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Abstract
In this paper, we consider the problem of implementability and regular imple-

mentability of a nD behavior by interconnecting a given plant behavior with a suitable
controller through a control variable (partial interconnection). In the 1D case, regular
implementability by partial interconnection can be characterized in terms of the regular
implementability of desired system variable behavior from the original system variable
behavior by full interconnection. It turns out that a similar result is not valid in the
nD case. However we show that it is possible to obtain an alternative characterization
in terms of the regular implementability of a suitably defined control variable behavior.

1 Introduction

As is well known, the notion of system interconnection is the basis for control within the

framework of the behavioral approach. In this setting, a general control problem can be

stated as follows. Given a plant behavior B and a control objective corresponding to a

desired behavior Bd, find a controller behavior Bc, within a certain controller class, such that

the behavior resulting from the interconnection of B and Bc coincides with Bd.

An extensive study of control by interconnection of 1D and nD systems is carried out in

[3], where apart from the usual interconnections also the concept of extended interconnection

is introduced. The basic idea of extended interconnection is to introduce additional variables

and to construct controllers in the extended variable space. The additional variables can be

thought of as being latent variables which are internal to the system and cannot be directly

affected by means of (non-extended) interconnection. By allowing restrictions to be placed

on such internal variables a larger set of controlled behaviors can in principle be achieved.

An alternative approach introduced in [1], [2], [4] and [5] for 1D systems consists in assum-

ing that the variables are partitioned into to-be-controlled variables w and control variables

c. The following control problem is then considered. Given a plant behavior B(w,c) with

partitioned variable (w, c) and a desired controlled w-behavior Bd
w, find a controller behavior

Bc
c, which is obtained by restricting only the control variables c, such that its interconnection

with the plant yields Bd
w. If this problem is solvable Bd

w is said to be implementable from

Bw,c by interconnection through c.

The purpose of this paper is to investigate implementability for the case of multidimen-

sional (nD) systems.
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2 Notation and preliminaries

Since in the sequel we deal with behaviors in different variables, in order to avoid confusion

we will always indicate the behavior variable as a subscript. More concretely, the notation Ba

means that the behavior variable in B is a. In this case we also say that B is an a-behavior.

2.1 nD kernel behaviors

We consider nD behaviors Ba that can be described by a set of linear partial difference or

partial differential equations, i.e.,

Ba = ker E(σ1, . . . , σn) := {a ∈ U|Ea = 0},

where U is the trajectory universe, the σi’s are either the usual nD shifts or the elementary

nD partial differential operators and E(s1, . . . , sn) is a nD polynomial matrix. We refer to

these behaviors as kernel behaviors. Since the matrix E uniquely specifies the behavior Ba,

we also say that E is a representation of Ba and use the notation Ba = B(E).

In case the variable a is partioned as a = (w, c), we will consider the representation matrix

E to be partitioned accordingly as E = [R −M ]. This clearly corresponds to writting the

equation Ea = 0 as Rw = Mc.

Instead of characterizing Ba by means of a representation matrix E, it is also possible to

characterize it by means of its orthogonal module Mod(Ba), which consists of all the nD

polynomial rows r such that Ba ⊂ Ba(r), and can be shown to coincide with the polynomial

module generated by the rows of E.

2.2 Behavior interconnection

Given two behaviors B1
w and B2

w with the same variable, we define their full interconnection

as the intersection B1
w ∩ B2

w. Moreover, we say that this full interconnection is regular if

Mod(B1
w) ∩Mod(B2

w) = {0}. (2.1)

If B1
w = B(R1) and B2

w = B(R2), then B1
w ∩ B2

w = B(

[
R1

R2

]
) and it constitutes a regular

interconnection if and only if

rank

[
R1

R2

]
= rank R1 + rank R2, (2.2)

where the ranks are taken as ranks of nD polynomial matrices.

In addition to the (full) interconnection of behaviors with the same variable, we will also

consider the (partial) interconnection of a (w, c)-behavior and a c-behavior, [1], [2], [4] and
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[5]. Given two behaviors B1
(w,c) and B2

c , we define their interconnection through c as the

(w, c)-behavior given by the intersection B1
(w,c) ∩ B2

(w=free,c), where

B2
(w=free,c) := {(w, c)|w ∈ Uw ∧ c ∈ B2

c}

and Uw is the universe of the w-trajectories. We will say that the interconnection of B1
(w,c)

and B2
c through c is regular if the full interconnection of B1

(w,c) and B2
(w=free,c) is regular.

