 and replace it by the condition

that the storage function is given by xT Qx with Q > 0. This is indeed an improvement for

passive LSS with storage function xT Qx, as minimality implies that Q > 0 [4].

If a state jump occurs, the new state is given by x(0+) = x0 + B•Iu0
I , see (7.27). We now

give a characterization of this jump multiplier u0
I for Hamiltonian LSS.

Theorem 8.3 (Characterization of u0
I). The following characterizations can be given for

u0
I.

1. The jump multiplier u0
I is the unique solution to

v ∈ Ker DII

BT
•IQ(x0 + B•Iv) ∈ (Ker DII)

⊥ (8.30)

2. The re-initialized state x(0+) is the unique minimum of

Minimize 1
2
[x − x0]

T Q[x − x0]

x with BT
•IQx ∈ (Ker DII)

⊥ (8.31)
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The multiplier u0
I is uniquely determined by x(0+) = x0 + B•Iu0

I .

3. The set Ker DII is equal to {Nw | w ∈ Rr}, where N is a real |I| × r matrix with full

column rank. Hence, the set D⊥
II = {v | NT v = 0}. The re-initialized state x(0+) is

obtained from the unique solution to the following set of equations:

NT BT
•IQx0 + NT BT

•IQB•INw = 0 (8.32)

That is, if w0 is the unique solution, then u0
I = Nw0. Now x(0+) follows similarly as

in 2.

4. The jump multiplier u0
I is the unique minimizer of

Minimize 1
2
(x0 + B•Iv)T Q(x0 + B•Iv)

with v ∈ Ker DII
(8.33)

�

The proof of this theorem is rather lengthy, and is given in the Appendix.

9 Stability of Hamiltonian and passive LSS

In this section we discuss the stability of Linear Switched Systems. The Lyapunov stability of

hybrid systems in general has already received considerable attention [18, 19, 20, 21, 22, 23].

We have narrowed down the definitions and theorems on the stability of general hybrid

systems from [19] and [20] to apply to LSS. From now on, we denote a state trajectory of

an LSS by x(·, x0, σ) when the initial condition is given by x(0) = x0 and σ is the applied

allowable switching sequence. As LSS are time invariant there is no need to define state

trajectories for initial times other than zero: state trajectories for the same initial condition

differ only in their time shift. Note that there may be more than one or no state trajectories at

all for a certain initial condition as LSS are only well-posed under Assumption 3 and every

switching sequence generates its own trajectory. The set of all trajectories for all initial

conditions and all switching sequences is denoted by S, that is S = ∪x0,σ allowable{x(·, x0, σ)}.

Definition 9.1 (Equilibrium point). A state x̄ is an equilibrium point of the LSS 6.15 if

for x0 = x̄, x(t, x0) = x̄ for all t ≥ 0 and all x(·, x0) ∈ S , i.e. if for all solutions (u, x, y)

starting in x̄ the state stays in x̄.

Note that in an equilibrium point ẋ = 0.

Definition 9.2 (Stability). Let x̄ be an equilibrium point of the LSS (6.15). Let d denote

any metric on Rn.
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1. x̄ is called stable if for every ε > 0 there exists a δ > 0 such that d(x(t, x0, σ), x̄) < ε

for all t ≥ 0 and for all x(·, x0, σ) ∈ S whenever d(x0, x̄) < δ.

2. x̄ is called asymptotically stable if x̄ is stable and there exists an η such that

limt→∞ d(x(t, x0, σ), x̄) = 0 for all trajectories x(·, x0, σ) ∈ S whenever d(x0, x̄) < δ.

By limt→∞ d(x(t, x0), x̄) = 0 we mean that for every ε > 0 there exists a tε such that

d(x(t, x0, σ), x̄) < ε whenever t ≥ tε.

3. x̄ is called unstable if x̄ is not stable.

Now, we have the following proposition from [20]

Proposition 9.3 (Lyapunov stability). Let an LSS be given with corresponding state

trajectory set S and let x̄ ∈ Rn.

Condition 1 Assume a function V :→ Rn → R+ and M > m > 0 exist such that

md(x, x̄) ≤ V (x) ≤ Md(x, x̄) (9.34)

for all x ∈ Rn.

