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Abstract

Given two analytic nonlinear input-output systems represented as Fliess operators, four

system interconnections are considered in a unified setting: the parallel connection, product

connection, cascade connection and feedback connection. In each case, the corresponding gen-

erating series is produced, when one exists, and conditions for convergence of the corresponding

Fliess operator are given. In the process, an existing notion of a composition product for formal

power series is generalized to the multivariable setting, and its set of known properties is ex-

panded. In addition, the notion of a feedback product for formal power series is introduced and

characterized.

1 Introduction

Let I = {0, 1, . . . ,m} denote an alphabet and I∗ the set of all words over I. A formal power series

in I is any mapping of the form I∗ 7→ R
`, and the set of all such mappings will be denoted by

R
`�I�. For each c ∈ R

`�I�, one can formally associate a corresponding m-input, `-output

operator Fc in the following manner. Let p ≥ 1 and a < b be given. For a measurable function

u : [a, b] → R
m, define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the usual Lp-norm for a

measurable real-valued function, ui, defined on [a, b]. Let Lm
p [a, b] denote the set of all measurable

functions defined on [a, b] having a finite ‖ · ‖p norm. With t0, T ∈ R fixed and T > 0, define

inductively for each η ∈ I∗ the mapping Eη : Lm
1 [t0, t0 + T ] → C[t0, t0 + T ] by Eφ = 1, and

Eikik−1···i1 [u](t, t0) =

∫ t

t0

uik(τ)Eik−1···i1 [u](τ, t0) dτ,

where u0(t) ≡ 1. The input-output operator corresponding to c is then

Fc[u](t) =
∑

η∈I∗

(c, η)Eη [u](t, t0),

which is referred to as a Fliess operator. In the classical literature where these operators first

appeared [4, 5, 6, 8, 9, 10], it is normally assumed that there exists real numbers K > 0 and M ≥ 1

such that

|(c, η)| ≤ KM |η||η|!, ∀ η ∈ I∗, (1.1)

where |z| = max{|z1| , |z2| , . . . , |z`|} when z ∈ R
`, and |η| denotes the number of symbols in η.

These growth conditions on the coefficients of c insure that there exist positive real numbers R

and T0 such that for all piecewise continuous u with ‖u‖∞ ≤ R and T ≤ T0, the series defining Fc

converges uniformly and absolutely on [t0, t0 + T ]. Under such conditions the power series c is said

to be locally convergent. More recently, it was shown in [7] that the growth condition (1.1) also

1



u

Fd

Fc

y+

(a) Parallel connection.

u

Fd

Fc

yX

(b) Product connection.

Fc yu Fd

(c) Cascade connection.

yu

Fd

Fc+

(d) Feedback connection.

Figure 1: Elementary system interconnections.

implies that Fc constitutes a well defined operator from Bm
p (R)[t0, t0 + T ] into B`

q(S)[t0, t0 + T ]

for sufficiently small R,S, T > 0, where the numbers p, q ∈ [1,∞] are conjugate exponents, i.e.,

1/p + 1/q = 1 with (1,∞) being a conjugate pair by convention.

In many applications input-output systems are interconnected in a variety of ways. Given two

Fliess operators Fc and Fd, where c, d ∈ R
`�I� are locally convergent, Figure 1 shows four

elementary interconnections. In the case of the cascade and feedback connections it is assumed

that ` = m. The general goal of this paper is to describe in a unified manner the generating series

for each of the four interconnections shown in Figure 1 and conditions under which it is locally

convergent. The parallel connection is the trivial case, and the product connection was analyzed

in [11]. They are included for completeness and some of the analysis is applicable to the other two

interconnections. It was shown in [3] for the SISO case (i.e., ` = m = 1) that there always exists a

series c◦d such that y = Fc[Fd[u]] = Fc◦d[u], but a multivariable analysis of this composition product

is apparently not available in the literature, nor are any results about local convergence. So in

Section 2 the composition product is first investigated independent of the interconnection problem.