If B1
(w,c) = B([R −M ]) and B2

c = B(C), then the interconnection of these two behaviors

through c is regular if and only if

rank

[
R −M

0 C

]
= rank [R −M ] + rank C, (2.3)

where again the ranks are taken as ranks of nD polynomial matrices.

2.3 Control by interconnection

The problem of control by full interconnection can be stated as follows. Given a plant

with behavior Bw and a desired control objective corresponding to a behavior Bd
w ⊂ Bw,

find a controller with behavior Bc
w, within a certain controller class, such that the behavior

Bw ∩ Bc
w (resulting from the full interconnection of the plant and the controller) coincides

with Bd
w. If this control problem is solvable, the (control objective) behavior Bd

w is said to

be implementable from the (plant) behavior Bw by full interconnection.

If the interconnection Bw ∩ Bc
w is regular, then Bd

w is said to be regularly implementable

from Bw by full interconnection and the corresponding controller Bc
w is called a regular full

controller.

Assume now that the behavior Bw is given as the w-behavior of a (w, c)-behavior B(w,c), i.e.

Bw = Πw(B(w,c)) := {w|∃ c : (w, c) ∈ B(w,c)}. Regarding c as a control variable and w as the

variable to be controlled, the following control problem can be formulated. Given a control

objective corresponding to a behavior Bd
w ⊂ Bw, find a controller with behavior Bc

c such that

Bd
w is the w-behavior of the interconnection of B(w,c) and Bc

c through c, i.e., find Bc
c such that

Bd
w = Πw(B(w,c) ∩ Bc

(w=free,c)).

If this control problem is solvable, Bd
w is said to be implementable from B(w,c) by intercon-

nection through c.

If the full interconnection of B(w,c) and Bc
(w=free,c) is regular, Bd

w is regularly implementable

from B(w,c) by interconnection through c, and Bc
c is called a regular controller.

The notion of regular implementability of nD behaviors by full interconnection has been

studied in [3] under the name of achievability by regular interconnection. On the other

hand, implementability and regular implementability of 1D behaviors by interconnection

through a control variable c have been completely characterized in [1]. In the following

sections we will study these properties for the nD case.
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3 Implementability

In this section we will show that the results obtained in [6] on the implementability of 1D

behaviors by interconnection through a control variable c are still valid for the nD case.

Let B(w,c) be a nD (w, c)-behavior with description

Rw = Mc, (3.4)

Bw := Πw(B(w,c)) the corresponding w-behavior and Bd
w a sub-behavior of Bw. Define the

hidden behavior Bh
w as the w-behavior of B(w,c) ∩ {(w, c)|w ∈ Uw ∧ c = 0}. Clearly,

Bh
w = ker R. (3.5)

Theorem 3.1. With the previous notation, the following statements are equivalent.

1. Bd
w is implementable from B(w,c) by interconnection through c.

2. Bh
w ⊂ Bd

w.

Proof

1 ⇒ 2: Assume that 1 holds. This means that there exists a nD polynomial matrix K such

that Bd
w is the w-behavior described by

{
Rw = Mc

Kc = 0.
(3.6)

Since the trajectories in {(w, c)|c = 0 ∧ w ∈ Bh
w} satisfy (3.6), it immediately follows that

Bh
w = Πw({(w, c)|c = 0 ∧ w ∈ Bh

w}) ⊂ Bd
w, proving that 2 is verified.

1 ⇒ 2: Assume now that 2 holds true. We wish to show that there exists a controller

behavior Bc
c = ker K, for some suitable nD polynomial matrix K, such that Bd

w is the w-

behavior described by (3.6).

Note first that the assumption that Bh
w ⊂ Bd

w implies that there exists a nD polynomial

matrix F such that Bd
w = ker FR. We will next show that K := FM yields the desired

controller. This amounts to check that Bd
w is the w-behavior described by

[
R

0

]
w =

[
M

FM

]
c. (3.7)

But this is obvious, since [F − I] is a minimal left annihilator (MLA) of

[
M

FM

]
and

therefore the w-behavior corresponding to (3.7) is ker[F − I]

[
R

0

]
= ker FR = Bd

w.
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4 Regular implementability

As concerns regular implementability, it is shown in [1] that the following holds for the 1D

case.

Theorem 4.1. If Bd
w is implementable from B(w,c) by interconnection through c, then the

following statements are equivalent.

1. Bd
w is regularly implementable from B(w,c) by interconnection through c.

2. Bd
w is regularly implementable from Bw by full interconnection.

3. Bw = (Bw)controllable + Bd
w.

Here, (Bw)controllable denotes the controllable part of Bw, i.e., the largest controllable sub-

behavior of Bw (see [7] for a more detailed definition).

