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Abstract

Let R(∂) be a matrix whose entries are linear partial differential operators, with
constant coefficients. Let Ω be a non-empty, open, bounded, convex set. We consider
the homogeneous system R(∂)f = 0 in a neighborhood of Ω, subject to the boundary
condition f = g in a neighborhood of ∂Ω. For a given smooth function g, we give a
criterion for the (unique) existence of a smooth solution f to this problem. There is
an obvious necessary condition: R(∂)g = 0 in a neighborhood of ∂Ω. We characterize
the class of differential operators R(∂) for which the problem is solvable for any g

satisfying the necessary condition. A system is over-determined if and only if there
exists a unique solution to the problem, for any such Ω and g. We derive an algebraic
criterion for this property. Finally, in the case where the solution is non-unique, we
consider the possibility of obtaining uniqueness by fixing several components of the
desired solution.

1 Introduction

This paper is motivated by the notion of over-determined systems, as discussed in Palam-

odov’s book [6]. Speaking in behavioral terms [8], this property is a strong form of auton-

omy [10], and it is algebraically characterized by kernel representation matrices that are

minor right prime. Since the equivalence of controllability and left prime representation

matrices has been discussed quite extensively in the behavioral literature of the last few

years, it seems interesting to give an interpretation to the somehow dual situation as well.

The systems theoretic significance of the notion is closely related to the extension problem,

a boundary value problem in which the values of the desired function are prescribed in a

whole neighborhood of the boundary. It turns out that a behavior is over-determined if and

only if the extension problem is uniquely solvable for any choice of the boundary data that

is compatible with the system laws. The present paper can be seen as a small step towards a

treatment of boundary value problems within the behavioral framework. However, it relies

strongly on prior work of Palamodov [6] and Malgrange [4].
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2 Preliminaries

For an open set U ⊆ Rn, let E(U) denote the space of (complex-valued) smooth functions

on U . Let Ω ⊂ Rn be a non-empty, open, bounded, convex set, and let K := Ω be its closure.

Let E(K) denote the space of all smooth functions in an (open) neighborhood of K, that is,

E(K) = {f ∈ E(U) | U is a neighborhood of K}.

Let f, g ∈ E(K). We write f
K∼ g if there exists a neighborhood of K on which the values of

f and g coincide. This defines an equivalence relation on E(K). Define

EK := E(K)/∼.

Similarly, let ∂K denote the boundary of K (or Ω, equivalently) and let E(∂K) be the space

of smooth functions in a neighborhood of ∂K. We write f
∂∼ g if two functions f, g ∈ E(∂K)

coincide in some neighborhood of ∂K, and we define

E∂ := E(∂K)/
∂∼ .

Since any element of E(K) can also be considered as an element of E(∂K) and since

f
K∼ g ⇒ f

∂∼ g

there is a natural homomorphism BΩ : EK → E∂ that maps [f ]K to [f ]∂, which are the

equivalence classes of f ∈ E(K) with regard to
K∼ and

∂∼, respectively.

The following fact about smooth functions is fundamental and well-known.

Lemma 2.1. Let K ⊂ Rn be compact, and let U ⊆ Rn be a neighborhood of K. For any

f ∈ E(U), there exists g ∈ E(Rn) and a neighborhood U1 ⊆ U of K such that f |U1 = g|U1.

As a consequence, EK = E(Rn)/
K∼ and E∂ = E(Rn)/

∂∼. Thus, BΩ is surjective. Moreover,

we have

ker(BΩ) = {[f ]K | f ∈ E(Rn), [f ]∂ = 0}
= {[φ]K | φ ∈ E(Rn), supp(φ) ⊂ Ω}.

If U is a neighborhood of ∂Ω on which f vanishes, we obtain φ from f by setting to zero its

values on Rn \ (Ω ∪ U). As usual, define

D(Ω) = {φ ∈ E(Rn) | supp(φ) ⊂ Ω} (2.1)

(since Ω is bounded, such a support is necessarily compact). As any z ∈ ker(BΩ) possesses

a unique representation z = [φ]K with φ ∈ D(Ω), there is an isomorphism D(Ω) → ker(BΩ),

φ 7→ [φ]K .
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The set E(Rn) carries a P-module structure, where

P = C[s] = C[s1, . . . , sn]

is the ring of polynomials in n variables, with complex coefficients. The action of si on E(Rn)

is given by the partial differentiation ∂i, that is, for p ∈ P and f ∈ E(Rn),

pf := p(∂)f = p(∂1, . . . , ∂n)f.

