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Abstract

In this paper we introduce the concept of conical behaviour, a complete time invariant
cones of trajesctories. We focus our attention on the cones as subsets of autonomous
linear system. We give geometrical conditions that such cones admit a non negative
state realization. In addition we consider the closed sets of trajectories of a autore-
gressive scalar model on wich are imposed inequalities constraints. We provide some
criteria for a class of these cones to be represented by a non negative state realization.

1 Introduction

In most pratical application the designer has to face to physical and technological constraints

that lead to a set of inequality involving the variables of the model. Think of the next models

The set of non negative trajectories of an autoregressive model

w(t + n) = cn−1w(t + n− 1) + · · ·+ c0w(t), ci ∈ R w(t) ≥ 0 .

The set of non decreasing trajectories of an autoregressive model

w(t + n) = cn−1w(t + n− 1) + · · ·+ c0w(t), ci ∈ R w(t + 1) ≥ w(t) .

We can meet a more geberal model

Cw|[t,t+n] ≤ 0 C ∈ Rm×n

in economy, byology, and other scientific fields. We introduce the next definitions tu study

also such models.

2 Definitions and first properties

In this section we provide the definition of conical behaviour, some basic mathematical tools,

and the firs properties. Given a trajectory w ∈ (Rq)Z+ , we recall that σw

σw(t) = w(t + 1), t ∈ Z+
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Definition 2.1. C ∈ (Rq)Z+ is a time invariant conical behaviour if

1. ∀w1 and w2 ∈ C, w1 + w2 ∈ C

2. ∀w1 and α ∈ R+, αw ∈ C.

3. σw ∈ C ∀w ∈ C

1) and 2) say that C is a cone, and 3) say that C is time invariant.

C is complete if

w|I ∈ C|I ∀I ⊂ Z+ ⇒ w ∈ C .

It can be shown ( as in [W1] Prop. 4) that if C is colsed under the pointwiese convergence

topology, then it is complete. In this paper we only consider time invariant and closed

behaviour, henceforth, without confusion, we speak of conical behaviour meaning time in-

variant and closed behaviour. .

After J.C. Willems [W1] we give the next definition.

Definition 2.2. A conical behaviour C ∈ (Rq)Z+ is autonomous if there is a map f(·), and

an integer t′ ≥ 0 such that, given any trajectory w ∈ C

f : w|[0,t′] 7→ w[t′+1,+∞) .

In addition f(·) has the following properties.

1) f(w1|[0,t′] + w2|[0,t′]) = f(w1|[0,t′]) + f(w2|[0,t′]), where w1 and w2 ∈ C.
2) f(αw|[0,t′]) = αf(w|[0,t′]), for α ≥ 0 and w ∈ C.

Given a conical behaviour C, it can be enclosed in the smallest complete time invariant

linear behaviour which we denote span C.

The next propsition gives some characterizations of span C for a given autonomous conical

behaviour C.

Proposition 2.1. Suppose C ∈ (Rq)Z+ a conical behaviour, then C is autonomous if and

only if span C is an autonomous complete lienar behaviour

Proof Let C be autonomous, then a conical map f : R(t′+1)q → (Rq)Z+ exists, for a fixed

non–negative integer t′, such that

f(w|[0,t‘]) = w|[t‘+1,+∞) .

Given a w ∈ span C, then w = u‘− u“ for some suitable u‘ abd u“. We can define a linear

map fspan(·) as follows

fspan(w) = f(u′)− f(u′′) .
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fspan(·) is well–defined, in fact if u′ − u′′ = v′ − v′′ then, by the additivity of f(·), we have

that fspan(u
′−u′′) = fspan(v

′− v′′). span C|[t‘+1,+∞) is finite dimensional as well C, then C is

closed i.e. ([W1] Prop. 4) complete.

On the other hand if span C is autonomous, then there is a linear map g(· · · ) such that

g : w[0,t‘] 7→ w[t‘+1,+∞), w ∈ span C .

If we restrict the map to C[0,t′] we obtain the result. �

A cone C in a real vector space is pointed if it doesn’t contain a non trivial vector space.

It can be shown ([SW] (2.10.5)) that every cone C can be decomposed into the direct sum

of a vector space and a pointed cone.

Definition 2.3. The conical behaviour C is pointed if

w and −w ∈ C ⇒ w = 0 .

Being an autonomous conical behaviour a subset of a finite dimensional vector space, the

next proposition immediately follows.