The relation between the second and third conditions of this theorem has also been studied

for the nD case in [3], where it was shown that 2 ⇒ 3, but 3 6⇒ 2. As illustrated in the next

example, also the equivalence between 1 and 2 is no longer valid in the nD case as 1 6⇒ 2.

Example 4.1. Let B(w,c) be the 2D (w, c)-behavior described by the equation

w =

[
σ2 − 1

1− σ1

]
c,

or equivalently, by [
1 0 1− σ2

0 1 σ1 − 1

] [
w

c

]
=

[
0

0

]

and let Bd
w be the zero behavior. Define the controller Bc

c = ker 1 (which corresponds to

forcing the control variable c to be equal to zero). The interconnection of B(w,c) and Bc
c

through c, given by the equation




1 0 1− σ2

0 1 σ1 − 1

0 0 1




[
w

c

]
=




0

0

0


 ,

is regular since

rank




1 0 1− s2

0 1 s1 − 1

0 0 1


 = rank

[
1 0 1− s2

0 1 s1 − 1

]
+ rank [0 0 1].

Moreover, the associated w-behavior is obviously the zero behavior Bd
w, showing that Bd

w is

regularly implementable from B(w,c) by interconnection through c.

Consider now the w-behavior Bw associated with B(w,c). It is not difficult to check that
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Bw = ker[σ1 − 1 σ2 − 1]. If Bd
w were implementable from Bw by full interconnection,

the 2D polynomial matrix [s1 − 1 s2 − 1] would be completable to a unimodular matrix,

which is not the case since it is not a zero-left-prime matrix. Thus we conclude that Bd
w

is not implementable from Bw by full interconnection, showing that the 1D result does to

generalize to nD behaviors.

In view of this example, we will try to characterize regular implementability by interconnec-

tion through a control variable in terms of conditions on the control variable behavior.

Let B(w,c) be described by the equation Rw = Mc and Bd
w ⊂ Bw. From now on we will make

the following asssumption.

Assumption 4.1. Bd
w is implementable from B(w,c) by interconnection through c.

Define now the behaviors Bc as the c-behavior associated with B(w,c), i.e. Bc = Πc(B(w,c)),

and Bd
c := {c|∃w : (w, c) ∈ B(w,c) ∧ w ∈ Bd

w}.
Theorem 4.2. With the previous notation and under Assumption 4.1, the following state-

ments are equivalent.

1. Bd
w is regularly implementable from B(w,c) by interconnection through c.

2. Bd
c is regularly implementable from Bc by full interconnection.

The proof of this result is based on the following lemma.

Lemma 4.1. Let R, M and K be nD polynomial matrices such that R and M have the

same number of rows and M and C have the same number of columns. Let further N be a

MLA of R. Then

rank

[
R −M

0 K

]
= rank [R −M ] + rank

[
NM

K

]
− rank NM. (4.8)

Proof

Let G =

[
G1

G2

]
be a square nonsingular nD polynomial matrix such that

G[R −M ] =

[
G1

G2

]
[R −M ] =

[
G1R −G1M

G2R −G2M

]

where G1R has full row rank and G2R = 0. Since G2 is a left annihilator of R, it can be

obtained from the MLA N as G2 = XN , for some suitable nD polynomial matrix X. Now,

rank

[
R −M

0 K

]
= rank




G 0

−N 0

0 I




[
R −M

0 K

]
= rank




G1R −G1M

0 XNM

0 NM

0 K


 ,
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and therefore, taking into account that G1R has full row rank, we conclude that

rank

[
R −M

0 K

]
= rank [G1R −G1M ] + rank




0 XNM

0 NM

0 K




= rank [G1R −G1M ] + rank

[
NM

K

]
. (4.9)

But, on the other hand

rank [R −M ] = rank

[
G

−N

]
[R −M ] = rank




G1R −G1M

0 XNM

0 NM




= rank [G1R −G1M ] + rank NM. (4.10)

Combining (4.9) and (4.10) yields (4.8) as desired.

Proof of Theorem 4.2

1 ⇒ 2: Assume that condition 1 is satisfied. This means that there exists a nD polynomial

matrix K such that Bd
w is the w-behavior described by

[
R −M

0 K

] [
w

c

]
=

[
0

0

]

and moreover

rank

[
R −M

0 K

]
= rank [R −M ] + rank K. (4.11)

Together with (4.8) in Lemma 4.1, (4.11) implies that given a MLA N of R

rank

[
NM

K

]
= rank NM + rank K.

In other words, B̄c := ker

[
NM

K

]
is regularly implementable from Bc = ker NM by full

interconnection (with Bc
c = ker K). Moreover, it is not difficult to check that B̄c ⊂ Bd

c(⊂ Bc).