It is defined in the multivariable setting and various fundamental properties are presented. Then a

condition is introduced under which the composition product preserves both rationality and local

convergence. Finally, in preparation for the feedback analysis, it is next shown that the composition

product produces a contractive mapping on the set of all formal power series using the familiar

ultrametric. In Section 3, the three nonrecursive connections: the parallel, product and cascade

connections are analyzed primarily by applying the results of Section 2. In Section 4 the feedback
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connection is considered. Such a system is said to be well-posed if the support of c and d each

contain at least one word having a nonzero symbol. Otherwise, there is no real recursive structure,

and a degenerate case results. If, for example, Fc is a linear operator then formally the solution to

the feedback equation

y = Fc[u + Fd[y]] (1.2)

is

y = Fc[u] + Fc ◦ Fd ◦ Fc[u] + · · · (1.3)

It is not immediately clear that this series converges in any manner, and in particular, converges

to another Fliess operator, say Fc@d for some c@d ∈ R
m�I�. When Fc is nonlinear, the problem

is further complicated by the fact that a simple series representation (1.3) is not possible. Thus,

for the case where the system inputs are being generated by an exosystem which is itself a Fliess

operator, a sufficient condition is given under which a unique solution to the feedback equation

exists. Then the closed-loop system is characterized in terms of a new Fliess operator when a

certain series factorization property is available. This leads to an implicit characterization of the

feedback product, c@d, for formal power series.

2 The Composition Product

The composition product of two series over an alphabet X = {x0, x1} is defined recursively in terms

of the shuffle product [2, 3]. For any η ∈ X∗ and d ∈ R�X�, let

η ◦ d :=

{
η : |η|x1 = 0

xk+1
0 [d tt (η′ ◦ d)] : η = xk

0x1η
′, k ≥ 0,

(2.4)

where |η|x1 denotes the number of symbols in η equivalent to x1. For c, d ∈ R�X� the definition

is extended to

c ◦ d =
∑

η∈X∗

(c, η) η ◦ d. (2.5)

For SISO systems it is easily verified that Fc ◦Fd = Fc◦d. For the multivariable case it is necessary

to consider power series of the form d : X∗ 7→ R
m, where X = {x0, x1, . . . , xm} is an arbitrary

alphabet with m + 1 letters. In which case, the defining equation (2.4) becomes

η ◦ d =

{
η : |η|xi

= 0, ∀i 6= 0

xk+1
0 [di tt (η′ ◦ d)] : η = xk

0xiη
′, k ≥ 0, i 6= 0,

where di : ξ 7→ ((d, ξ))i, the i-th component of (d, ξ). Observe that in general for

η = xnk

0 xikx
nk−1

0 xik−1
· · · xn1

0 xi1x
n0
0 , (2.6)

where ij 6= 0 for j = 1, . . . , k, it follows that

η ◦ d = xnk+1
0 [dik tt x

nk−1+1
0 [dik−1

tt · · · xn1+1
0 [di1 tt xn0

0 ] · · ·]].

The following theorem guarantees that the composition product is well defined by insuring that

the series (2.5) is summable.
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Theorem 2.1 Given a fixed d ∈ R
m�X�, the family of series {η ◦ d : η ∈ X∗} is locally finite,

and therefore summable.

Proof: Given an arbitrary η ∈ X∗ expressed in the form (2.6), it follows directly that

ord(η ◦ d) = n0 + k +

k∑

j=1

nj + ord(dij )

= |η|+

|η|−|η|x0∑

j=1

ord(dij ), (2.7)

where the order of c is defined as

ord(c) =

{
inf{|η| : η ∈ supp(c)} : c 6= 0

∞ : c = 0,

and supp(c) := {η ∈ X∗ : (c, η) 6= 0} denotes the support of c. Hence, for any ξ ∈ X ∗

Id(ξ) := {η ∈ X∗ : (η ◦ d, ξ) 6= 0}

⊂ {η ∈ X∗ : ord(η ◦ d) ≤ |ξ|}

= {η ∈ X∗ : |η|+

|η|−|η|x0∑

j=1

ord(dij ) ≤ |ξ|}.

Clearly this latter set is finite, and thus Id(ξ) is finite for all ξ ∈ X∗. This fact implies summability

[1].

From the definition, it is easily verified that for any series c, d, e ∈ R
m�X�,

(c + d) ◦ e = c ◦ e + d ◦ e,

but in general c◦ (d+ e) 6= c◦d+ c◦ e. A special exception are linear series. A series c ∈ R
`�X�

is called linear if

supp(c) ⊆ {η ∈ X∗ : η = xn1
0 xix

n0
0 , i ∈ {1, 2, . . . ,m}, n1, n0 ≥ 0}.

Since the shuffle product distributes over addition, given any η = xn1
0 xix

n0
0 :

η ◦ (d + e) = xn1+1
0 [(d + e)i tt xn0

0 ]

= xn1+1
0 (di tt xn0

0 ) + xn1+1
0 (ei tt xn0

0 )

= η ◦ d + η ◦ e.