Thus also EK becomes a P-module, via p[f ]K = [pf ]K . When R is a P-matrix (that is,

R ∈ Pr×q for some integers r, q ≥ 1), we write

imP(R) = RPq and kerP(R) = {p ∈ Pq | Rp = 0}

for the image and kernel of R as a mapping Pq → Pr, and

imEK
(R) = R(∂)Eq

K and kerEK
(R) = {w ∈ Eq

K | R(∂)w = 0} (2.2)

denote the image and kernel of R as a mapping Eq
K → Er

K . The set D(Ω) from (2.1) is a

P-submodule of E(Rn). Analogously as in (2.2), we write kerD(Ω)(R) and imD(Ω)(R) for the

kernel and image of R as a mapping D(Ω)q → D(Ω)r, etc.

Two facts will be crucial in the following: First, since Ω is non-empty, open and convex,

the set D(Ω) is a faithfully flat P-module [4, 6, 7]. This means that for P-matrices R and M

imP(R) = kerP(M) ⇔ imD(Ω)(R) = kerD(Ω)(M).

Secondly, if U is non-empty, open, and convex, then E(U) is an injective P-module [1, 4, 6].

This means that for P-matrices R and M

kerP(RT ) = imP(MT ) ⇒ imE(U)(R) = kerE(U)(M). (2.3)

In fact, (2.3) is an equivalence [5], but this will not be needed in the following. Instead, we

shall prove the following variant.

Lemma 2.2. Let Ω ⊂ Rn be non-empty, open, bounded, and convex. Let K = Ω. Then EK

is an injective P-module.

Proof: Let M and R be P-matrices with kerP(RT ) = imP(MT ). We need to show that

imEK
(R) ⊇ kerEK

(M) (the other inclusion is trivial since MR = 0). Suppose that [f ]K ∈
kerEK

(M), that is, f ∈ E(Rn)r and M(∂)f = 0 in some neighborhood U of K. Then there

exists an open convex set U1 such that K ⊂ U1 ⊆ U and f |U1 ∈ kerE(U1)(M). Since E(U1)

is injective, we have f |U1 ∈ imE(U1)(R), that is, f |U1 = R(∂)g for some g ∈ E(U1)
q. Since

[f ]K = [f |U1 ]K = R(∂)[g]K , we conclude that [f ]K ∈ imEK
(R). 2

3



3 Over-determined systems

Let R ∈ Pr×q be a polynomial matrix, and let Ω ⊂ Rn be as in Section 2, with K = Ω.

Consider the over-determined boundary value problem for f, g ∈ E(Rn)q

R(∂)f = 0 in some neighborhood of K

f = g in some neighborhood of ∂K.

More precisely, the problem may be formulated as follows. Consider the local behavior [8]

BK = kerEK
(R) = {w ∈ Eq

K | R(∂)w = 0}
= {[f ]K | f ∈ E(Rn)q, R(∂)f = 0 in some neighborhood of K}

which is the solution space, in Eq
K , of the linear constant-coefficient partial differential oper-

ator R(∂). Let g ∈ E(Rn)q be given.

Extension problem: Given v = [g]∂ ∈ Eq
∂ , does there exist w = [f ]K ∈ BK such that

BΩw = v, that is, f
∂∼ g?

There is an obvious necessary condition: v has to satisfy the system laws locally, that is,

R(∂)v = 0, or equivalently, R(∂)g = 0 in some neighborhood of ∂K. Let B∂ denote the set

of all v ∈ Eq
∂ that satisfy this necessary condition. We may write

B∂ = {v ∈ Eq
∂ | R(∂)v = 0}.

Note that if v = [g]∂ ∈ B∂, then there exists φ ∈ D(Ω)r such that [R(∂)g]K = [φ]K .

Lemma 3.1. Let v = [g]∂ ∈ B∂ be given, and let φ ∈ D(Ω)r be such that [R(∂)g]K = [φ]K.

The extension problem is solvable if and only if R(∂)χ = φ has a solution χ ∈ D(Ω)q.

