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Abstract

In this paper an observability analysis is performed for an axial dispersion tubular
bioreactor that involves one nonlinear growth reaction. The process is described by
a semilinear parabolic Partial Differential Equation (PDE). More precisely, the anal-
ysis is performed on a tangent linearized model, that is described by a linear PDE
with a spatial-dependent coefficient. It is reported that the associated linear infinite-
dimensional operator is a Riesz-spectral operator and generates a C0-semigroup. Then
it is shown that a finite number of dominant modes of the system are observable when
the substrate concentration is measured at the reactor output by an appropriate sensor.
This result is confirmed by a numerical simulation.

1 Introduction

State observation is certainly a fundamental problem in bioprocess monitoring and control,

even more in distributed parameter bioreactors. Beside the question of designing efficient

state estimators, the information contents of on-line measurements is crucial.

Observability studies may be carried out through finite-dimensional models by the use

of dicretization methods (Galerkin, orthogonal collocation...). However infinite dimensional

system theory allows one to take explicitely into account the distributed nature of tubular

reactor models. Linear C0-semigroup theory is a particularly powerful tool for the study of

distributed parameter systems, e.g. linear tubular reactor models [1].

In this paper an observability analysis is performed for a tubular bioreactor model that

involves one growth reaction. The dynamics of the process are described by a nonlinear

Partial Differential Equation (PDE). More precisely, the observability analysis is performed

on a linearized tangent model of the process obtained via linearization around a steady state

profile of the process. A crucial difficulty in the analysis derives from the explicit dependence

of a parameter of the linearized model with respect to the spatial variable.
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2 Basic dynamical model

Let us consider an anaerobic digestion process (used for wastewater treatment) operated in

a fixed bed reactor (described in [2]). We consider that methanisation is the limiting step.

Then the process kinetics can be characterized by the following reaction scheme :

S −→ X + gas (1)

where S and X represent the substrate (organic matter to be degraded) and the biomass,

respectively. In a first approximation and in line with the physical evidence, we consider that

the biomass varies very slowly in comparison to S, and remains almost constant. Furthermore

we assume that the kinetics follow the Monod law (see e.g. [3]). Therefore we can write

the process dynamics in dimensionless form by the following parabolic equation (diffusion-

convection-reaction model) [4] :

∂s̃

∂τ
=

1

Pe

∂2s̃

∂ζ2
− ∂s̃

∂ζ
− k0

s̃

s̃ + 1
(2)

with the Danckwerts’ boundary conditions :

1

Pe

∂s̃

∂ζ
(0, τ)− s̃(0, τ) = −s̃in(τ) (3)

1

Pe

∂s̃

∂ζ
(1, τ) = 0 (4)

where Pe is the (dimensionless) Peclet number (Pe = vL/Da), and s̃, s̃in, τ and ζ are

dimensionless variables defined as follows :

s̃ =
S

KS

, s̃in =
Sin

KS

, τ =
tv

L
, ζ =

z

L
(5)

with v, L, Da, S, KS, Sin, t and z, the fluid superficial velocity, the reactor length, the axial

diffusion coefficient, the substrate concentration, the saturation constant, the inlet substrate

concentration, the time and the spatial variable, respectively. The parameter k0 is given by :

k0 =
µmaxLX

KSvY
(6)

where X, µmax and Y are the assumed constant biomass, the maximum specific growth rate

and the yield coefficient, respectively.

In order to use linear C0-semigroup theory for the observability analysis, a linearized system

description is considered. It is derived by considering the linearized tangent model around

a steady-state profile of the substrate concentration, i.e. s̄(ζ).

s̄(ζ) is typically determined as a steady-state of the system (2-4) for a time-constant value

of the input s̃in(τ). The existence of this equilibrium profile s̄(ζ) was proved in [5] by

considering upper and lower solutions theory. (See [6] for a survey on this approach.)

2



Then we obtain the following linearized model :

ṡ(τ) = As(τ) (7)

where s ∈ L2(0, 1) is defined by ∀τ, s(τ) = s̃(τ) − s̄, and A is a linear operator on L2(0, 1)

defined as follows :

(Af)(ζ) =
1

Pe

d2f

dζ2
− df

dζ
− k0

1

(1 + s̄(ζ))2
f (8)

on its domain D(A) given by :

D(A) = {s ∈ L2(0, 1) | s,
ds

dζ
∈ L2(0, 1) are absolutely continuous,

ds2

dζ2
∈ L2(0, 1),

1

Pe

ds

dζ
(0)− s(0) = 0,

ds

dζ
(1) = 0} (9)

Note that the above linearized tangent model explicitly depends on the spatial variable ζ,

and that the inlet substrate concentration is neglected for the observability analysis.