Therefore,

c ◦ (d + e) =
∑

η∈I∗

(c, η) η ◦ (d + e)

=
∑

η∈I∗

(c, η) η ◦ d + (c, η) η ◦ e

= c ◦ d + c ◦ e.
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A linear series should not be confused with a rational series. The series

c =

∞∑

k=0

k! xk
0x1

is linear but not rational, while the bilinear series

c =

∞∑

k=0

∞∑

i1,...,ik=0

(CNik · · ·Ni1z0) xik · · · xi1

with Ni ∈ R
n×n and CT , z0 ∈ R

n×1 is rational but not linear.

The set R�X� forms a metric space under the ultrametric

dist : R�X�× R�X� 7→ R
+ ∪ {0}

: (c, d) 7→ σord(c−d),

where σ ∈ (0, 1) is arbitrary. The following theorem states that the composition product on

R�X�× R�X� is at least continuous in its first argument. The result extends naturally to

vector-valued series in a componentwise fashion.

Theorem 2.2 Let {ci}i≥1 be a sequence in R�X� with limi→∞ ci = c. Then limi→∞(ci ◦ d) =

c ◦ d.

Proof: Define the sequence ni = ord(ci − c) for i ≥ 1. Since c is the limit of the sequence {ci}i≥1,

{ni}i≥1 must have a monotone increasing subsequence {nij}. Now observe that

dist(ci ◦ d, c ◦ d) = σord((ci−c) ◦d)

and

ord((cij − c) ◦ d) = ord






∑

η∈supp(cij
−c)

(cij − c, η) η ◦ d






≥ inf
η∈supp(cij

−c)
ord(η ◦ d)

= inf
η∈supp(cij

−c)
|η|+ (|η| − |η|x0) ord(d)

≥ nij .

Thus, dist(cij ◦ d, c ◦ d) ≤ σnij for all j ≥ 1, and the theorem is proven.

It is shown in [3] by counter example that the composition product is not a rational operation.

That is, the composition of two rational series does not in general produce a rational series. But in

[2], it is shown in the SISO case that special classes of rational series produce rational series when

the composition product is applied. The following definition is the multivariable extention of this

essential property, and the corresponding rationality proof is not significantly different.

Definition 2.1 A series c ∈ R�X� is limited relative to xi if there exists an integer Ni ≥ 0

such that

sup
η∈supp(c)

|η|xi
≤ Ni.
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If c is limited relative to xi for every i = 1, 2, . . . ,m then c is input-limited. In such cases, let

Nc :=
∑

i Ni. A series c ∈ R
`�X� is input-limited if each component series, cj, is input-limited

for j = 1, 2, . . . , `. In this case, Nc := maxj Ncj
.

It is shown next that the composition product will preserve local convergence if its first argument

is input-limited.

Theorem 2.3 Suppose c, d ∈ R
m�X� are locally convergent series with growth constants Kc,Mc

and Kd,Md, respectively. If c is input-limited then c ◦ d is locally convergent with

|(c ◦ d, ν)| < KcK
Nc

d (Nc + 1) (M(Nc + 1))|ν||ν|!, ∀ν ∈ X∗, (2.8)

where M = max(Mc,Md) and Nc ≥ 1.

The proof of this result requires the following lemma.

Lemma 2.1 [11] Suppose c, d ∈ R�X� are locally convergent series with growth constants

Kc,Mc and Kd,Md, respectively. Then c tt d is locally convergent with

|(c tt d, ν)| ≤ KcKdM
|ν|(|ν|+ 1)!, ∀ν ∈ X∗, (2.9)

where M = max(Mc,Md).

Proof of Theorem 2.3: The proof has two main parts. Only the SISO case is considered here for

brevity. First it is shown that for any η ∈ X∗ in the form of equation (2.6) (which is no restriction):

|(η ◦ d, ν)| ≤

(

Kk
d

M
−|η|
d

n0!(n1 + 1)! · · · (nk + 1)!

)

M
|ν|
d |ν|!, ∀ν ∈ X∗. (2.10)

For any set of integers nj ≥ 0, j ≥ 0, define the set of words

ηj+1 = x
nj+1

0 x1ηj , η0 = xn0
0 . (2.11)

The upperbound (2.10) is proven for any given η by verifying inductively that it holds for every

word ηj , j ≥ 0. Observe that for j = 0:

|(η0 ◦ d, ν)| = |(η0, ν)| =

{
1 : ν = η0

0 : ν 6= η0

and

M
−|η0|
d

n0!
M

|ν|
d |ν|! =

{
1 : ν = η0

M
|ν|−|η0|
d

n0!
|ν|! : ν 6= η0.