Proposition 2.2. If C ∈ (Rq)Z+ is an autonomous conical behaviour then

C = Cp ⊕ Ba .

Cp is an autonomous pointed conical behaviour and Ba is an autonomous linear behaviour.

Henceforth our attention is devoted to the pointed conical behaviour. All the conical

behaviour we will consider are pointed

We remind that a cone C, as a subset of a real vector space U, is a polyhedral cone if it is

given by the intersection of a finite number of closed ( under a chosen topology ) half speces.

If U is finite dimensional, then ( under the usual topology), from the theorem of Minkowski

[SW](2.8.6), there are p1, . . . , pn+ ∈ U such that

v =

n+∑
i=1

αipi αi ∈ R+ ∀v ∈ C.

Given a pointed cone C, we can choose the previous n–upla (p1, . . . , pn+) such that pi are

non–negatively indipendent [BFH], we write indipendent+, i.e. there is not a non trivial n–

upla β1, . . . , βn of non negative scalar such that βkpk =
∑n+

i=1, i 6=k αipi, 0 ≤ k ≤ n+. We say

that (pi) is a non–negative basis, we write base+, for C. Every basis+ of a pointed polyhedral

cone C in a finite dimensional vector space has the same number of elements, see Theorem

(3.1)(4)[BFH].

It is note that every autonomous complete time invariant linear system (Rq, T,B) admits

such a minimal state rappresentation

(S) σs = F s

w = Hs
,
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s ∈ (Rn)Z+ is the state trajectory and B is the external behaviour of Bs = {w, s} ∈ (Rq×ns)Z+

where w, s satisfy (S). An aim of this paper is to provide a similar description of

Cs =
{

(w, s) ∈ Bs : w ∈ C
}

.

An autonomous conical behaviour C admits a non negative state realization, (S+), if C is the

external behaviour of Cs, the set of the pairs (w, s) satisfying

(S+) σx = As

w = Cs
,

where x ∈ Rn
+.

Now, in a geometrical view, we give the necessary and sufficient conditions that an au-

tonomous conical behaviour C admits a (S)+ realization.

Proposition 2.3. Let the autonomous conical behaviour C ∈ (Rq)Z+ be polyhedral and

pointed, then the next statement follow.

i) C admits such state rappresentation

σx = Ax

w = Cx
,

A ∈ Rn+×n+, and x ∈ (R+
n+)Z+.

ii) Given a minimal state realizaton for span C

σs = F s

z = Hs
,

F ∈ Rn×n. A and C can be chosen such that

C = HP and FP = PA ,

where the n+ columns of P provide a basis+ for the proper polyhedral cone

Cs =
{
s(0) : F s ∈ C

}
.

It is strightforward to show

P = P1[In|S] = [p1|P2] .

For A we give that factorization

n n+ − n[
A11 A12

A21 A22

]
n

n+ − n

.
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A matrix S exists such that

A12 = −SA22 + (A11 + SB21)S .

There is a non singular square matrix T such that

A = T−1

(
F 0

∗ ∗

)
T.

Moreover F = P1(A11 + SA21)P
−1
1 .

iv) The columns of the matrix 
C

CA
...

CAn−1


provide a basis+ for the polyhedral cone C|[0,n−1].

Proof For span C we have a minimal state raprresentation

σs = F s

z = Hs
,

where the pair (F, G) be observable, F ∈ Rn×n, and H ∈ Rq×ns .

Let the state cone

Cs =
{
s(0) : F s ∈ C

}
,

Cs is a full cone in Rns from the construction.

Being C a plyhedral pointed cone in span C, a finite dimensional real vector space, from

Minkowski theorem and previous proposition ( see also [SW]), it admits a base+ (p1, . . . ,pn+).

From the obsevability of the pair (F, H) we have that (p1|[0,n−1], . . . ,pn|[0,n−1]) is a base+ for

C|[0,n−1], that follows from the fact that w = 0 iff w|[0,n−1] = 0|[0,n−1]. Put

O =


H

HF
...

HF n−1


and pi|[0,ns−1] = Os(0)i, 1 ≤ i ≤ n+. Defining O a bijection between span C|[0,n−1] and the

state space, (s1(0), . . . , sn(0)) is a base+ for Cs. Let P = [s(0)1, . . . , s(0)n] ∈ Rns×n, following

the theorem 4.2 [BFH] the proof is completed. �
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Remark 2.1. It is clear that if C admits a (S+) rappresentation if polyhedral.