3 Observability Analysis

First let us define a measurement vector y(τ) by :

y(τ) = Cs(ζ, τ),

where C : L2(0, 1) → Rm is a bounded linear operator in this framework.

In the following analysis, we consider the approximate observability defined in [7, def.

4.1.17].

Our analysis consists of using C0-semigroup theory in the Hilbert space L2(0, 1) endowed

with the usual inner product < ·, · >2, in particular the observability properties of Riesz-

spectral operators. (See e.g. [7, section 2.3].)

The following theoretical results are reported :

Lemma 1 Let A be the linear operator on L2(0, 1) defined by :

∀f ∈ D(A), (Af)(ζ) =
1

Pe

d2 f

dζ2
− d f

dζ
− k(ζ) f, (10)

where k(ζ) is a continuous real function, and the domain D(A) of A is given by (9).

Then

1. A is a Riesz-spectral operator.

2. A is the infinitesimal generator of a C0-semigroup of bounded linear operators.
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Note that this previous results holds for any continuous real function k(ζ), and, in partic-

ular, for the linear operator A defined by (8).

Theorem 1 Let us consider a system (C,A), where A is the linear operator defined by (10)

on its domain D(A) given by (9), let (φn)n≥1 be its Riesz basis of eigenvectors. Moreover let

us define the measurement y(τ) by :

y(τ) = Cs(ζ, τ),

where C : L2(0, 1) → Rm is a bounded linear operator in this framework..

Then the system (C,A) is (approximately) observable if and only if, for all n ≥ 1

rank(Cφn) = 1 (11)

The proof of Theorem 1 is based on Lemma 1 and on [7, Theorem 4.2.3].

Note that Theorem 1 is a powerful tool for the observability analysis of any axial-dispersion

reactor defined by a continuous coefficient k(z) and Danckwerts’ boundary conditions.

Theorem 1 justifies the concept of modal observability for Riesz spectral operators :

Definition 1 (see [1, definition 5.1]. ) Let A be a Riesz spectral operator. The nth mode

of A is (λn, φn), where λn is the nth eigenvalue of A, and φn its corresponding eigenvector.

Moreover, let C : L2(0, 1) → Rm be a bounded linear observation operator. Then the nth

mode of A is said to be (C−)observable whenever the condition 11 holds.

Now let us locate the measurement y(τ) at the bioreactor output. This point measurement

is defined by the following bounded operator :

y(τ) = (Cεs)(τ) =
1

ε

∫ 1

1−ε
s(ζ, τ)dζ, (12)

where ε > 0 is very small.

Then according to Definition 1, the nth mode (λn, φn) of the linearized system (Cε, A) is

observable if and only if the following condition holds :

1

ε

∫ 1

1−ε
φn(ζ)dζ 6= 0.

Since every φn is continuous, the following proposition holds.

Proposition 1 Let us consider the system (Cε, A) where A is defined by (8),(9) and Cε is

given by (12). Then its nth mode (λn, φn) is Cε-observable if the following condition holds :

∀ζ ∈ [1− ε, 1], φn(ζ) 6= 0. (13)
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Let us study the zeros of the functions (φn(ζ))n≥1. Since the eigenequation

Aφ = λφ, φ ∈ D(A) (14)

cannot be solved analytically in general, the following theoretical results are then required.

Lemma 2 Let (φn)n≥1 be the Riesz basis of eigenvectors of A, which is given by (8) and

defined on D(A) (9). Then

1. ∀n ≥ 1, φn has a finite number of zeros in [0, 1].

2. Moreover,

∀n ≥ 1, φn(1) 6= 0. (15)

Hence

∀N ≥ 1, ∃δ > 0, ∀ζ ∈ [1− δ, 1], φN(ζ) 6= 0. (16)

Proof. 1. This result holds in any Sturm-Liouville problem (see e.g. [8, Theorem V.4]).

2. Let n be any positive integer. According to Sagan, each zero of φn is simple ([8, Theorem

V.1]). Moreover φ′n(1) = 0 – since φn ∈ D(A) – then φn(1) 6= 0. As φn is continuous, (16)

follows.

Theorem 2 For any positive integer N, there exists ε > 0 (in Equation (12)) such that the

modes (λn, φn) of A are Cε-observable for any n ≤ N .

Proof. This theorem follows from Lemma 2.

Remarks.

1. We cannot conclude that any mode above N is unobservable, even if it admits some

zeros in [1− ε, 1].

2. It is worth reminding that in a parabolic PDE, the lower modes are dominant.

4 Numerical Results.

The numerical analysis is performed with numerical values given by [2].