Hence, the inequality is satisfied in the trivial case. Now suppose the result is true up to some

given integer j − 1 ≥ 0. From the definition of the composition product

|(ηj ◦ d, ν)| =
∣
∣
∣(x

nj+1
0 [d tt (ηj−1 ◦ d)], ν)

∣
∣
∣ .
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Applying Lemma 2.1 gives

|(d tt (ηj−1 ◦ d), ν)| ≤ Kd

(

Kj−1
d

M
−|ηj−1|
d

n0!(n1 + 1)! · · · (nj−1 + 1)!

)

M
|ν|
d (|ν|+ 1)!.

Therefore,

|(ηj ◦ d, ν)| =







∣
∣
∣
∣
(d tt (ηj−1 ◦ d),

(

x
nj+1
0

)−1
(ν))

∣
∣
∣
∣

: ν = x
nj+1
0 ν ′

0 : otherwise

≤

(

Kj
d

M
−|ηj−1|
d

n0!(n1 + 1)! · · · (nj−1 + 1)!

)

M
|ν|−(nj+1)
d (|ν| − nj)!.

Now using the fact that for any integer n ≥ 1,
(
n
k

)
≥ k + 1 when k = 0, 1, . . . , n− 1, it follows that

(|ν| − nj)! ≤
|ν|!

(nj + 1)!
, 0 ≤ nj ≤ |ν| − 1.

Thus,

|(ηj ◦ d, ν)| ≤

(

Kj
d

M
−|ηj |
d

n0!(n1 + 1)! · · · (nj + 1)!

)

M
|ν|
d |ν|!

since nj < |ν| is necessary for (ηj ◦d, v) to be nonzero. Therefore, the inequality holds for all j ≥ 0,

or equivalently, for any η ∈ X∗

Now if c is input-limited the theorem is proven in the second main step as follows:

|(c ◦ d, ν)| =

∣
∣
∣
∣
∣
∣

∑

η∈supp(c)∩Id(ν)

(c, η)(η ◦ d, ν)

∣
∣
∣
∣
∣
∣

≤

|ν|
∑

i=0

min(i,Nc)∑

k=0

∑

η∈supp(c)
n0+n1+...+nk+k=i

[

KcM
|η|
c |η|!

]

·

[(

Kk
d

M
−|η|
d

n0!(n1 + 1)! · · · (nk + 1)!

)

M
|ν|
d |ν|!

]

≤ KcK
Nc

d M |ν||ν|!

|ν|
∑

i=0

Nc∑

k=0

∑

η∈supp(c)
n0+n1+...+nk+k=i

(
|η|!

n0!(n1 + 1)! · · · (nk + 1)!

)

≤ KcK
Nc

d M |ν||ν|!

|ν|
∑

i=0

Nc∑

k=0

(k + 1)i

≤ KcK
Nc

d

Nc + 2

2
M |ν||ν|!

|ν|
∑

i=0

(Nc + 1)i

≤ KcK
Nc

d

Nc + 2

2Nc
M |ν||ν|! (Nc + 1)|ν|+1

≤ KcK
Nc

d (Nc + 1)M |ν|(Nc + 1)|ν||ν|!,
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assuming in this last step that Nc > 1. The inequality for the power sum S i(n) :=
∑n

k=1 ki ≤

ni[n+1
2 ], n, i > 0 has also been used in the development. To produce the result when Nc = 1,

simply note that

|ν|
∑

i=0

1∑

k=0

∑

η∈supp(c)
n0+n1+...+nk+k=i

(n0, n1 + 1, . . . , nk + 1)! =

|ν|
∑

i=0

1 + (2i − 1) ≤ 2|ν|+1.

When c and d are both linear series, the growth condition (2.8) is known to be conservative.

Representing the composition product as a convolution sum and using the fact that
∑n

k=0

(
n
k

)−1
< 3

for any n ≥ 0, it can be shown that a tighter bound is

|(c ◦ d, ν)| < KcKdM
|ν||ν|!, ∀ν ∈ X∗. (2.12)

It is conjectured that in the general case perhaps the tighter bound

|(c ◦ d, ν)| < KcK
Nc

d M |ν||ν|!, ∀ν ∈ X∗ (2.13)

applies.

The metric space (R�X�,dist) is known to be complete [1]. Given a fixed c ∈ R�X�,

consider the mapping R�X� 7→ R�X� : d 7→ c ◦ d. The section is concluded by showing that

this mapping is always a contraction on R�X�, i.e.,

dist(c ◦ d, c ◦ e) < dist(d, e), ∀d, e ∈ R�X�.

