
Nonlinear and Hybrid Control Via RRTs

Michael S. Branicky and Michael M. Curtiss

Electrical Engineering and Computer Science Dept.

Case Western Reserve University

{msb11,mmc18}po.cwru.edu

Abstract

In this paper, we review rapidly-exploring random trees (RRTs) for motion plan-

ning, experiment with them on standard control problems, and extend them to the

case of hybrid systems.

1 Introduction and Overview

Researchers in the computer science and control theory communities have produced many

models for describing the dynamics of hybrid systems (e.g., see [3, 25, 12, 26]). For the

purpose of the discussion in this document, we consider a simple illustrative case, in which

the constituent continuous state and input spaces (in each mode) are the same. Thus, we

have a hybrid system of the form

ẋ = f(x, u, q), x 6∈ J(x, u, q)

(x, q)+ = D(x, u, q), x ∈ J(x, u, q).
(1.1)

Here, x ∈ X is the continuous state, u ∈ U is the input, and q ∈ Q ' {1, 2, . . . , N} is the

discrete state or mode. Also, f(·, ·, q) is the continuous dynamics, J(·, ·, q) is the jump set,

and D(·, ·, q) is the discrete transition map, all for mode q. The map D relates the post-jump

hybrid state (x, q)+ from the pre-jump hybrid state (x, q). The input u, which can include

both continuous and discrete components, allows the introduction of non-determinism in

the model, and can be used to represent the action of control algorithms and the effect of

environmental disturbances. The evolution of the discrete state q models switches in the

control laws and discrete events in the environment, such as failures.

Briefly, the dynamics are as follows: the system starts at hybrid state (x(t0), q0) and evolves

according to f(·, ·, q0), until the set J(·, ·, q0) is reached. At this time, say t1, the continuous

and/or discrete state instantaneously jump to the hybrid state (x(t+1), q1) = D(x(t1), u, q0),

from which the evolution continues. While terse, the above model encompasses both au-

tonomous and controlled switching and jumps, and allows modeling of a large class of em-

bedded systems, including for example ground, air and space vehicles and robots; see [4, 3]

for more details.

Given a model of the system in the form (1.1), the path planning problem can be shortly

stated as finding a (controlled) trajectory of the system that leads from a start to a goal

configuration.

1

Attempts to fight the curse of dimensionality have led to the introduction of randomized

(or Monte-Carlo) approaches to path planning that are capable of solving many challenging

problems efficiently, at the expense of being able to guarantee that a solution will be found

in finite time. Most randomized planning methods are designed for the generalized mover’s

problem, including randomized potential fields [2, 10, 19], probabilistic roadmaps [1, 18],

Ariande’s clew algorithm [28, 27], and the planners in [17, 33]. Derandomization of some of

these algorithms has been explored in [6, 7].

Many path planning methods, including dynamic programming and most of the random-

ized planning methods can be categorized as incremental search methods. In these methods

a tree (or two trees in the bidirectional version) is grown incrementally from the initial state

by adding a new edge and vertex in each iteration after performing some local motion. There

are generally two decision problems at each iteration: 1) which vertex should be selected for

expansion? 2) what local motion should be executed? The answers to these questions are

given by the particular method. For example, dynamic programming selects the “active”

vertex with the lowest cost, and the local motion attempts to move in a direction not yet con-

sidered. Among path planning techniques, incremental search methods are most amenable

to the inclusion of differential constraints.

An incremental search method that has achieved considerable success in the design of

feasible trajectories is the Rapidly-exploring Random Tree (RRT) [20, 21]. This method

can solve challenging problems that involve state spaces of up to twelve dimensions with

the inclusion of both differential constraints and complicated obstacle constraints. The

extensions of these ideas to hybrid systems has not yet been considered in the literature.

Other approaches to hybrid control problems are presented in [8, 9, 5, 32].

2 RRT Background

We describe our control approach in terms of the Rapidly-exploring Random Tree (RRT),

which was introduced in [20, 21] as an exploration algorithm for quickly searching high-

dimensional spaces that have both global constraints (arising from workspace obstacles and

velocity bounds) and differential constraints (arising from kinematics and dynamics). The

key idea is to bias the exploration toward unexplored portions of the space by randomly

sampling points in the state space, and incrementally “pulling” the search tree toward them.