Eigenequation (14) is solvable neither analytically – since it has no analytical solution, –

nor numerically – since λ and φ are both unknown. Therefore A is approximated by the

operator Ã defined as follows :

∀f ∈ D(Ã), (Ãf)(ζ) =
1

Pe

∂2f

∂ζ2
− ∂f

∂ζ
− (a + b1e

cζ − b2e
2cζ)f (17)
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Figure 1: Approximation of k0(ζ) by a double exponential function

where a, b1, b2, c are real constants, and D(Ã) = D(A) is the domain of Ã. We use this

approximation since equation Ãφ = λφ is solvable and since both ζ-dependent coefficients

(a + b1e
cζ − b2e

2cζ) and k0
1

(1+s̄(ζ))2
have a similar form on [0, 1] (Cf. Fig. 1). Note that the

theoretical results of the previous section hold for Ã as well as for A.

Solving the differential equation Ãφ = λφ where φ ∈ D(A) (e.g. by considering Murphy’s

approach [9]) leads to :

1. a resolvent equation involving λ. Although the set of solutions (λn)n≥1 cannot be

analytically expressed, the λn can be computed one by one numerically using a zero

finding software.

2. φ is expressed as a linear combination of Whittaker functions (see [10, chap. 13] for

definitions) depending on λ and of course ζ. Then, for all n ≥ 1, φn(ζ) is numerically

deduced from the value of λn.

The modes (λn, φn) are computed for n = 1, 2, ..., 10. It is then observed on Fig. 2 that

each φn(ζ) confirms the theoretical results, in particular Lemma 2 : for each n, there exists

δ > 0 such than φn(ζ) 6= 0 for all ζ ∈ [1 − δ, 1]. Moreover δ decreases as n gets larger, i.e.

the largest zero of φn(ζ) is closer to 1 as n gets larger.

Hence Theorem 2 is confirmed in this example.
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Figure 2: Location of the zeros of the eigenfunctions φn(ζ)

Remarks.

1. It may be observed than φn(ζ) has one more zero than φn−1(ζ). This confirms the

theoretical result of [8, theorem V.8].

2. We notice that the more n increases (i.e. the larger −λn gets), the more φn looks like

a sum of two complex exponentials. This confirms the intuitive idea that the eigenfunctions

φn(ζ) satisfying equation Ãφ = λφ tend to the solutions of

1

Pe

d2φ

dζ2
− dφ

dζ
− λφ = 0 (18)

when λ become much larger than (a + b1e
cζ − b2e2cζ).

5 Conclusions and perspectives

In this paper we have discussed the observability of a nonlinear tubular reactor. As it is a

distributed parameter system (modelled by a PDE), the analysis is based on C0-semigroup

theory. First the linearized model operator A is reported to be a Riesz-spectral operator, and

the infinitesimal generator of a linear C0-semigroup. Then it is shown that a finite number of

dominant modes of the process is observable when the substrate concentration is measured

at the reactor output by an appropriate sensor. Finally these results are confirmed by a

numerical simulation.

It shall be noted that these results are consistent with the study [1] of a bioreactor involving

linear reaction kinetics. However, both studies are based on a “yes-or-no” observability
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criterion. In finite dimensional approximation analyzes, some numerical functions “measure”

the system observability (see e.g. [11]), so that the process is shown to be more or less

observable. Therefore it could be interesting to use such observability measure for infinite-

dimensional system. A further work could also study a more complete bioreactor involving

several biochemical reactions, or on a more complex one. As first step we could consider

the reaction S −→ X + P , now described by two PDEs. Another perspective for this

study is a comparison with the results of a finite-dimensional approach (Galerkin, finite-

difference, orthogonal collocation ...). Finally a further study could consider the actual

nonlinear system, without preliminary linearization.

Aknowledgment

This paper presents research results of the Belgian Programme on Interuniversity Poles of

Attraction, initiated by the Belgian State, Prime Minister’s Office for Science, Technology

and Culture. The scientific responsibility rests with its authors.

References

[1] J. Winkin, D. Dochain and Ph. Ligarius, “Dynamical analysis of distributed parameter

tubular reactors,” Automatica, 36:349–361, 2000.

[2] O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Gerovesi and J-P. Steyer, “Dynamical

model development and parameter identification for an anaerobic wastewater treatment

process,” Biotech. and Bioeng., 75(4):424–438, nov 2001.

[3] G. Bastin and D. Dochain, On-line Estimation and Adaptive Control of Bioreactors,

Elsevier, Amsterdam, 1990.

[4] D. Dochain, Contribution to the analysis and control of distributed parameter sys-

tems with application to (bio)chemical processes and robotics, Thèse d’agrégation de
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