The focus is on the SISO case where any c ∈ R�X� can be written unambiguously in the form

c = c0 + c1 + · · · ,

where ck ∈ R�X� has the property that η ∈ supp(ck) only if |η|x1 = k. Some of the series ck

may be the zero series. When c0 = 0, c is referred to as being homogeneous. When ck = 0 for

k = 0, 1, . . . , l − 1 and cl 6= 0 then c is called homogeneous of order l. In this setting consider the

following theorem.

Theorem 2.4 For any ck ∈ R�X� with X = {x0, x1}

dist(ck ◦ d, ck ◦ e) ≤ σk · dist(d, e), ∀d, e ∈ R�X�.

Proof: The proof is by induction for the nontrivial case where ck 6= 0. First suppose k = 0. From

the definition of the composition product it follows directly that η ◦ d = η for all η ∈ supp(c0).

Therefore,

c0 ◦ d =
∑

η∈supp(c0)

(c0, η) η ◦ d =
∑

η∈supp(c0)

(c0, η) η = c0,

and

dist(c0 ◦ d, c0 ◦ e) = dist(c0, c0) = 0

≤ σ0 · dist(d, e).
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Now fix any k ≥ 0 and assume the claim is true for all c0, c1, . . . , ck. In particular, this implies that

ord(ck ◦ d− ck ◦ e) ≥ k + ord(d− e). (2.14)

For any j ≥ 0, words in supp(cj) have the form ηj as defined in equation (2.11). Observe then that

ck+1 ◦ d− ck+1 ◦ e =
∑

ηk+1∈X∗

(ck+1, ηk+1) ηk+1 ◦ d− (ck+1, ηk+1) ηk+1 ◦ e

=
∑

ηk,ηk+1∈X∗

(ck+1, ηk+1)
[
x0

nk+1+1[d tt [ηk ◦ d]]−

x0
nk+1+1[e tt [ηk ◦ e]]

]

=
∑

ηk,ηk+1∈X∗

(ck+1, ηk+1)
[
x0

nk+1+1[d tt [ηk ◦ d]]−

x0
nk+1+1[d tt [ηk ◦ e]]

]
+
[
x0

nk+1+1[d tt [ηk ◦ e]]−

x0
nk+1+1[e tt [ηk ◦ e]]

]

=
∑

ηk,ηk+1∈X∗

(ck+1, ηk+1)
[
x0

nk+1+1[d tt [ηk ◦ d− ηk ◦ e]]+

x0
nk+1+1[(d− e) tt [ηk ◦ e]]

]

using the fact that the shuffle product distributes over addition. Next, applying the identity (2.7)

and the inequality (2.14) with ck = ηk, it follows that

ord(ck+1 ◦ d− ck+1 ◦ e) ≥ min

{

inf
ηk+1∈supp(ck+1)

nk+1 + 1 + ord(d) + k + ord(d− e),

inf
ηk+1∈supp(ck+1)

nk+1 + 1 + ord(d− e) + |ηk|+ k · ord(e)

}

≥ k + 1 + ord(d− e),

and thus,

dist(ck+1 ◦ d, ck+1 ◦ e) ≤ σk+1 · dist(d, e).

Hence, dist(ck ◦ d, ck ◦ e) ≤ σk · dist(d, e) holds for any k ≥ 0.

Applying the above theorem leads to following result.

Theorem 2.5 If c ∈ R�X� with X = {x0, x1} then for any series c′0

dist((c′0 + c) ◦ d, (c′0 + c) ◦ e) = dist(c ◦ d, c ◦ e), ∀d, e ∈ R�X�. (2.15)

If c is homogeneous of order l ≥ 1 then

dist(c ◦ d, c ◦ e) ≤ σl · dist(d, e), ∀d, e ∈ R�X�. (2.16)

Proof: The equality is proven first. Since the metric dist is shift-invariant:

dist((c′0 + c) ◦ d, (c′0 + c) ◦ e) = dist
(
c′0 ◦ d + c ◦ d, c′0 ◦ e + c ◦ e

)

= dist
(
c′0 + c ◦ d, c′0 + c ◦ e

)

= dist (c ◦ d, c ◦ e) .
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The inequality is proven next by first selecting any fixed l ≥ 1 and showing inductively that it

holds for any partial sum
∑l+k

i=l ci where k ≥ 0. When k = 0 Theorem 2.4 implies that

dist(cl ◦ d, cl ◦ e) ≤ σl · dist(d, e).