Proof: Suppose that the extension problem is solvable, that is, there exists w = [f ]K ∈ BK

with BΩw = v. Then R(∂)[g− f ]K = [φ]K and [g− f ]∂ = 0, hence [g− f ]K = [χ]K for some

χ ∈ D(Ω)q. Hence R(∂)χ = φ in a neighborhood of K, and hence everywhere. Conversely,

let R(∂)χ = φ for some χ ∈ D(Ω)q. Set w = [g − χ]K . Then R(∂)w = 0 and BΩw = v, that

is, w solves the extension problem. 2

Using this lemma, we can now give a criterion for the extension problem to be solvable for

any v ∈ B∂. This means that BΩ : BK → B∂ is surjective. For this, we need the following

notion.

Definition 3.1. A P-matrix R is called a right syzygy matrix if there exists a P-matrix M

such that imP(R) = kerP(M).

Theorem 3.1. The extension problem has a solution for any Ω as above, and for any v ∈ B∂

if and only if R is a right syzygy matrix.
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Proof: If R is a right syzygy matrix, say, imP(R) = kerP(M), then we have imD(Ω)(R) =

kerD(Ω)(M), since D is a flat P-module. Let v = [g]∂ ∈ B∂ be given, and let φ ∈ D(Ω)r

be such that [R(∂)g]K = [φ]K . Since MR = 0, this implies that M(∂)[φ]K = 0, that is,

M(∂)φ = 0 in some neighborhood of K. Since φ ∈ D(Ω)r, M(∂)φ = 0 everywhere, and thus

φ ∈ kerD(Ω)(M) = imD(Ω)(R). Then φ = R(∂)χ for some χ ∈ D(Ω)q, and we are finished

according to Lemma 3.1.

Conversely, let M be a P-matrix with kerP(RT ) = imP(MT ). Then, since EK is injective,

imEK
(R) = kerEK

(M). (3.4)

Since D(Ω) is a faithfully flat P-module, it suffices to show that

kerD(Ω)(M) ⊆ imD(Ω)(R)

(the other inclusion is trivial since MR = 0). Let φ ∈ kerD(Ω)(M) be given. Then [φ]K ∈
kerEK

(M). Equation (3.4) implies that [φ]K = R(∂)[g]K for some g ∈ E(Rn)q. Define

v = [g]∂ ∈ Eq
∂ . Since R(∂)v = [R(∂)g]∂ = BΩ[R(∂)g]K = BΩ[φ]K = 0, we have v ∈ B∂.

By assumption, the extension problem is solvable, and hence, according to Lemma 3.1,

φ = R(∂)χ for some χ ∈ D(Ω)q. Thus φ ∈ imD(Ω)(R). 2

The next question is: When is BΩ : BK → B∂ even a bijection?

Corollary 3.1. The extension problem possesses a unique solution for any Ω as above and

any v ∈ B∂ if and only if R is a right syzygy matrix with full column rank.

Proof: The matrix R has full column rank if and only if kerP(R) = 0, which is equivalent

to kerD(Ω)(R) = 0, since D(Ω) is a faithfully flat P-module. We show that kerD(Ω)(R) = 0 is

equivalent to the uniqueness of the solution to the extension problem. Let kerD(Ω)(R) = 0

and suppose that w1, w2 are such that R(∂)w1 = R(∂)w2 = 0 and BΩw1 = BΩw2 = v. Then

w := w1 − w2 satisfies R(∂)w = 0 and BΩw = 0, that is, w = [φ]K for some φ ∈ D(Ω)q.

This means that R(∂)φ = 0 in some neighborhood of K, and hence everywhere. Thus

φ ∈ kerD(Ω)(R) which implies that φ = 0 and hence w1 = w2. Conversely, if kerD(Ω)(R) 6= 0,

then there exists 0 6= φ ∈ D(Ω)q with R(∂)φ = 0. Now if w solves the extension problem, so

does w + [φ]K 6= w. 2

Remark 3.1. A polynomial matrix with full column rank is a right syzygy matrix if and

only if the greatest common divisor of its maximal minors is one [9].

Definition 3.2. A full column rank polynomial matrix whose maximal minors are coprime,

is called minor right prime. If R is minor right prime, the associated global behavior

B = {w ∈ E(Rn)q | R(∂)w = 0}

is called over-determined. This signifies that for any Ω ⊂ Rn (non-empty, open, bounded,

and convex) and any function that satisfies the system law in a neighborhood of ∂Ω, there

exists a unique extension to all of K = Ω.
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Remark 3.2. The notion of over-determined systems is intrinsically multidimensional. Since

a univariate (n = 1) matrix is minor right prime if and only if it possesses a polynomial left

inverse, the only one-dimensional over-determined behavior is the trivial behavior B = {0}.
For two-dimensional systems (n = 2), a behavior is over-determined if and only if it is

finite-dimensional.