In a geometrical view n is the number of the edges of the state cone not only with respect

to a particular state ralization for span C, this follows from the equivalence of minimal state

realization for span C.

3 A model

In this section we restrict our attention to the conical behaviours that satisfies such a model

(P )

w(t + n) = cn−1w(t + n− 1) + · · ·+ c0w(t)

KTw|[0,n−1] ≤ 0
, c0 6= 0

namely an autoregressive model where the inequality constraints act on the trajectories only

in a finite time interval. Denoting with span+ K the cone generated by the columns of K,

we suppose span+ K a full and pointed ( polyhedral ) cone. It is clear that C, the set of

trajectories satisfying (P ) is a closed autonomous conical behaviour.

Let λi be the roots of minimal polynomial of a square matrix F with mi their multiplicity.

We say that F satisfies the Perron conditions if his spectrum has the next properties.

Perron condituions

• Let λ1 = ρ(F ), ρ(F ) = maxi |λi| is the spectral radius of F .

• If |λi| = ρ(F ) then mi ≤ m1

The spectrum of F satisfies the “Perron Schaefer Condition” if the next hold.

Perron–Schaefer condituions

• The spectrum of F satisfies the Perron conditions.

• Each eigenvalue λi such that |λi| = ρ(F ) and mi = m1 is equal to λ1 times a root of

unity.

Before poroceding we give the next proposition.

Proposition 3.1. Let C be the set of trajectories w that satsfies the (S) model

σs =F s

w =Hw
,
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F ∈ Rn×n, and such that KTw|[0,n−1] ≤ 0.

If O is the observability matrix, C is pointed, and admits a non–negative state realization

(S+)

x(t + 1) =Ax(t)

w(t) =Cx(t)
, x(t) ≥ 0 .

iff the cone ( cl is the closure )

C = cl lim
i→+∞

span+

[
OT K F T OT K · · · (F T )iOT K

]
is polyhedral and full.

span C = ker σn − cn−1σ
n−1 − · · · c0 iff C is pointed.

Proof By the duality of cones the state cone

Cs =
{
s(0) : KT OF is(0) ≤ 0

}
is a polyhedral pointed cone iff

C = cl span+ lim
i→+∞

span+

[
K OT K · · · (OT )iK

]
1

if full and polyhefral cone. Let the columns of P be a basis+ for Cs. We put C = HP and

A the non negative solution of the matrix equation

FP = PA .

In addition, if C is pointed, by the duality, Cs is full in the state space Rn, therefore

span C =
{
w : w(t + n) = cn−1w(n− 1) + · · · c0w(0)

}
. �

A lemma follows. �

Lemma 3.1. Let F ∈ Rn×n satisfy the Perron conditions, and let (F T , k1), k1 ∈ Rn, be a

reachable pair, then the cone

C = cl lim
i→+∞

span+

[
k1 F T k1 · · · (F T )ik1

]
is proper ( closed, full and pointed ).

Proof See [FB] lemma 2 after [OMK]. �

Here above we return to the foregoing (P ) model

(P )

w(t + n) = cn−1w(t + n− 1) + · · ·+ c0w(t)

KTw|[0,n−1] ≤ 0
.

1Cs = {s : vT s ≤ 0 ∀v ∈ C}.
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Proposition 3.2. Let the (P ) model

w(t + n) = cn−1w(t + n− 1) + · · ·+ c0w(t)

KTw|[0,n−1] ≤ 0, c0 6= 0

have the two properties.

i) Let λi be the roots of p(z) = zn − cn−1z
n−1 − · · · c0 with their multiplicity mi such that

|λi+1| ≤ |λi|, and let λ1 > 0. If |λi| = λ1 we also suppose mi ≤ m1.

ii) Let k1 the first column of K a non null vector such that

C = cl lim
i→+∞

span+

[
k1 F T k1 · · · (F T )ik1

]
= cl lim

i→+∞
span+

[
K F T K · · · (F T )iK

]
.

Then C is a pointed conical behaviour and span C = ker(σn − cn−1σ
n−1 − · · · − c0).

Proof We write the minimal state realization for ker(σn − cn−1σ
n−1 − · · · − c0)

σs = F s

w = hT s

where:

F =


0 1

. . .

1

c0 c1 · · · cn−1


hT = [1 0 · · · 0]

s(t) = (w(t), . . . ,w(t + ns))
T

.