If the result is true for partial sums up to any fixed k then using the ultrametric property

dist(d, e) ≤ max{dist(d, f),dist(f, e)}, ∀d, e, f ∈ R�X�,

it follows that

dist

((
l+k+1∑

i=l

ci

)

◦ d,

(
l+k+1∑

i=l

ci

)

◦ e

)

= dist

((
l+k∑

i=l

ci

)

◦ d + cl+k+1 ◦ d,

(
l+k∑

i=l

ci

)

◦ e + cl+k+1 ◦ e

)

≤ max

{

dist

((
l+k∑

i=l

ci

)

◦ d + cl+k+1 ◦ d,

(
l+k∑

i=l

ci

)

◦ d + cl+k+1 ◦ e

)

,

dist

((
l+k∑

i=l

ci

)

◦ d + cl+k+1 ◦ e,

(
l+k∑

i=l

ci

)

◦ e + cl+k+1 ◦ e

)}

= max

{

dist(cl+k+1 ◦ d, cl+k+1 ◦ e),dist

((
l+k∑

i=l

ci

)

◦ d,

(
l+k∑

i=l

ci

)

◦ e

)}

≤ max
{

σl+k+1 · dist(d, e), σl · dist(d, e)
}

≤ σl · dist(d, e).

Hence, the result holds for all k ≥ 0. Finally the theorem is proven by noting that c = limk→∞
∑l+k

i=l ci

and using the continuity of the composition product proven in Theorem 2.2 and the metric dist.

The final result of this section is given below.

Theorem 2.6 For any c ∈ R�X� with X = {x0, x1}, the mapping d 7→ c ◦ d is a contraction

on R�X�.

Proof: Choose any series d, e ∈ R�X�. If c is homogeneous of order l ≥ 1 then the result follows

directly from equation (2.16). Otherwise, observe that via equation (2.15):

dist(c ◦ d, c ◦ e) = dist

((
∞∑

l=1

ci

)

◦ d,

(
∞∑

l=1

ci

)

◦ e

)

≤ σ · dist(d, e)

< dist(d, e).
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3 The Nonrecursive Connections

In this section the generating series are produced for the three nonrecursive interconnections and

their local convergence is characterized.

Theorem 3.1 Suppose c, d ∈ R
`�I� are locally convergent power series. Then each nonrecursive

interconnected input-output system shown in Figure 1 (a)-(c) has a Fliess operator representation

generated by a locally convergent series as indicated:

1. Fc + Fd = Fc+d

2. Fc · Fd = Fc tt d

3. Fc ◦ Fd = Fc◦d, where ` = m, and c is input-limited.

Proof:

1. Observe that

Fc[u](t) + Fd[u](t) =
∑

η∈I∗

[(c, η) + (d, η)] Eη[u](t, t0)

= Fc+d[u](t).

Since c and d are locally convergent, define M = max{Mc,Md}. Then for any η ∈ I∗ it follows

that

|(c + d, η)| = |(c, η) + (d, η)|

≤ (Kc + Kd)M
|η||η|!

or c + d is locally convergent.

2. In light of the componentwise definition of the shuffle product, it can be assumed here without

loss of generality that ` = 1. Thus,

Fc[u](t)Fd[u](t) =
∑

η∈I∗

(c, η)Eη [u](t, t0)
∑

ξ∈I∗

(c, ξ)Eξ [u](t, t0)

=
∑

η,ξ∈I∗

(c, η)(d, ξ) Eη[u](t, t0)Eξ[u](t, t0)

=
∑

η,ξ∈I∗

(c, η)(d, ξ) Eη tt ξ[u](t, t0)

= Fc tt d[u](t).

Applying Lemma 2.1 and the fact that 2n ≤ n + 1, n ≥ 0 gives

|(c tt d, η)| ≤ KcKd(2M)|η||η|!.

Thus, c tt d is locally convergent.

3. For any monomial η ∈ I∗ and d ∈ R
m�I� the corresponding Fliess operators are

Fη[u](t) = Eη[u](t, t0)

Fd[u](t) =
∑

ξ∈I∗

(d, ξ)Eξ [u](t, t0).

11



Therefore,

(Fη ◦ Fd[u])(t) = Eη [Fd[u]] (t, t0).

If |η| = |η|x0 then

(Fη ◦ Fd[u])(t) = Eη[u](t, t0) = Fη[u](t)

= Fη◦d[u](t).

