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Abstract

We study a physically simple two degree of freedom attitude control system that has
a single control input. The physical assumptions are described. Equations of motion
are derived and expressed in a nonlinear control form. We demonstrate that the system
is inherently nonlinear. Conditions for small time local controllability of the state and
of the configuration are presented.

1 Introduction

An air spindle is supported by an air bearing so that it can rotate without friction about its

vertical axis. The air spindle supports a rigidly attached platform that rotates in a horizontal

plane. A control torque is exerted on the spindle by a motor. An unactuated mass particle

is constrained to move without friction along a straight track that is rigidly mounted on the

horizontal platform.

This air spindle system is similar to a physical testbed that exists in the Attitude Dynamics

and Control Laboratory at the University of Michigan. The air spindle in the laboratory

testbed is not actuated, but several masses that move in straight tracks rigidly mounted on

the platform are actuated. This experimental testbed has been described in [1] and nonlinear

control results have been developed and experimentally validated in [5]. The air spindle

system studied in this paper has different actuation assumptions and leads to different, but

equally interesting, nonlinear control problems.

2 Equations of Motion

In this section, we derive the equations of motion for the air spindle with an unactuated

mass constrained to move along a straight track. We make the following assumptions: the

platform is perfectly leveled so that gravity has no influence; external disturbances, e.g. fric-

tion and aerodynamics, can be ignored; the unactuated mass is modeled as a point mass.
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We introduce the following notation:

I = the inertia of the platform;

θ = the attitude angle of the platform;

m = the mass that moves without friction on a horizontal track fixed to the platform;

z = the relative position of the mass with respect to its track that is fixed to the platform;

l = the length of the normal from the vertical axis of the spindle to the track.

We choose z = 0 to correspond to the position of the mass in the track when its distance to

the vertical axis of the spindle is minimum; this minimum distance is l.

We choose an inertial frame OXY Z, where the vertical axis OZ is aligned with the rotating

axis of the platform and OXY is in the horizontal plane. Let (e1, e2, e3) denote unit vector

in a platform fixed coordinate frame for the track, where (e1, e2) lies in the OXY plane, and

e1 is aligned with the track axis; e2 is perpendicular to e1, and e3 is aligned with the vertical

axis. Let Ω = θ̇e3 denote the angular velocity vector of the platform, and let ρ = ze1 + le2

denote the position vector of the mass in the platform fixed coordinate frame. Using the

identities ė1 = Ω× e1 = θ̇e2 and ė2 = Ω× e2 = −θ̇e1, we have ρ̇ = (ż − lθ̇)e1 + zθ̇e2. Hence,

|ρ̇|2 = (ż − lθ̇)2 + (zθ̇)2 = (z2 + l2)θ̇ + ż2 − 2θ̇lż.

The Lagrangian is equal to the kinetic energy given by

L(θ̇, z, ż) =
1

2
Iθ̇2 +

1

2
m|ρ̇|2 =

1

2
[I + m(z2 + l2)]θ̇2 +

1

2
m[ż2 − 2lżθ̇].

Equivalently,

L(θ̇, z, ż) =
1

2

(
θ̇ ż

)
M(z)

(
θ̇

ż

)
where M(z) is the inertia matrix given by

M(z) =

[
I + m(z2 + l2) −ml

−ml m

]
.

Moreover, M(z) can be viewed as a Riemannian metric, which defines the kinetic energy on

the tangent space T (S1 × R1). Note that M is independent of θ; this reflects the fact that

the air spindle is symmetric to platform rotation.

We further assume that the platform is controlled by an external torque about the spindle

axis, but there is no direct control applied to the mass particle. This implies that the mass

particle is unactuated. With this assumption, the equations of motion are

(J + mz2)θ̈ = −2mzθ̇ż + mlz̈ + u, (2.1)

mz̈ = mzθ̇2 + mlθ̈, (2.2)

where J = I + ml2 and u is the control torque on the platform.
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3 Controllability Properties

In this section, we study controllability properties at equilibrium for the controlled air spindle

with one unactuated mass. We provide two different controllability analyses that lead to

consistent results. We first study state controllability using Lie bracket tools; we provide

conditions for small time local controllability using results of [6, 7, 4]. Then we study

configuration controllability using symmetric product tools; we provide conditions for small

time local configuration controllability and equilibrium controllability using results of [2, 3].

The implications of the two results are slightly different, but in the particular problem studied

in this paper, the obtained conditions are identical.

3.1 State Controllability Analysis

Since the platform rotation is actuated and I + mz2 > 0 for all z, we can simplify the

equations using feedback. Introducing the following control transformation defined by

u = 2mzżθ̇ −mlzθ̇2 + (I + mz2)v,

where v the transformed control, the equations become

θ̈ = v, (3.3)

z̈ = zθ̇2 + lv. (3.4)

The above equations can be written in the standard nonlinear form as

ẋ = f(x) + g(x)v, (3.5)

where x is the state given by

x =


θ

θ̇

z

ż

 , and f(x) =


θ̇

0

ż

zθ̇2

 , g(x) =


0

1

0

l

 .

