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Abstract

We consider the construction of adaptive controllers for minimum phase linear
systems which achieve non-zero robustness margins in the sense of the (linear) L2[0,∞)
gap metric. The gap perturbations may be more constrained for larger disturbances
and for larger parametric uncertainty. Working within the framework of the nonlinear
gap metric [3], universal adaptive controllers are first given achieving this goal for first
order plants, and the results are then generalised to relative degree one, minimum
phase plants.

1 Introduction

The study of the robustness of adaptive controllers has a long and perhaps infamous history.

In the early eighties it was observed that the adaptive designs of the time had limited

robustness properties. Closed loops could become unstable even in the presence of small

disturbances and innocuous looking classes of unmodelled dynamics. Specifically Rohrs [5]

showed that many of the existing designs became unstable even when applied to a first

order plant with a pair of unmodelled conjugate poles far out in the left hand plane. These

observations gave a great impetus in the 1980s-90s to the study of robust adaptive control

[4].

There have also been recent developments in nonlinear control theory which can be utilized

to address robust adaptive control problems. In particular, the gap metric (first introduced

into control theory by Zames and El-Sakkary [6], [1]) has been generalised to a nonlinear

setting in the key fundamental paper [3]. This paper therefore provides a new framework

in which to address the problem of robust adaptive control. A great advantage of the

robustness framework of [3] is that the existence of (nonlinear) non-zero robustness margins

can be reduced to proving the existence of a certain closed loop gain function, and further,

that the natural uncertainty descriptions are those commonly considered in robust control

theory.

In [3] two standard parametric adaptive controllers are considered, and both are shown to

have zero-robustness margins in the sense of the margins defined in that paper. Supporting

numerical evidence and series expansions of the closed loop solutions suggested that these

designs indeed have no robustness to simple but arbitrarily small gap perturbations.
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The fundamental question we address is whether it is possible to construct adaptive con-

trollers with non-zero robustness margins. By answering this question in the affirmative, we

develop a class of robust adaptive controllers which are robust to both perturbations of the

plant in the gap metric and to bounded L2 disturbances. We show (perhaps contrary to

expectation), that it is possible to construct a universal adaptive controller for a first order

plant (which can be arbitrarily unstable), whilst maintaining robustness in a gap metric

sense. The gap perturbations may be more constrained for larger disturbances and for larger

parametric uncertainty. A similar result is obtained for minimum phase plants of relative de-

gree one. Interestingly, the controllers obtained are essentially standard parametric adaptive

controllers, but with a change in a growth rate in the adaptive law.

The results reported in this paper therefore construct adaptive controllers with non-zero

gap robustness margins. Since the gap metric induces the graph topology which is the

fundamental description in which to investigate robustness of closed loops, the results in this

paper represent the start of a seemingly natural approach to robust adaptive control.

2 Background

Throughout this paper follow the notation of [3], hence the material in this section is strongly

based on Section II of that paper. We consider causal plants P : U → Ye and causal con-

trollers C : Y → U , where U , Y , Ye are the signal spaces L2(R+, R), L2(R+, R) and L2,e(R+, R)

respectively. Our central concern is with the system of equations:

y1 = Pu1

u2 = Cy2

y0 = y1 + y2

u0 = u1 + u2, (2.1)

which corresponds to the classical feedback configuration of a plant and controller.

Such a feedback configuration is denoted by [P, C], and is said to be well posed if the

relation

HP,C : W →W ×W :

(
u0

y0

)
7→
((

u1

y1

)
,

(
u2

y2

))
(2.2)

is a well defined, injective and causal operator.

A general causal operator between normed spaces F : X1 → X2, is said to be stable if it

has a finite induced norm, ie.

‖F‖ = sup
‖x‖6=0

‖Fx‖
‖x‖

< ∞. (2.3)

For nonlinear operators, this notion of stability can be excessively restrictive, so we relax

the notion to the existence of as gain function. In this context, the operator F : X1 → X2 is
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said to be gain-function (gf)-stable if there exists a nonlinear gain function

γ : [0,∞) → [0,∞), : γ(r) = sup
‖x‖≤r

‖Fx‖.1 (2.4)

A closed loop [P, C] is said to be stable (resp. gf. stable) if HP,C is stable (resp. gf. stable).