If, on the other hand, η = 0 · · · 0
︸ ︷︷ ︸

k times

iη′ with i 6= 0 then

(Fη ◦ Fd[u])(t) = E 0···0
︸︷︷︸
k times

iη′ [Fd[u]](t, t0)

=

∫ t

t0

· · ·

∫ τ2

t0
︸ ︷︷ ︸

k+1 times

Fdi
[u](τ)Eη′ [Fd[u]](τ, t0) dτ1 . . . dτk+1

=

∫ t

t0

· · ·

∫ τ2

t0
︸ ︷︷ ︸

k+1 times

Fdi tt (η′◦d)[u](τ, t0) dτ1 . . . dτk+1

= F 0···0
︸︷︷︸

k+1 times

[di tt (η′◦d)][u](t)

= Fη◦d[u](t).

Thus,

(Fc ◦ Fd[u])(t) =
∑

η∈I∗

(c, η)Eη [Fd[u]](t, t0)

=
∑

η∈I∗

(c, η)Fη◦d [u](t)

=
∑

η∈I∗

(c, η)

[
∑

ν∈I∗

(η ◦ d, ν)Eν [u](t, t0)

]

=
∑

ν∈I∗




∑

η∈I∗

(c, η)(η ◦ d, ν)



Eν [u](t, t0)

=
∑

ν∈I∗

(c ◦ d, ν)Eν(t, t0)

= Fc◦d[u](t).

Local convergence of c ◦ d under the stated conditions was proven in Theorem 2.3.

It should be noted that c being input-limited is only a sufficient condition for the composition

product to produce a locally convergent series. If in Theorem 2.3 it is instead assumed that both

c and d have finite Lie rank, then the mappings Fc and Fd each have a finite dimensional analytic

state space realization, and therefore so does the mapping Fc ◦ Fd. The classical literature then

provides that the generating series c◦d must be locally convergent [10]. An example of this situation

is given below. This suggests the possibility that just as the composition of two analytic functions
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is again analytic, the composition of two Fliess operators may always produce another well-defined

Fliess operator. But showing directly that c ◦ d is always locally convergent is presently an open

problem.

Example 3.1 Consider the state space system

ż = z2u, z(0) = 1

y = z.

It is easily verified that y = Fc[u] where the only nonzero coefficients are (c, 1 · · · 1
︸ ︷︷ ︸

k

) = k!, k ≥ 0. So

c is not input-limited. But the mapping Fc◦c clearly has the analytic state space realization,

ż1 = z2
1u, z1(0) = 1

ż2 = z2
2z1, z2(0) = 1

y = z2,

and therefore the generating series c ◦ c must be locally convergent.

4 The Feedback Connection

The general goal of this section is to determine when there exists a y which satisfies the feedback

equation (1.2), and in particular, when does there exist a generating series e so that y = Fe[u] over

some appropriate input set. In the latter case, the feedback equation becomes equivalent to

Fe[u] = Fc[u + Fd◦e[u]],

and the feedback product is defined by c@d = e. To make the analysis simpler, it is assumed through

out that the inputs u are supplied by an exosystem which is itself a Fliess operator as shown in

Figure 2. That is, u = Fb(v) for some locally convergent series b. In this setting, a sufficient

y

Fd

Fc+v Fb
u

Figure 2: A feedback configuration with a Fliess operator exosystem providing the inputs.

condition is given under which a unique solution y of the feedback equation (1.2) is known to exist,

and y is characterized as the output of a new Fliess operator when a certain series factorization

property is available. This leads to an implicit characterization of the feedback product c@d.

Theorem 4.1 Let b, c, d ∈ R�I� with I = {0, 1}. Then:

13



1. The mapping

S : R�I� 7→ R�I�

: ẽi 7→ ẽi+1 = c ◦ (b + d ◦ ẽi)

has a unique fixed point ẽ.

2. If b, c, d and ẽ are locally convergent then the feedback equation (1.2) has the unique solution

y = Fẽ[v] for any admissible v.

3. If ẽ = e ◦ b for some locally convergent series e then c@d = e.

Proof:

1. The mapping S is a contraction since via Theorem 2.6:

dist(S(ẽi), S(ẽj)) < dist(b + d ◦ ẽi, b + d ◦ ẽj)

= dist(d ◦ ẽi, d ◦ ẽj)

< dist(ẽi, ẽj).

Therefore, the mapping S has a unique fixed point ẽ, that is,

ẽ = c ◦ (b + d ◦ ẽ).