If v = 0, then the equilibrium manifold is given by {(θ, θ̇, z, ż)|θ̇ = 0, ż = 0}. That is, the

system is in equilibrium at any fixed platform attitude and any fixed mass particle location

on the track. It is clear that the system is not linearly controllable at any equilibrium when

θ̇ = ż = 0; a nonlinear controllability analysis is necessary.

We first present a negative result on the air spindle controllability using a theorem of

Sussmann [6].

Proposition 1. If z 6= 0, then the air spindle defined by eqn.(3.5) is not small time locally

controllable at any equilibrium.
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Proof: The following Lie brackets can be computed:

adfg(x) = [f, g](x) =


1

0

l

2zθ̇

 , [g, [f, g]](x) =


0

0

0

2z

 , ad2
fg(x) = [f, [f, g]](x) =


0

0

2zθ̇

θ̇(lθ̇ − 2ż)

 .

We need the following technical result:

Claim: adi
fg(x), i ≥ 2 have the form

adi
fg(x) =


0

0

θ̇h1(z, ż, θ̇)

θ̇h2(z, ż, θ̇)

 ,

where h1 and h2 are two polynomial functions of (z, ż, θ̇).

We prove this by induction. When i = 2, it is obvious that ad2
fg(x) is in the claimed form.

Now suppose this claim holds for adi
fg with i = 2, · · · , k for k ≥ 3. Consider the Lie bracket

adk+1
f g. Since

adk+1
f g(x) = [f, adk

fg](x) =
∂adk

fg

∂x
f(x)− ∂f

∂x
adk

fg(x),

where adk
fg(x) =

(
0, 0, θ̇hk

1(z, ż, θ̇), θ̇hk
2(z, ż, θ̇)

)T
by induction hypothesis, we have

adk+1
f g(x) =


0 0 0 0

0 0 0 0

0 ? θ̇
∂hk

1

∂z
θ̇

∂hk
1

∂ż

0 ? θ̇
∂hk

2

∂z
θ̇

∂hk
2

∂ż




θ̇

0

ż

zθ̇2

−


0 1 0 0

0 0 0 0

0 0 0 1

0 2zθ̇ θ̇2 0




0

0

θ̇hk
1

θ̇hk
2

 =


0

0

θ̇hk+1
1

θ̇hk+1
2

 ,

where

hk+1
1 (z, ż, θ̇) = ż

∂hk
1

∂ż
+ zθ̇2∂hk

1

∂ż
− hk

2, hk+1
2 (z, ż, θ̇) = ż

∂hk
2

∂z
+ zθ̇2∂hk

2

∂ż
− θ̇2hk

1.

This proves the claim.

Using this result, we see that at an equilibrium xe where ż = θ̇ = 0,

[g, [f, g]](xe) =


0

0

0

2z

 , f(xe) = 0, g(xe) =


0

1

0

l

 , adfg(xe) =


1

0

l

0

 , adi
fg(xe) = 0, i ≥ 2.
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Therefore [g, [f, g]](xe) /∈ span{f, g, adi
fg,∀i ∈ Z+}(xe) when z 6= 0. By Sussmann’s theo-

rem, eqn.(3.5) is not small time locally controllable at any equilibrium with z 6= 0.

A positive controllability result is presented as follows.

Proposition 2. If the offset l 6= 0, then eqn.(3.5) is small time locally controllable at any

equilibrium with z = 0.

Proof: This result follows from Sussmann’s sufficient conditions for small time local control-

lability [7]. We first show local accessibility at equilibrium. The Lie bracket computations

show that

h(x) =
[
[f, g], [g, [f, g]]

]
(x) =


0

0

0

−2l

 , [h, f ](x) =


0

0

−2l

0

 .

Therefore,
{
g, [f, g], h, [h, f ]

}
span R4 at any equilibrium if l 6= 0. Therefore, eqn.(3.5) is

locally accessible at any equilibrium.

Next, we check the good and bad Lie bracket relations for small time local controllability.

We first notice that all the above spanning brackets are good in the sense of Sussmann, and

that the highest degree of these Lie brackets is 6 for [h, f ]. Therefore, we only need to check

the bad brackets with degree lower than 6. These bad brackets can be classified into two

groups according to the number of times that f appears: bad brackets containing f once;

bad brackets containing f three times. We analyze these bad brackets subsequently.

Up to a sign, the bad brackets in the first group are f , ad2
gf = −[g, [f, g]], and ad4

gf . It

is clear that f = 0 at equilibrium and that [g, [f, g]] is zero when z = 0. Moreover, ad4
gf is

identically zero.