Condition 2 Assume that for any state trajectory x(·, x0, σ) ∈ S, V (x(t, x0) is continuous

everywhere on R+ except on a (possibly unbounded) closed discrete subset E of R+ (E depends

on x).

Condition 3 If E is a bounded set {t1, .., tj}, supplement it with time instants tj+1 < tj+2 <

... such that the resulting set is unbounded. Assume that if we denote this unbounded set by

Ẽ = {t1, t2, ...} with t1 < t2 < ..., then V (x(tn, x0, σ)) is non-increasing for n = 0, 1, ...

Condition 4 Assume there exists f ∈ C[R+, R+] independent of x ∈ S such that f(0) = 0

and such that V (x(t, x0, σ)) ≤ f(V (x(tn, x0, σ))) for t ∈ [tn, tn+1], n = 0, 1, ...

If the switched system satisfies Conditions 1 through to 4, then x̄ is stable.

Condition 5 Assume DV (x(tn, x0, σ)) ≤ −d(x(tn, x0, σ), x̄)), where DV (x(tn, x0, σ)) =
1

tn+1−tn
[V (x(tn+1, x0, σ)) − V (x(tn, x0, σ))], for all x(·, x0, σ) ∈ S.

If, in addition to Conditions 1 to 4, Condition 5 is met, x̄ is asymptotically stable.

Theorem 9.4. Hamiltonian LSS given by (6.16) and satisfying Assumption 3 have stable

equilibrium points x̄ that satisfy the switch constraints (6.16c). Moreover, if R > 0, x̄ = 0 is

the only equilibrium point. In that case 0 is asymptotically stable.

Proof

First we investigate the nature of the equilibrium points of LSS. Recall that Hamiltonian

LSS satisfying Assumption 3 have global unique solutions for each initial condition and each

allowable switching sequence. Now, every equilibrium point needs to satisfy x̄ ∈ ∩I⊂{1,..,m}VI .

In words, x̄ needs to be a consistent state for all possible modes. This stems from the fact

that starting from an inconsistent state, the state immediately jumps to a consistent state

14



for all allowable switching sequences (for all trajectories). So inconsistent states can never

be equilibrium points. Moreover, for an equilibrium point (J − R)Qx̄ + Bū = 0 with ū the

u-part of the solution (u, x̄, y). Now a ū �= 0 can only correspond to a certain number of

modes due to its strictly positive elements. It should however be compatible with all modes,

because we need it to be a solution to all modes (and all switching sequences). With the

same reasoning we arrive at ȳ = 0. Therefore

Qx̄ ∈ Ker (J − R)

Qx̄ ∈ Ker (BT)
(9.35)

for all equilibrium points x̄.

Now, let us first focus on x̄ = 0 which is always an equilibrium point. It is also the only

equilibrium point if R > 0 according to (9.35). We prove the stability of this equilibrium

point using Proposition 9.3 and the Hamiltonian H(x) = xT Qx as Lyapunov function. It is

easily seen that Condition 1 is met. As for each switching sequence and each initial condition

a unique solution exists globally, with possible state jumps occurring only at the initial time

and the switching times, Condition 2 is satisfied as well. The set E of discontinuity points

of the Hamiltonian H(x) is a subset of the set of switching times. Now, we supplement E (if

needed) with arbitrary times. As the underlying dynamics of an LSS are passive according

to Theorem 5.1 and uT y = 0, we have that H(x) decreases in each switch mode. We actually

have d
dt

H(x) ≤ −xTQRQx within each mode. Hence Condition 4 is met, and Condition 5 is

met for R > 0.

Now, when switching modes to a certain mode I, a state jump occurs from the current state

x0 to the state x0 + B•Iu0
I . We have, that

H(x0 + B•Iu0
I) − H(x0)

=
1

2
u0T

I (B•I)TQB•Iu0
I + u0T

I (B•I)TQx0

= u0T
I ((B•I)TQx0 + (B•I)TQB•Iu0

I)

− 1

2
u0T

I (B•I)TQB•Iu0
I

= −1

2
u0T

I (B•I)TQB•Iu0
I

(Theorem 8.3)

≤ 0.