2. From the stated assumptions concerning b, c, d and ẽ it follows that

Fẽ[v] = Fc◦(b+d◦ẽ)[v]

= Fc[Fb[v] + Fd[Fẽ[v]]]

for any admissible v. Therefore equation (1.2) has the unique solution y = F ẽ[v].

3. Since e is locally convergent

y = Fẽ[v] = Fe[Fb[v]] = Fe[u],

thus c@d = e.

This result suggests several open problems. Are there conditions on b, c, and d alone which

will insure that ẽ above is locally convergent ? When does there exist a factorization of the form

ẽ = e ◦ b, where e is locally convergent ? Can the theorem be generalized to the case where the

inputs are simply from an Lp space and not filtered through a Fliess operator a priori ? Some

insight into these questions is provide by the following examples.

Example 4.1 Suppose c, d ∈ R�I� are locally convergent. If c is also a linear series, one can

formally write using equation (1.3)

c@d = c +

∞∑

k=1

(c ◦ d)◦k ◦ c, (4.17)

where c◦k denotes k copies of c composed k− 1 times. In light of Theorem 2.2, c@d is well defined

as long as the family of series {(c ◦ d)◦k : k ≥ 1} is summable, and it is easily verified that

((c ◦ d)◦k, ν) = 0, ∀k > |ν|.
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So for this special case an application of Theorem 4.1 can be avoided for concluding that c@d is well

defined. Now from Theorem 2.3, c ◦ d is locally convergent. If the (conjectured) growth condition

(2.13) holds then it follows immediately that

|((c ◦ d)◦k, ν)| ≤ Kk
c◦dM

|ν||ν|!, ∀ν ∈ I∗,

and thus,

|(c@d, ν)| ≤ KcM
|ν|
c |ν|! +

|ν|
∑

k=1

KcK
k
c◦dM

|ν||ν|!

≤ Kc





|ν|
∑

k=0

Kk
c◦d



M |ν||ν|!, ∀ν ∈ I∗.

If, for example, Kc◦d > 1 then

|(c@d, ν)| ≤ Kc
Kc◦d

Kc◦d − 1
(Kc◦dM)|ν||ν|!, ∀ν ∈ I∗.

Thus, for a linear series c, the closed-loop system can be described by the Fliess operator Fc@d with

c@d given by (4.17), if c ◦ d satisfies the growth condition (2.13). If, in addition, d is linear then

c ◦ d always satisfies the bound (2.13) (c.f. (2.12)) and in fact Kc◦d = KcKd.

Example 4.2 Consider a generalized series δ with the defining property that δ is the identity

element for the composition product, i.e., c◦δ = δ ◦c = c for any c ∈ R�X�. Then (mapping the

symbols xi 7→ i) Fδ [u] = u for any u, and a unity feedback system has the generating series c@δ.

Setting b = 0 in Figure 2 (or effectively setting u ≡ 0), a self-excited feedback loop is described by

Fẽ[v], where ẽ = c◦ẽ and ẽ = e◦0. In this case ẽ = limk→∞ c◦k and e = c@d = ẽ. From Theorem 4.1,

c@δ is well defined in general. Analogous to the situation with the composition product, if c has

finite Lie rank then c@δ will always be locally convergent. For example, when c = 1 + x1 it is easy

verified that c@δ =
∑

k≥0 xk
0 so that Fc@δ[0](t) = et for t ≥ 0. When c = 1 + 2x1 + 2x2

1 it follows

that c@δ =
∑

k≥0(k + 1)! xk
0 and Fc@δ[0](t) = 1/(1 − t)2 for 0 ≤ t < 1.
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génératrices non commutatives, Invent. Math. 71 (1983) 521–537.

[6] M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue, An algebraic approach to nonlinear

functional expansions, IEEE Trans. Circuits Syst. 30 (1983) 554–570.

[7] W. S. Gray and Y. Wang, Fliess operators on Lp spaces: convergence and continuity, Systems

& Control Letters 46 (2002) 67-74.

[8] B. Jakubczyk, Existence and uniqueness of realizations of nonlinear systems, SIAM J. Contr.

Optimiz. 18 (1980) 445-471.

[9] , Local realization of nonlinear causal operators, SIAM J. Contr. Optimiz. 24 (1986) 230-

242.

[10] H. Sussmann, Existence and uniqueness of minimal realizations of nonlinear systems, Math.

System Theory 12 (1977) 263-284.

[11] Y. Wang, Algebraic Differential Equations and Nonlinear Control Systems, Doctoral Disserta-

tion, Rutgers University (1990).

16