Corresponding to the plant operator P is a subset of W , called the graph of the plant GP ,

which is defined as follows:

GP =

{(
u

Pu

)
: u ∈ U , Pu ∈ Y

}
⊂ W . (2.5)

Note that in general GP 6= W . Similarly the graph of the controller operator C is defined as:

GC =

{(
Cy

y

)
: Cy ∈ U , y ∈ Y

}
⊂ W , (2.6)

and in general GC 6= W .

A summation operator is defined on the cartesian product of the graphs M = GP , N = GC

as:

ΣM,N : M×N →W : (m,n) 7→ m + n (2.7)

where note that if [P, C] is well posed then ΣM,N is invertible and Σ−1
M,N = HP,C . Finally

we define two nonlinear parallel projection operators:

ΠM//N : W →W :

(
u0

y0

)
7→
(

u1

y1

)
ΠN//M : W →W :

(
u0

y0

)
7→
(

u2

y2

)
A useful property of these parallel projections is that stability (resp. gf. stability) of one

parallel projection implies stability (resp. gf. stability) of the other.

The (nonlinear) gap metric is defined w.r.t. a normed vector space F as follows:

~δF(P, P1) =

{
infΦ∈O ‖(Φ− I)|GP

‖F if O 6= ∅.
∞ if O = ∅.

δF(P, P1) = max{~δF(P, P1), ~δF(P1, P )}. (2.8)

where

O = {Φ: M→M1 : Φ is causal, bijective and Φ(0) = 0} (2.9)

and M = GP , M1 = GP1 .

1In [3], the gain function is defined by γ(r) = sup‖x‖≤r, τ>0 ‖TτFx‖, where Tτ denotes the truncation
operator Tτf(t) = f(t) for t ∈ [0, τ ] and 0 otherwise. However, it can be shown that the two definitions
coincide if F is causal.
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For the case of finite dimensional, strictly proper linear time invariant systems the standard

gap metric is defined by

~δ0(P, P1) = sup
0 6=m1∈M1

inf
0 6=m∈M

‖m1 −m‖2

‖m‖2

δ0(P, P1) = max{~δ0(P, P1), ~δ0(P1, P )}. (2.10)

The nonlinear gap provides a generalisation of the linear gap in the sense that if δ0(P, P1) < 1,

then

δ0(P, P1) = δL2[0,∞)(P, P1). (2.11)

As our main interest in this paper is with L2 = L2[0,∞) results, we define δ(P, P1) :=

δL2[0,∞)(P, P1).

3 The First Order L2 result

We first develop the result for the case of a first order linear system perturbed by L2 distur-

bances. The main result is as follows:

Theorem 3.1. Let U = Y = L2, and let P ∗(θ, y0
1) : U → Ye be defined:

P ∗(θ, y0
1)(u1) : ẏ1 = θy1 + u1, y1(0) = y0

1 ∈ R, θ ∈ R. (3.12)

Then there exists a controller C∗ : Y → U and a continuous function µ : R3 → (0,∞) such

that if P ∗
1 : U → Ye satisfies the following inequality:

δ(P ∗(θ, y0
1), P

∗
1 ) ≤ µ(‖(u0, y0)

T‖L2 , |θ|, |y0
1|), (3.13)

then HP ∗
1 ,C∗(u0, y0) is bounded in L2.

Furthermore the controller C∗ is explicitly constructed as follows:

C∗(y2) : u2 = −θ̂y2 − y2

θ̂(t) = ‖
√

αy2‖
1
2

L2[0,t] =

(∫ t

0

αy2
2 dt

) 1
4

. (3.14)

Note that the above adaptive law (equation 3.14) is similar to the standard parametric

adaptive law:
˙̂
θ = αy2

2, θ̂(0) = 0 (3.15)

which can be equivalently written as:

θ̂(t) = ‖
√

αy2‖2
L2[0,t] =

∫ t

0

αy2
2 dt. (3.16)
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It is also worthwhile to observe that the adaptive law 3.14 can be written in the equivalent

differential form:
˙̂
θ = α

1

4θ̂3
y2

2, θ̂(0) = 0 (3.17)

where the singularity at θ̂ = 0 (eg. when t = 0) is non-essential.