Example 3.1. The Cauchy-Riemann equations for a function of two complex variables

(considered as four real variables) are represented by the matrix

R =


s1 −s2

s2 s1

s3 −s4

s4 s3

 ∈ R[s1, s2, s3, s4]
4×2.

This matrix is minor right prime, and hence the Cauchy-Riemann equations for functions of

two complex variables are over-determined, see e.g. [2].

If R has full column rank, the characterization given in Lemma 3.1 possesses an equivalent

form in terms of Fourier transforms.

Theorem 3.2. Let R have full column rank. The extension problem possesses a (unique)

solution for any given Ω as above and any v = [g]∂ ∈ B∂ if and only if the equation

R(iξ)ψ(ξ) = F(φ)(ξ)

has a (unique) solution ψ that is an entire function of ξ = (ξ1, . . . , ξn) ∈ Cn. Here F denotes

the Fourier transform and φ ∈ D(Ω)r is such that [R(∂)g]K = [φ]K.

The proof requires the following arguments.

Remark 3.3. Let 0 6= p ∈ P and let ν be a smooth function with compact support. If

ψ(ξ) = F(ν)(ξ)/p(iξ) is an entire function, then ψ is the Fourier transform of some smooth

function with compact support. In [3, Lemma 3.4.2], this fact is proven for distributions with

compact support. The result itself, and its validity for smooth functions, is a consequence

of the Paley-Wiener theorem, see e.g. [3, Theorem 1.7.7].

Let 0 6= p ∈ P and let µ be a smooth function with compact support. Then [3, Lemma

3.4.3]

supp(µ) ⊆ ch(supp(p(∂)µ))

where ch(·) denotes the convex hull of a set. In particular, since Ω is convex, p(∂)µ ∈ D(Ω)

implies µ ∈ D(Ω).
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Proof of Theorem 3.2: In view of Lemma 3.1, we need to prove that R(∂)χ = φ has a

solution χ ∈ D(Ω)q if and only if R(iξ)ψ(ξ) = F(φ)(ξ) has an entire solution ψ.

If R(∂)χ = φ with χ ∈ D(Ω)q, then

F(R(∂)χ)(ξ) = R(iξ)F(χ)(ξ) = F(φ)(ξ)

and the result follows from the fact that the Fourier transform of a compact support function

is an entire function of ξ.

Conversely, let R(iξ)ψ(ξ) = F(φ)(ξ) with an entire function ψ. Since R has full column

rank, there exists a polynomial matrix X and a polynomial p 6= 0 such that

XR = pI.

Therefore

X(iξ)R(iξ)ψ(ξ) = p(iξ)ψ(ξ) = X(iξ)F(φ)(ξ) = F(X(∂)φ)(ξ).

By assumption, ψ(ξ) = F(X(∂)φ)(ξ)/p(iξ) is an entire function of ξ. According to the

previous remark, this implies that ψ is the Fourier transform of a smooth function with

compact support, say ψ = F(µ). Then R(∂)µ = φ and thus p(∂)µ = X(∂)φ ∈ D(Ω)q. This

implies that χ := µ ∈ D(Ω)q, again by the previous remark. 2

4 Over-determined input-output structures

Let us return to the situation where the solution to the extension problem is not necessarily

unique. This non-uniqueness can be characterized in more detail as follows.

For this, let Ω and K be as usual, and consider again BK = {w ∈ Eq
K | R(∂)w = 0} with

R ∈ Pr×q. Set p := rank(R). There exists (up to permutation) a partition

R =
[
−Q P

]
and w =

[
u

y

]
in which P ∈ Pr×p has full column rank. Set m := q − p. By construction, Q = PH for

some rational p×m matrix H.

Definition 4.1. Such a partition is called an input-output (I/O) structure of

BK = {(u, y) ∈ Em
K × Ep

K | P (∂)y = Q(∂)u}. (4.5)

The matrix H is called transfer matrix of the I/O structure.

Remark 4.1. This notion is due to Oberst [5] and it is motivated by the following obser-

vation: The sub-vector u of w is a vector of free variables in B, that is, an “input”. More

precisely, for any u ∈ Em
K , there exists y ∈ Ep

K such that (u, y) ∈ BK , that is, P (∂)y = Q(∂)u.