The resulting method is much more efficient than brute-force exploration of the state space.

The description below serves as a basis to illustrate the main ideas.

The basic RRT construction algorithm is given in Figure 1 (left). A simple iteration is

performed in which each step attempts to extend the RRT by adding a new vertex that

is biased by a randomly-selected state, x ∈ X. The EXTEND function selects the nearest

vertex already in the RRT to x. The “nearest” vertex is chosen according to the metric,

ρ. The function NEW STATE makes a motion toward x by applying an input u ∈ U for

some time increment ∆t. This input can be chosen at random, or selected by trying all

2

BUILD RRT(xinit)

1 T .init(xinit);

2 for k = 1 to K do

3 xrand ← RANDOM STATE();

4 EXTEND(T, xrand);

5 Return T

EXTEND(T, x)

1 xnear ← NEAREST NEIGHBOR(x, T);

2 if NEW STATE(x, xnear, xnew , unew) then

3 T .add vertex(xnew);

4 T .add edge(xnear , xnew , unew);

Figure 1: The basic RRT construction algorithm (left) and an example RRT (right)

possible inputs and choosing the one that yields a new state as close as possible to the

sample, x (if U is infinite, then a finite approximation or analytical technique can be used).

NEW STATE implicitly uses the collision detection function to determine whether the new

state (and all intermediate states) satisfy the global constraints. For many problems, this

can be performed quickly (“almost constant time”) using incremental distance computation

algorithms [16, 24, 29] by storing the relevant invariants with each of the RRT vertices.

If NEW STATE is successful, the new state and input are represented in xnew and unew,

respectively. The left column of Figure 1 shows an RRT grown from the center of a square

region in the plane. In this example, there are no differential constraints (motion in any

direction is possible from any point). The incremental construction method biases the RRT

to rapidly explore in the beginning, and then converge to a uniform coverage of the space

[22]. The exploration is naturally biased towards vertices that have larger Voronoi regions.

This causes the exploration to occur mostly on the unexplored portion of the state space.

In addition to growing a tree from the starting state, many RRT implementations grow a

second tree from the goal state. Such trees grow in four steps:

1. Grow start-tree towards a random unexplored configuration.

2. Grow goal-tree towards a random unexplored configuration.

3. Grow start tree towards goal tree. At each iteration, select a random node in the goal

tree to grow towards it.

4. Grow goal tree towards start tree. A solution path is found when the two trees finally

connect.

3 RRTs for Nonlinear Control

Other researchers have applied RRT’s to planning problems of various types including path-

steering, manipulation planning for digital actors, varieties of holonomic planning, and at-

titude control (kinodynamic planning) [21, 23, 11]. To our knowledge, we are the first

3

experimenters to test RRT’s on standard control problems. It is our hope that by studying

the RRT’s performance in these common problems, we will be able to gauge the strengths

and weaknesses of RRT’s compared to other approaches.

3.1 Pendulum Swing-Up

The first experiment we conducted was applying the RRT to the swing-up problem for a

nonlinear pendulum:

Definition 3.1 Pendulum Swing-Up Given:

• a pendulum of mass m and length l with equation of motion

θ̈ =
−3g

2l
sin θ −

3τ

ml2

• Motor at tip which can apply torques of τ ∈ {−1, 0, 1} units

• Initial state of θ = 0 (down) and θ̇ = 0

• Goal state of θ = π (up) and θ̇ = 0

The goal for the planner is to find a series of torque-time pairs that get the pendulum to

the goal state. In all but the most trivial cases, the motor is unable to lift the pendulum to

the goal state in one smooth motion. The pendulum therefore must be swung back and forth

until it achieves sufficient velocity to reach the goal configuration. Our first try at solving the

problem, a single-tree RRT using the straightforward Euclidean metric, ρ =
√

(∆θ)2 + (∆θ̇)2,

proved to be quite successful. Usually finding a solution in less than 10,000 iterations (only

a few seconds of computation on most modern computers), our implementation showed that

the RRT algorithm is both fast and adaptable to many problem domains. See Figure 2 (left).