Becouse of c0 6= 0, (F, k1) is reachable. From this fact, i) and the previous lemma we have

that the cone

C = cl lim
i→+∞

span+

[
k1 F T k1 · · · (F T )ik1

]
is proper. But the observability matrix O is equal to In, therefore, from ii),

C = cl lim
i→+∞

span+

[
OT K F T OT K · · · (F T )iOT K

]
.

By the duality of cones Cs = {s(0) : w = Hs ∈ C} is proper, and them, as in Prop. 3.1, we

prove that span C = ker(σn − cn−1σ
n−1 − · · · − c0). �.

The following proposition gives a sufficient condition that C corresponding to (P ) admits a

(S+) rappresentation.

Proposition 3.3. Let the (P ) model with i), ii) as in the previous proposition, and the next

property holds

iii) zn − cn−1 − · · · − c0 dovides the polynomial zn+ − αn+−1z
n+−1 − · · · − α0, αi ≥ 0.

Then span C = ker(σn − cn−1σ
n−1 − · · · − c0), and C admits a (S+) realization.
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Proof As in the previous prop we buid the mininimal state realization. C, as in Prop.

3.1, is equal to

span+

[
OT K F T OT K · · · (F T )n+−1OT K

]
,

then is polyhedral. From Prop. 3.1. and Prop. 3.2. we have completed the proof. �

It is note ( see [TS]) that a square matrix maps a cone into itsel iff satisfies the Perron

Schaefer conditions. Let C corresponding to the (P ) model have the properties i) and ii

of Prop. 3.2.. Given an observable pair (F, H) for a minimal state realization of span C,

C is polyhedral ( pointed ), i.e. admits a basis+, if Cs = {s(0) : Hs ∈ C} is a proper

polyhedral cone. Hence F have to satisfy the Perron Schaefer conditions. Then the roots λi

of zn − cn−1 − · · · − c0 are such that satisfy i) ( Prop 3.1. ) and the next property.

iv) If |λi| = λ1 and mi = m1 then λi is equal to λ1 times a root of unity..

It is note ( see also [MK] ASppendix I) that if iv) holds then, for a suitable positive integer

r, the below limits exist.

F (h) = lim
i→+∞

F h+ir

(h + ir)m1−1λh+ir
1

0 ≤ h < r .

By the convexity of

C = cl lim
i→+∞

span+

[
k1 F T k1 · · · (F T )ik1

]
,

v ∈ C iff

v =
∑

i

αi(F
T )ik1 +

r−1∑
j=0

βj(F
(j))T k1 αi ≥ 0 , βj ≥ 0 .

In particular C is polyhedral if exists a n∗ such that v ∈ C iff

v =
n∗−1∑
i=0

αiF
ik1 +

r−1∑
j=0

βjF
(j)k1 αi ≥ 0 , βj ≥ 0 .

Proposition 3.4. Let C be the conical behaviour corresponding to (P ). Let i), ii) and iv)

hold. Giving the observable pair (F, H) corresponding to a minimal state realization for

ker σn − cn−1σ
n−1 − · · · − c0 we also have that the next holds.

v) There is a positive integer n∗ such that

F n∗
=

n∗−1∑
i=0

αiF
i +

r−1∑
j=0

βjF
(j) αi ≥ 0 , βj ≥ 0 ,

where r and F (j) are as above.

Then C admits a (S+) realization, and span C = ker(σn − cn−1σ
n−1 − · · · − c0).

Proof The proof of the proposition following directly from Prop.3.1. and the previous

considerations. �
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Remark 3.1. Left–multiply vi) by F r we have ( see also [MK] Appendix I ) F r+n∗
=

F r(· · · )+λr
1

(∑r−1
j=0 βjF

(j)
)
, therefore (F r−λr

1)(F
n∗−

∑n∗−1
i=0 αiF

i, i.e zn−cn−1z
n−1−· · ·−c0

divides

(zr − λr
1)

(
zn∗ −

n∗−1∑
i=0

αiz
i
)

, αi ≥ 0 ,

for some suitable αi. We refer to [FB] and similar papers ( see the bibliography ).

4 Concluding remark

In this paper we have intended to provided the fisrt tools for a coherent and appealing

framework to approch to a large class of mathematical models and studing them. The

geometrical and algebraic way are nested each other in a unic strategy of investigation.

In this framework the non negative systems can be involved and other linear system with

inequality constraints.
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