This follows from the injectivity of EK : Let kerP(P T ) = imP(NT ) for some polynomial ma-

trix N . Then imEK
(P ) = kerEK

(N). Since NQ = NPH = 0, we have Q(∂)u ∈ imEK
(P ) for

any u ∈ Em
K .
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Suppose that BK is a behavior with input-output structure (4.5). Then the signal sub-

vector u is free. If we fix u, then there are, in general, many “outputs” y with (u, y) ∈ BK .

Additional constraints may be imposed on y in order to obtain uniqueness. The I/O extension

problem asks whether fixing the values of y in a neighborhood of the boundary, say BΩy = x,

is an admissible such constraint. If yes, then the boundary data x play the role of “state”

in this setting.

I/O extension problem: Given u ∈ Em
K and x ∈ Ep

∂ , does there exist y ∈ Ep
K such that

P (∂)y = Q(∂)u and BΩy = x?

Note that since P has full column rank, there can be at most one such y. Hence, uniqueness

is not an issue here. A necessary condition for existence is easily found: P (∂)x = Q(∂)BΩu.

Let B∂ denote the set of all pairs (BΩu, x) ∈ Eq
∂ with this property, that is,

B∂ = {(BΩu, x) ∈ Em
∂ × Ep

∂ | P (∂)x = Q(∂)BΩu}.

Theorem 4.1. The I/O extension problem has a solution for any u ∈ Em
K and any x ∈ Ep

∂

with (BΩu, x) ∈ B∂ if and only if P is a right syzygy matrix. Then the solution is uniquely

determined.

Proof: By the previous remark, Q(∂)u ∈ imEK
(P ), i.e., there exists y1 ∈ Ep

K with P (∂)y1 =

Q(∂)u. Put ỹ := y − y1, then the I/O extension problem is equivalent to the following

extension problem: Given x − BΩy1 ∈ Ep
∂ , with P (∂)(x − BΩy1) = 0, find ỹ ∈ Ep

K with

P (∂)ỹ = 0 and BΩỹ = x − BΩy1. Therefore the statement can be proven similarly as

Theorem 3.1. 2

Definition 4.2. In the situation of Theorem 4.1, we call the associated global behavior

B = {(u, y) ∈ E(Rn)m × E(Rn)p | P (∂)y = Q(∂)u} (4.6)

a system with over-determined I/O structure.

Remark 4.2. Let (4.6) be a system with over-determined I/O structure. Then for all Ω as

above, and for all u ∈ D(Ω)m, there exists a unique y ∈ D(Ω)p such that P (∂)y = Q(∂)u.

Moreover, the transfer matrix of an over-determined I/O structure is polynomial (rather

than rational).

Corollary 4.1. Let R ∈ Pr×q. The behavior B = {w ∈ E(Rn)q | R(∂)w = 0} possesses

an over-determined input-output structure if and only if R possesses a minor right prime

sub-matrix P with rank(R) = rank(P ).

Finally, we address the problem of solving the I/O extension problem for a specific choice

of the input and boundary data. For this, let h ∈ E(Rn)p be given.
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Theorem 4.2. Let Ω and K be as usual. Let u ∈ Em
K and x = [h]∂ ∈ Ep

∂ be such that

(BΩu, x) ∈ B∂. Then [P (∂)h]K − Q(∂)u = [φ]K for some φ ∈ D(Ω)r. The following are

equivalent:

1. The I/O extension problem has a (unique) solution.

2. P (∂)χ = φ has a (unique) solution χ ∈ D(Ω)p.

3. P (iξ)ψ(ξ) = F(φ)(ξ) has a (unique) entire solution ψ.

Proof: In all three assertions, the uniqueness follows from the fact that P has full column

rank. The equivalence of 2 and 3 is shown as in the proof of Theorem 3.2. We prove the

equivalence of 1 and 2.

If y is such that P (∂)y = Q(∂)u and BΩy = x = [h]∂, then P (∂)([h]K − y) = [φ]K and

BΩ([h]K − y) = 0. Thus [h]K − y = [χ]K for some χ ∈ D(Ω)p, and P (∂)χ = φ.

Conversely, let P (∂)χ = φ, then P (∂)[χ]K = [φ]K = [P (∂)h]K − Q(∂)u and hence y :=

[h− χ]K solves the I/O extension problem. 2
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