The claim of Theorem 3.1 can be written in a more classical way, for we can say that for

any ‖(u0, y0)‖ ≤ d, there exists a non-zero robust stability margin bP ∗(θ,y0
1),C∗ :

0 < bP ∗(θ,y0
1),C∗ = inf

0≤d′≤d
µ(d′, |θ|, |y0

1|), (3.18)

in particular if θ and y0
1 are only known to within some bounds |θ| ≤ Θ, |y0

1| ≤ γ, we can

guarantee:

0 < bP ∗(θ,y0
1),C∗ = inf

0≤d′≤d
inf
|t|≤Θ

inf
|y|≤γ

µ(d′, t, y). (3.19)

4 Properties of the Adaptive Controller

4.1 Well posedness

Let U = Y = L2, and consider the controller C∗ defined by:

C∗(y2) : u2 = −θ̂y2 − y2

˙̂
θ = α

1

4(θ̂)3
y2

2, θ̂(0) = 0 (4.20)

Proposition 4.1. The feedback interconnection [P ∗(θ, y0
1), C

∗] is well posed.

Proof. We only demonstrate that u0, y0 ∈ L2 implies u1, y1 ∈ L2, since the formal check of

existence and uniqueness of solutions is routine, and the corresponding properties for u2, y2

follow from the parallel projection properties. So, let 0 ≤ t∗ ≤ ∞ be defined:

t∗ = inf{t ≥ 0 : θ̂(t) = θ}. (4.21)

if the infimum exists, and t∗ = ∞ otherwise. Then:

‖y1‖L2[0,t∗] ≤ ‖y2‖L2[0,t∗] + ‖y0‖L2[0,t∗] ≤
1√
α

θ̂(t∗)2 + ‖y0‖L2[0,t∗]

=
1√
α

θ2 + ‖y0‖L2[0,t∗] ≤
1√
α

θ2 + ‖y0‖L2[0,∞). (4.22)

Now we bound y1(t
∗). Define V : R → R+ by:

V (y1) =
1

2
y2

1. (4.23)
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Now,

V̇ = y1ẏ1

= y1(θy1 + u1)

= y1(θy1 + u0 − u2)

= y1(θy1 + u0 + θ̂y2 + y2)

= y1(θy1 + u0 + θ̂(y0 − y1) + y0 − y1)

= (θ − θ̂ − 1)y2
1 + u0y1 + y0y1 + θ̂y0y1 (4.24)

and applying Young’s inequality (ab− 1
4
b2 ≤ a2) twice we obtain:

V̇ ≤ −1

2
y2

1 + (1 + θ̂)2y2
0 + u2

0 + (θ − θ̂)y2
1

≤ −1

2
y2

1 + 3(1 + θ̂2)y2
0 + u2

0 + (|θ|+ |θ̂|)y2
1 (4.25)

Observing that θ̂ is non-negative and increasing, then by integrating, we obtain:

V (y1(t
∗))− V (y1(0)) =

∫ t∗

0

V̇ dt

≤ −1

2
‖y1‖2

L2[0,t∗] + 3(1 + θ̂2(t∗))‖y0‖2
L2[0,t∗]

+‖u0‖2
L2[0,t∗] + (|θ|+ |θ̂(t∗)|)‖y1‖2

L2[0,t∗]

≤ −1

2
‖y1‖2

L2[0,t∗] + 3(1 + θ2)‖y0‖2
L2[0,t∗] + ‖u0‖2

L2[0,t∗] + 2|θ|‖y1‖2
L2[0,t∗],

(4.26)

which implies:

y2
1(t

∗) ≤ 2V (0)− 1

2
‖y1‖2

L2[0,t∗] + 6(1 + |θ|2)‖y0‖2
L2[0,t∗] + 2‖u0‖2

L2[0,t∗] + 4|θ|‖y1‖2
L2[0,t∗],

≤ (y0
1)

2 + 6(1 + |θ|2)‖y0‖2
L2[0,t∗] + 2‖u0‖2

L2[0,t∗] + 4|θ|( 1√
α

θ2 + ‖y0‖L2[0,t∗])
2

≤ (y0
1)