(9.36)

So, the system energy can only decrease when switching modes. This fact combined with

the fact that within each mode the Hamiltonian decreases as well, imply that Condition 3

is met. Therefore, x̄ = 0 is a stable equilibrium point. Moreover, it is asymptotically stable

for R > 0.

Now, let us concentrate on equilibrium points x̄ �= 0. For these systems we use as Lyapunov

function the adjusted Hamiltonian V (x) = (x− x̄)TQ(x− x̄). In the same manner as above,
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we can derive that Conditions 1 to 4 are met. So, the equilibrium points of switched systems

are stable.

According to Theorem 5.1 passive LSS satisfying Assumption 3 and with storage function

xT Qx, with Q > 0, have stable equilibrium points and have 0 as asymptotically stable

equilibrium point if R > 0. �

10 Conclusions and open problems

Using a Hamiltonian approach we have been able to analyse the well-posedness and stabil-

ity of a class of switched passive linear systems. The approach immediately suggests the

following extensions:

• It should be possible to extend the presented approach to switched passive linear sys-

tems also including ideal diod characteristics, which is the common situation in power

converters (or mechanical systems with ideal Coulomb friction and geometric inequal-

ity constraints). Without switches these systems have been successfully analysed as

complementarity systems, cf. [1, 24, 2].

• Also systems with algebraic constraints (DAE’s) can be modelled as port-Hamiltonian

systems, cf. [5]. It is of interest to generalise the results of this paper to this setting.

This is quite important from an application point of view, since the modeling of complex

physical systems will often result in DAE’s.

• In the current paper only switches terminating power ports are being considered. It

is important to extend the obtained results to other classes of physically motivated

switches, such as switches corresponding to geometric constraints in mechanical sys-

tems.

• The framework of port-Hamiltonian systems pertains to general nonlinear systems, cf.

[5]. This seems to be a promising avenue to analyse switched nonlinear systems.

11 Appendix: Proof of Theorem 8.3

We shall first show that Statement 1 and 3 are equivalent. Then we prove that u0
I =

lims→∞ û
x0,I
I (s) is equivalent to Statement 1 of the theorem. We then establish the equiva-

lence of Statement 1 and 4, and that 1 ⇒ 2 and 2 ⇒ 3.

1 ⇔ 3

It is easily seen, that Ker DII is equivalently given by the set {Nw |w ∈ Rr} where N is a

full column rank |I|× r matrix (r ≤ |I|). The expression for the set KerD⊥
II follows trivially.
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Because of the full column rank of N , for each v ∈ Ker DII there is a unique w ∈ Rr such

that v = Nw. Because of this unicity, any solution u0
I to

v ∈ Ker DII

(B•I)T Qx0 + (B•I)T QB•Iv ∈ (Ker DII)
⊥ (11.37)

is equivalently given by the solution w0 to the set of equations

∀ z ∈ R
r : zT NT ((B•I)T Qx0 + (B•I)T QB•INw) = 0 (11.38)

through u0
I = Nw0. Now, (11.38) implies NT (B•I)T Qx0 + NT (B•I)T QB•INw = 0 for any

solution w. Due to the invertibility of the matrix NT (B•I)T QB•IN (Assumption 3), the

solution w0 is unique. Therefore the solution to the problem (11.37) is unique. Hence,

Statement 1 and 3 of the theorem are equivalent.

Statement 1 uniquely determines the jump multiplier u0
I

Now, we know that ûx0,I(s) satisfies

GII(s)û
x0,I
I (s) + (B•I)T Q(sI − (J − R)Q)−1x0 = 0 (11.39)

We know, that ûx0,I(s) is proper. By taking the limit s → ∞ in the above equation we get

DIIu
0
I = 0, so u0

I ∈ Ker DII . Now, we “subtract” the component DIIu
0
I from the above

equation. We take the power series expansion of ûx0,I
I (s) around infinity as û

x0,I
I (s)(s) =

u0
I + u1

Is
−1 + u2

Is
−2 + ... and substitute this in the equation. We then multiply this new

equation by s and û
x0,I
I (s) and again take the limit s → ∞. We then arrive at

u0T
I ((B•I)T Qx0 + (B•I)T QB•Iu0T

I ) = 0 (11.40)

Now, we choose an arbitrary v ∈ Ker DII . We then have

0 = (ûx0,I
I (s) − v)T 0 = (ûx0,I

I (s) − v)T (GII(s)