Up to a sign, there are four bad brackets in the second group: [ad3
fg, g], [[ad2

fg, g], f ],

[ad2
fg, [f, g]], and [[ad2

gf, f ], f ]. Computations show that all of these Lie brackets are zero at

any equilibrium with z = 0.

Thus, we claim that all bad brackets are linear combinations of lower degree good brackets.

Consequently, eqn.(3.5) is small time locally controllable at any equilibrium with z = 0, if

the offset l 6= 0.

3.2 Configuration Controllability Analysis

First, we present a formula that simplifies symmetric product computations. Let X and Z be

two vector fields on Q = S1×R. Using the definitions of covariant derivative and symmetric
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product, it is easy to show the symmetric product between X and Z can be expressed as〈
X : Z

〉
= M−1(z)

〈
X; Z

〉
,

where 〈
X; Z

〉
=

∂[M(z)X]

∂q
Z +

∂[M(z)Z]

∂q
X −DM(X, Z), q = (θ, z).

Here DM(X, Z) is given by

DM(X, Z) =
(
0, XT ∂M(z)

∂z
Z

)T

.

Now we use this simplified formula to compute certain symmetric products for the air

spindle problem. For the control vector field Y , we have M(z)Y = e1, where e1 = (1, 0)T .

For the second order symmetric product, we have

〈
Y ; Y

〉
(z) = −DM(Y, Y ) = −

[
0

eT
1 M−1(z)∂M(z)

∂z
M−1(z)e1

]
=

[
0

−2mz
(I+mz2)2

]
.

It is easy to see that
〈
Y : Y

〉
evaluates as zero only if z = 0. Similarly, we can compute the

third order symmetric product
〈
Y :

〈
Y : Y

〉〉
as

〈
Y ;

〈
Y : Y

〉〉
(z) =

[
0

2ml(−I+3mz2)
(I+mz2)4

]
.

When evaluated as z = 0, it becomes

〈
Y ;

〈
Y : Y

〉〉
z=0

=

[
0

−2ml
I3

]
.

Therefore,
{

Y,
〈
Y :

〈
Y : Y

〉〉}
span the tangent space of Q at z = 0. This means that

the air spindle is locally configuration accessible at z = 0. Furthermore, notice that these

two symmetric products are good, and the bad symmetric product
〈
Y : Y

〉
is zero when

evaluated at z = 0; thus the good-bad symmetric product relation is satisfied. Hence, we

conclude that the air spindle with one unactuated mass is small time locally configuration

controllable at z = 0. This also implies that the system is equilibrium controllable at z = 0.

We summarize the above analysis in the following proposition.

Proposition 3. If the offset l 6= 0, then eqn.(3.5) is small time locally configuration

controllable and equilibrium controllable at any equilibrium with z = 0.

It is clear that if z 6= 0, the sufficient conditions for configuration controllability are not sat-

isfied. These results agree with the state controllability analysis performed in the last section.
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There is an important symmetry property for this system: it is clear that the dynamic

equations are independent of the platform angle θ, therefore the air spindle system is sym-

metric with respect to platform rotation. Hence, arbitrary platform attitude can be reached

at z = 0 if l 6= 0.

4 Conclusions

A physically simple two degree of freedom attitude control system has been introduced.

Despite its physical simplicity, we have shown that its controllability properties are subtle.

It is shown to be controllable only at a single mass particle position. This analysis raises

many questions, some of which will be considered in the final version of the paper.

Acknowledgement: This research has been supported in part by NSF grant ECS-9906018.

References

[1] D. S. Bernstein, N. H. McClamroch, and A. M. Bloch, “Development of Air Spindle

and Triaxial Bearing Testbeds for Spacecraft Dynamics and Control Experiments”,

Proceedings of 2001 American Control Conference, Arlington, VA, June 2001.

[2] A. D. Lewis and R. M. Murray, Controllability of simple mechanical control systems.

SIAM Journal of Control and Optimization, 35(3):766-790, 1997.

[3] A. D. Lewis, Local configuration controllability for a class of mechanical systems with

a single input, Proceedings of the 1997 European Control Conference, 1997.

[4] M. Reyhanoglu, A. van der Schaft, N. H. McClamroch and I. Kolmanovsky, Dynamics

and Control of a Class of Underactuated Mechanical Systems, IEEE Transactions on

Automatic Control, Vol.44(9), p.1663-1671, 1999.

[5] J. Shen, N. H. McClamroch, and D. S. Bernstein, “Air Spindle Attitude Control via

Proof Mass Actuators”, Proceedings of the 40th IEEE Conference on Decision and

Control, Orlando, FL, December 2001.

[6] H. J. Sussmann, Lie Brackets and Local Controllability: a Sufficient Condition for

Scalar-Input Systems, SIAM Journal of Control and Optimization, Vol. 21, No. 5, p.686-

713, Sept. 1983.

[7] H. J. Sussmann, A General Theorem on Local Controllability, SIAM Journal of Control

and Optimization, Vol. 25, No. 1, p.158-194, 1987.

7