2 + 6(1 + |θ|2)‖y0‖2
L2[0,∞) + 2‖u0‖2

L2[0,∞) + 4|θ|( 1√
α

θ2 + ‖y0‖L2[0,∞))
2.(4.27)

We now consider the L2 estimates on [t∗,∞). Since θ̂ is increasing it follows that θ − θ̂ ≤ 0

for t ≥ t∗, hence we can establish an inequality of the form:

V̇ ≤ −y2
1 + u0y1 + y0y1 + θ̂y0y1

≤ −1

2
y2

1 + 3((1 + θ̂2))y2
0 + u2

0. (4.28)

Integrating on [t∗, t), we obtain:

V (y1(t))−V (y1(t
∗)) =

∫ t

t∗
V̇ dt ≤ −1

2
‖y1‖2

L2[t∗,t) +3(1+ θ̂2(t))‖y0‖2
L2[t∗,t) +‖u0‖2

L2[t∗,t) (4.29)
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which implies that ∀t ≥ t∗,

‖y1‖2
L2[t∗,t) ≤ y2

1(t
∗) + 6(1 + θ̂2(t))‖y0‖2

L2[t∗,t) + 2‖u0‖2
L2[t∗,t), (4.30)

Now let us estimate θ̂ ∀t ≥ t∗. From the definition of the adaptive law 3.14, we have:

θ̂4(t∗) =

∫ t∗

0

αy2
2 dt, θ̂4(t) =

∫ t

0

αy2
2 dt (4.31)

so,

θ̂4(t)− θ̂4(t∗) = θ̂4(t)− θ4 = α‖y2‖2
L2[t∗,t)

≤ α(‖y1‖L2[t∗,t) + ‖y0‖L2[t∗,t))
2

≤ 3α(‖y1‖2
L2[t∗,t) + ‖y0‖2

L2[t∗,t)), (4.32)

and in particular by the inequality (1 + a)
1
2 ≤ 1 + a

2
we obtain:

θ̂2(t) ≤
(
θ4 + 3α(‖y1‖2

L2[t∗,t) + ‖y0‖2
L2[t∗,t))

) 1
2
,

≤
√

3α‖y1‖L2[t∗,t)

(
1 +

θ4 + 3α‖y0‖2
L2[t∗,t)

6α‖y1‖2
L2[t∗,t)

)
. (4.33)

Substituting inequality 4.33 into inequality 4.30,

‖y1‖2
L2[t∗,t) ≤ y2

1(t
∗) + 6

(
1 +

√
3α‖y1‖L2[t∗,t)

(
1 +

θ4 + 3α‖y0‖2
L2[t∗,t)

6α‖y1‖2
L2[t∗,t)

))
‖y0‖2

L2[t∗,t)

+2‖u0‖2
L2[t∗,t), (4.34)

Rearranging and letting t →∞:

‖y1‖3
L2[t∗,∞) ≤ (6

√
3α‖y0‖L2[t∗,∞))‖y1‖2

L2[t∗,∞)

+
(
y2

1(t
∗) + 6‖y0‖2

L2[t∗,∞) + 2‖u0‖2
L2[t∗,∞)

)
‖y1‖L2[t∗,∞)

+

√
3

α

(
θ4 + 3α‖y0‖2

L2[t∗,∞)

)
‖y0‖2

L2[0,t∗)

≤ (6
√

3α‖y0‖L2[0,∞))‖y1‖2
L2[t∗,∞)

+
(
y2

1(t
∗) + 6‖y0‖2

L2[0,∞) + 2‖u0‖2
L2[0,∞)

)
‖y1‖L2[t∗,∞)

+

√
3

α

(
θ4 + 3α‖y0‖2

L2[0,∞)

)
‖y0‖2

L2[0,∞) (4.35)

Since the r.h.s of inequality 4.35 is quadratic in ‖y1‖L2[t∗,∞) with positive coefficients, it

follows that ‖y1‖L2[t∗,∞) is bounded as a function of |y1(t
∗)|, |θ|, ‖y0‖L2[0,∞), ‖u0‖L2[0,∞).