By [3, Thm 4.2 and Thm 4.5] this implies that Bd
c is itself implementable from Bc by full

interconnection, proving that condition 2 holds true.

2 ⇒ 1: Assume now that condition 2 is verified. Let Bc
c = ker K be such that Bd

c is the

regular full interconnection of Bc
c = ker K and Bc. Let further N be a MLA of R. Then

Bc = ker NM and the regularity of the interconnection Bc ∩ Bc
c = Bd

c means that

rank

[
NM

K

]
= rank NM + rank K. (4.12)
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Together with (4.8) in Lemma 4.1, (4.12) implies that

rank

[
R −M

0 K

]
= rank [R −M ] + rank K,

meaning that the interconnection of Bw and Bc
c through c is regular. Finally, note that Bd

w

is exactly the behavior resulting from that interconnection, proving that condition 1 holds

true.

Example 4.2. Consider again the behaviors B(w,c) and Bd
w = {0} of Example 4.1. Then it

is clear that c a free variable in B(w,c), i.e. Bc = ker 0, and that Bd
c = ker

[
σ2 − 1

1− σ1

]
. Since

the (trivial) interconnection Bd
c = Bc ∩ Bd

c is regular, Bd
c is regularly implementable from

Bc by full interconnection. This implies that Bd
w is regularly implementable from B(w,c) by

interconnection through c (which was an already known fact from Example 4.1). Note that

in this case, apart from the regular controller Bc
c = ker 1 given in Example 4.1, we can also

take ker

[
σ2 − 1

1− σ1

]
as regular controller. This latter is the controller obtained by applying

the arguments in the proof of Theorem 4.2.

It turns out that condition 2 of Theorem 4.2 (regular implementability of Bd
c from Bc by full

interconnection) can be checked by means of algorithms based on the (kernel) representations

of the given behaviors (see, for instance, [3, Section 3.1]). Thus we will next investigate how

such representations can be determined.

Under Assumption 4.1 it follows from Theorem 3.1 that

Bh
w ⊂ Bd

w ⊂ Bw (4.13)

and, as mentioned in the proof of that theorem, there exists a nD polynomial matrix F such

that

Bd
w = ker FR. (4.14)

Analogously, the second inclusion in (4.13) implies that there exists a nD polynomial matrix

Γ such that

Bw = ker ΓFR. (4.15)

Lemma 4.2. With the previous notation and under Assumption 4.1:

1. Bc = ker ΓFM

2. Bd
c = ker FM .
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Proof

1: Note that {c ∈ Bc} ⇔ {∃ w : Rw = Mc} ⇔ {∃ w ∈ Bw : Rw = Mc} ⇔ {∃ w : ΓFR =

0 ∧Rw = Mc}. Thus, Bc is the c-behavior described by the equation

[
R

ΓFR

]
w =

[
M

0

]
c. (4.16)

Eliminating the variable w by premultiplying both sides of (4.16) by [ΓF − I] (which is a

MLA of

[
R

ΓFR

]
) we obtain that Bc = ker[ΓF − I]

[
M

0

]
= ker ΓFM .

2: This statement follows by the same arguments as in 1 from the fact that Bd
c is the

c-behavior described by the equations

[
R

FR

]
w =

[
M

0

]
c. (4.17)

Note that the kernel representations that are originally given for the behaviors Bd
w and Bw

may differ from (4.14) and (4.15). However, it is not difficult to obtain suitable matrices

F and Γ starting from any other representations Sd and S of Bd
w and Bw respectively.

This allows to construct the matrices FM and ΓFM , and then apply the aforementioned

algorithm in [3, Thm 4.2 and Thm 4.5] to test condition 2 of Theorem 4.2.

5 Conclusion

In this paper we have investigated the implementability and regular implementability of a

nD behavior Bd
w (corresponding to control objective) from a given behavior B(w,c) by means

of interconnection through the control variable c.

It turns out that implementability has a similar characterization as in the 1D case. However,

the situation is diferent for regular implementability. Indeed, whereas in the 1D case this is

equivalent to the regular implementability of Bd
w from Bw = Πw(B(w,c)) by full interconnec-

tion, the same does not happen in the nD case. Nevertheless, in that case it is still possible

to show that that property is equivalent to the regular implementability of Bd
c from Bc by

full interconnection.

In view of the obtained results, it would be interesting: (i) to know whether in the nD

case regular implementability by interconnection through a control variable is an intrinsic

property of the system variable behaviors Bd
w and Bw and (ii) to obtain the corresponding

characterization. These are questions under current investigation.
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