û
x0,I
I (s)(s) + (B•I)T Q(sI − (J − R)Q)−1x0 − DIIv)

(11.41)

Due to the condition that D + DT ≥ 0 we also have DII + DT
II ≥ 0. Hence

(ûx0,I
I (s) − v)T ((B•I)T Q(sI − (J − R)Q)−1

B•I û
x0,I
I (s) + (B•I)T Q(sI − (J − R)Q)−1x0) ≤ 0

(11.42)

Multiplying this by s and taking the limit s → ∞ results in

vT ((B•I)T QB•Iu0
I + (B•I)T Qx0) ≥

u0T
I ((B•I)T QB•Iu0

I + (B•I)T Qx0) = 0
(11.43)
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In equation (11.41) we could replace v by −v and −Dv by Dv. We then have vT ((B•I)T QB•Iu0
I+

(B•I)T Qx0) ≤ 0. Concluding: we have

vT ((B•I)T QB•Iu0
I + (B•I)T Qx0) = 0 (11.44)

for arbitrary v ∈ Ker DII . So, (B•I)T QB•Iu0
I + (B•I)T Qx0 ∈ (Ker DII)

⊥. Because of the

uniqueness of the solution to the problem in Statement 1 of the theorem, this solution is

equal to u0
I = lims→∞ û

x0,I
I (s).

1 ⇔ 4

First we show, that 1 ⇒ 4. If u0
I is the solution to the problem in Statement 1, we have

for arbitrary v ∈ KerDII :

(x0 + B•Iu0
I)

T Q(x0 + B•Iu0
I)

− (x0 + B•Iv)TQ(x0 + B•Iv)

=2u0T
I (B•I)T Qx0 + u0T

I (B•I)T QB•Iu0
I

− (2vT (B•I)T Qx0 + vT B•I)T QB•Iv)

=2u0T
I ((B•I)T Qx0 + (B•I)T QB•Iu0

I)

− (u0
I − v)T (B•I)T QB•I(u0

I − v)

− 2vT ((B•I)T Qx0 + (B•I)T QB•Iu0
I)

= − (u0
I − v)T (B•I)T B•I(u0

I − v)

≤0

(11.45)

So, indeed u0
I minimizes the quadratic program from Statement 4.

Now, for 4 ⇒ 1, let us write the Kuhn-Tucker conditions for the unique minimum v̄ of the

optimization problem in 4:

BT
•IQ(x0 + BbulletI v̄) = DT

IIλ, (11.46)

where λ ∈ R|I| is a uniquely determined vector of Lagrange multipliers. Pre-multiplying this

equation by any w ∈ KerDII , we get

wT BT
•IQ(x0 + BbulletI v̄ = 0. (11.47)

This yields statement 1.

1 ⇒ 2, 2 ⇒ 3

Assume, that u0
I is the unique solution to the problem of Statement 1. Now, take x(0+) =

x0 + B•Iu0
I . Then BT

•IQx(0+) ∈ KerD⊥
II . Take an arbitrary x such that BT

•IQx ∈ KerD⊥
II .

We then have
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(x − x0)
T Q(x − x0) − (x(0+) − x0)

T Q(x(0+) − x0)

=(x − x(0+))TQ(x − x(0+))

+ 2xT QB•Iu0
I

− 2u0
I(B•I)T Q(x0 + QB•Iu0

I)

(11.48)

The second and the third term on the right hand side are equal to zero. So, we indeed

have, that x(0+) is the unique minimizer of the quadratic problem of Statement 2.

Because of the form of KerD⊥
II , the quadratic problem of Statement 2 is equivalently given

by

Minimize 1
2
(x − x0)

T Q(x − x0)

Subject to NT (B•I)T Qx = 0
(11.49)

Now, denote the unique minimum of this quadratic program by x̄. Let us write down the

Kuhn-Tucker conditions for this minimum:

x̄ = x0 + B•INw (11.50)

where w ∈ R
r is a uniquely determined vector of Lagrange multipliers. We can equivalently

state, that

0 = NT (B•I)T Qx̄ = NT (B•I)T Qx0 + NT (B•I)T QB•INw (11.51)

So, we have now derived Statement 3.
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