Furthermore, the cubic inequality 4.35 can be solved explicitly to give this bound (see later).
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Since we have bounded ‖y1‖L2[0,t∗) in terms of |θ|, ‖y0‖L2[0,∞), and |y1(t
∗)| in terms of |y0

1|,
|θ|, ‖y0‖L2[0,∞), ‖u0‖L2[0,∞) it follows that we have bounded ‖y1‖L2[0,∞) in terms of:

|y0
1|, |θ|, ‖y0‖L2[0,∞), ‖u0‖L2[0,∞), (4.36)

as required. A similar bound for ‖u1‖L2[0,∞) can now also be found, since:

‖u1‖L2[0,∞) = ‖u0 − u2‖L2[0,∞)

≤ ‖u0‖L2[0,∞) + ‖ − θ̂(y0 − y1)− (y0 − y1)‖L2[0,∞)

≤ ‖u0‖L2[0,∞) + ‖θ̂‖L∞[0,∞)(‖y0‖L2[0,∞) + ‖y1‖L2[0,∞)) + ‖y0‖L2[0,∞) + ‖y1‖L2[0,∞)

≤ ‖u0‖L2[0,∞) + α
1
4 (‖y0‖L2[0,∞) + ‖y1‖L2[0,∞))

3
2 + ‖y0‖L2[0,∞) + ‖y1‖L2[0,∞).(4.37)

Hence it follows that ‖u1‖L2[0,∞) is bounded as a function of

|y0
1|, |θ|, ‖y0‖L2[0,∞), ‖u0‖L2[0,∞). (4.38)

This completes the proof.

4.2 Incorporation of initial conditions and other parameterisa-

tions

The first observation is that for θ > 0, HP ∗(θ,0),C∗ is not stable in the sense of equation 2.3,

simply because

(u0, y0) ≈ 0 6 ⇒ HP ∗(θ,0),C∗(u0, y0) 6≈ 0. (4.39)

This is a generic problem for closed loops with non-zero responses to zero disturbances or

non-continuous behaviour at this point. This arises in a variety of situations; some examples

are:

• Adaptive controllers when applied to unstable plants.

• Memoryless feedback designs such as example 5 in [3], when applied to systems with

non-zero initial conditions.

Secondly, since the controller C∗ is itself highly nonlinear, it seems unlikely that an analysis

based on linear gains will be applicable. Hence we take our notion of stability to be that

of the existence of a (nonlinear) gain function. Finally note that the adaptive problem

concerns the analysis of a controller on a parameterised set of nominal plants (ie. by the

uncertain parameter θ, and also typically the initial condition y0
1). However the standard

gap framework applies to a single fixed nominal plant P . The approach taken in this paper

is to view the uncertain parameters themselves as inputs to the plant. This has the effect of

replacing a linear plant by a nonlinear plant with extra input channels, but has the important

advantage of needing only to study a single nominal plant.
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In general, suppose the nominal plant is parameterised by p ∈ Π for some appropriate

choice of Euclidean space Π. We then augment the U disturbance channel to:

U := Π̃× L2 (4.40)

where Π̃ denotes the set of constant maps R+ → Π ie.

Π̃ = {f : R+ → Π | ∃p ∈ Π s.t. f(t) = p ∀t ∈ R+}. (4.41)

Since Π and Π̃ are naturally isometrically isomorphic, henceforth we always implicitly

make the natural identifications between Π and Π̃ and also write Π for Π̃.

The plant and controller equations will then be redefined appropriately with respect to the

new domains and co-domains (see below). In particular the controller equations are chosen

to assign 0 to the Π channel, to ensure the nonlinear projection properties of the parallel

projection hold. The framework of [3] then applies directly. This idea allows us to consider

system responses to non-zero initial conditions Π = Rn, where n is the dimension of the

state space of the plant P , and to parameter variations in the plant eg. Π = Rp where p is

the dimension of the parameter space.

4.3 The closed loop is gf-stable

Now we return to the concrete example. Define the signal spaces as follows:

u0 = (θ, y0
1, u

∗
0)

T ∈ U := R2 × L2

y0 ∈ Y := L2, (4.42)

where the U norm is taken to be

‖(θ, y0
1, u

∗
0)

T‖ = |θ|+ |y0
1|+ ‖u∗0‖L2 . (4.43)

We define the plant as:

P : R2 × L2 → L2,e

P (θ, y0
1, u

∗
1) = y1 : ẏ1 = θy1 + u∗1, y1(0) = y0

1, (4.44)

where note that P is not a linear operator. The controller is defined formally as:

C : L2 → R2 × L2

C(y2) = (0, 0, u∗2) : u∗2 = −θ̂y2 − y2,

˙̂
θ = α

1

4θ̂3
y2

2, θ̂(0) = 0 (4.45)

Note that

P (θ, y0
1, u

∗
1) = P ∗(θ, y0

1)(u
∗
1), (4.46)

and

C(y2) = (0, 0, C∗(y2)). (4.47)

We now come to the key result:
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Proposition 4.2. HP,C is gain function stable, furthermore, a bound γ on the ΠM//N gain

function γ∗ : R → [0,∞) can be taken to be continuous with γ(0) = 0 and γ non-negative on

(0,∞).

Proof. The gain function γ∗ is defined:

γ∗(r) = sup{‖ΠM//Nx‖ : ‖x‖ ≤ r} (4.48)

where

x = (u0, y0) = (θ, y0
1, u

∗
0, y0)

T ∈ W = R2 × L2 × L2, (4.49)

so,

γ∗(r) = sup{‖ΠM//N (θ, y0
1, u

∗
0, y0)‖ : u∗0, y0 ∈ L2, θ, y0

1 ∈ R, θ2+(y0
1)

2+‖u∗0‖2
L2+‖y0‖2

L2 ≤ r2}.
(4.50)

To establish gf-stability, we consider the bounds 4.27, 4.35 of Proposition 4.1 to obtain:

‖y1‖3
L2[t∗,∞) ≤ (6

√
3α‖y0‖L2[0,∞))‖y1‖2

L2[t∗,∞) +(
(y0

1)
2 + 6(1 + |θ|2)‖y0‖2

L2[0,∞) + 2‖u0‖2
L2[0,∞)

+4|θ|( 1√
α

θ2 + ‖y0‖L2[0,∞))
2 + 6‖y0‖2

L2[0,∞) + 2‖u0‖2
L2[0,∞)

)
‖y1‖L2[t∗,∞)

+

√
3

α

(
θ4 + 3α‖y0‖2

L2[0,∞)

)
‖y0‖2

L2[0,∞) (4.51)

which yields the cubic inequality:

‖y1‖3
L2[t∗,∞) − 6

√
3αr‖y1‖2

L2[t∗,∞) −(
4

α
r5 + (

8√
α

+ 6)r4 + 4r3 + 17r2

)
‖y1‖L2[t∗,∞) −

√
3

α
(r6 + 3αr4) ≤ 0. (4.52)

At equality, the above equation has a positive root, since the cubic coefficient is positive and

the other coefficients are negative. The minimal positive root is then clearly a bound on

‖y1‖L2[t∗,∞). Since roots of polynomial equations depend continuously on their coefficients,

there is a continuous function λ : [0,∞) → [0,∞) for which

‖y1‖L2[t∗,∞) ≤ λ(r).2 (4.53)

Since the polynomial 4.52 has all its roots at 0 when r = 0 we can take λ(0) = 0.

Inequality 4.22 implies:

‖y1‖L2[0,t∗] ≤
1√
α

r2 + r. (4.54)

Hence,

‖y1‖L2[0,∞] =
√
‖y1‖2

L2[0,t∗] + ‖y1‖2
L2[t∗,∞) ≤

√
1

α
r4 +

2√
α

r3 + r2 + λ2(r) := ζ(r). (4.55)

2Note that as the inequality is cubic, this function could be computed explicitly.
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Likewise, inequality 4.37 yields:

‖u1‖L2[0,∞) =
(
θ2 + (y0

1)
2 + ‖u∗1‖2

L2[0,∞)

) 1
2 ≤

(
r2 +

(
2r + α

1
4 (r + ζ(r))

3
2 + ζ(r)

)2
) 1

2

.

(4.56)

This establishes gain function stability with γ taken explicitly as:

γ(r) =

(
1

α
r4 +

2√
α

r3 + 2r2 + λ2(r) +
(
2r + α

1
4 (r + ζ(r))

3
2 + ζ(r)

)2
) 1

2

. (4.57)

Now, it is easy to observe that γ is continuous, γ is non-negative on (0,∞) and γ(0) = 0,

hence completing the proof.

4.4 The idea behind the proof of the main result

The main result follows from the following theorem, which is a refinement of Theorem 6 of

[3]. The only difference between the result below and Theorem 6 of [3] is that we allow Φ to

be a map onto a subset of M1.

Theorem 4.1. Let HP,C be gf-stable. If there exists a surjective mapping Φ: D → D1, where

D ⊂M and D1 ⊂M1, and if there exists a function ε(·) ∈ K∞ such that

g(I − Φ) ◦ g(ΠM//N )(α) ≤ (1 + ε)−1(α) (4.58)

for all α ≥ 0, then

HP1,C : ΣD1,N (D1,N ) → D1 ×N (4.59)

is gf-stable and

g(ΠD1//N )(α) ≤ g(Φ) ◦ g(ΠM//N ) ◦ (1 + ε−1)(α). (4.60)

Proof. The proof is essentially the same as Theorem 6 of [3].

We now state the critical result which replaces a gap constraint on the augmented (non-

linear) plant P with gap constraints on the original (linear) plant P ∗.

Theorem 4.2. Let U = Y = L2 and suppose P ∗(θ, y0
1) : U → Ye is a system, parameterised

by θ ∈ Rp and with initial condition y0
1 ∈ Rn. Let P, C be defined:

C : Y → Rp+n × U , C(y2) = (0, 0, C∗(y2))

P : Rp+n × U → Ye, P (θ, y0
1, u1) = P ∗(θ, y0

1)(u1).
(4.61)

Suppose [P, C] is gf-stable. Then there exists a continuous function µ : R3 → (0,∞) such

that if P ∗
1 : U → Ye satisfies the following inequality:

δF(P ∗(θ, y0
1), P

∗
1 ) ≤ µ(‖(u0, y0)

T‖L2 , |θ|, |y0
1|), (4.62)

then HP ∗
1 ,C∗(u0, y0) is bounded in L2.

Proof. The proof can be found in [2]

The main first order result, Theorem 3.1 now follows directly from Proposition 4.2 and

Theorem 4.2.
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5 Gap Robustness of an Adaptive Controller for Rel-

ative Degree one plants

In this section we extend the previous results from the first order plant to linear plants

P ∗(a, b) : U → Y ,

y1 = P ∗(a, b)(u1) =
b0s

m + b1s
m−1 + · · ·+ bm

sn + a1sn−1 + · · ·+ an

u1, (5.63)

which satisfy the classical assumptions of adaptive control namely:

1. The order of the plant (n) is known.

2. The relative degree (ρ = n−m) of the plant is one, ρ = 1.

3. The high frequency gain is unity. (ie. b0 = 1).

4. The plant is minimum phase (ie. the polynomial b0s
m + b1s

m−1 + · · ·+ bm is Hurwitz).

The relative degree one result is then as follows:

Theorem 5.1. Let U = Y = L2, and let P ∗(a, b) : U → Ye be the plant defined by equation

5.63, which is assumed to be minimum phase, relative degree 1 and have unity high fre-

quency gain. Then there exists a universal controller C∗ : Y → U and a continuous function

µ : R1+n+m → (0,∞) such that if P ∗
1 : U → Ye satisfies the following inequality:

δ(P ∗(a, b), P ∗
1 ) ≤ µ(‖(u0, y0)

T‖L2 , a, b), (5.64)

then HP ∗
1 ,C∗(u0, y0) is bounded.

Proof. See [2].

6 Conclusions

In this paper we have approached the classical problem of robustness of adaptive controllers

to unmodelled dynamics within the framework of the nonlinear gap metric. The main idea

of the approach is threefold:

• To augment the input signal space of parametrically uncertain linear plants with a

channel representing the uncertain parameters.

• To synthesise the controller to ensure the existence of a certain closed loop gain func-

tion, and hence to give rise to a nonlinear gap margin.

• To relate the nonlinear gap margin to the (linear) gap margins on the individual plants.

12



For both first order plants and plants of relative degree one, adaptive controllers with gap

robustness margins are constructed. Whilst the results have been presented in a qualitative

manner, the proofs are fully constructive, and in principle can be used to explicitly compute

the gap margins. The paper [2] contains many other related results.
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