The dual-tree solution to the same problem was also impressive, sometimes finding a

path to the goal state in close to half the time of its single-tree relative. One interesting

characteristic of the solution trees is how clearly it demonstrates the dynamics of the system.

See Figure 2 (right).

3.2 Acrobot

For our second experiment, we tested the RRT algorithm on a problem of higher dimension-

ality. The acrobot has gained attention in recent literature as an interesting control task in

the area of reinforcement learning [9]. Analogous to a gymnast swinging on a high-bar, the

acrobot has been studied by both control engineers and machine learning researchers. The

equations of motion used come from [31, p. 271]. A time step of 0.05 seconds was used in the

simulation, with actions chosen after every four time steps. The torque applied at the second

joint is denoted by τ ∈ {−1, 0, 1}. There were no constraints on the joint positions, but the

4

Figure 2: Single- and Dual-RRT Solutions to the Pendulum Swing-Up Problem. The x-axis

corresponds to θ and the x-axis to θ̇. The left image shows a single-tree RRT solution for the

pendulum problem after 5600 iterations. The right image shows a dual-tree RRT solution

after 3300 iterations (solution in dark).

angular velocities were limited to θ̇1 ∈ [−4π, 4π] and θ̇2 ∈ [−9π, 9π]. The constants were

m1 = m2 = 1 (masses of the links), l1 = l2 = 1 (lengths of links), lc1 = lc2 = .5 (lengths to

center of mass of links), I1 = I2 = 1 (moments of inertia of links), and g = 9.8 (gravitational

constant).

There are numerous goals that planning systems can attempt to reach when controlling

the acrobot, but most involve reaching various vertical levels. In our testing, we attempted

to swing the tip of the acrobot above some vertical level, y = ygoal. The single-tree RRT

had no problem finding a solution to the acrobot tip-goal problem. One question that we

may investigate further is how well the RRT-based solution compares quantitatively to other

planners. Unlike some of the competing planners, the RRT is based on virtually no domain-

specific knowledge except for the acrobot’s equations of motion, yet the RRT planner was

able to perform well compared to published metrics of energy efficiency and time efficiency

[31].

Figure 3 shows the vertical position of the tip of one version of the RRT-controlled acrobot

versus time. Like the inverted pendulum, the acrobot had to swing back and forth multiple

times in order to reach the goal state. The starting position was y = −2.0 and ygoal = 1.0.

As for the time-lapse behavior, the RRT-controlled acrobot showed similar behavior to that

shown in [31, p. 274].

5

Figure 3: Acrobot Swing-Up Problem: vertical position versus time

4 RRTs for Hybrid Systems

Emilio Frazzoli and his co-workers have used random search in the context of a hybrid

“manuever automaton” to plan motions for aerospace vehicles [14, 5, 13, 15]. However, we

believe our work is the first general description of a hybrid RRT.

A general, hybrid RRT can be achieved in various ways, depending on the underlying

hybrid systems model and specifics of the continuous and discrete dynamics (and symmetries

therein). We now wish to give a taste of the way a hybrid RRT might work for the model

(1.1). A planning/control problem will have a target set T ⊂ X ×Q.

The simplest algorithm one might envision would explore reachable space by growing a

forest of RRTs, one in each mode, with jump points among various trees in the forest

identified. In the more general case, evolution will start from a set of seeds in a start

set S ⊂ X × Q, encompassing one or more modes, and proceed from there according the

algorithm outlined below. One may think of the resulting tree as (a) growing in the hybrid

state space, X × Q, or (b) as growing in X, with nodes and arcs colored/labeled by the

current mode.

Even under this setup, there are several cases to consider:

1. General specifications; S, T , J , and D are arbitrary.

2. Homogeneous specifications: S = B×Q and T = G×Q. i.e., the start and target sets

are independent of mode.

3. Homogeneous switching: J(x, q) ≡ J(x) and D(x, q) ≡ D(x), independent of q.

4. Unrestricted switching: J(·, q) = X for all q and D(x, q) = x for all x, q.

While the above is not exhaustive, it provides a sense of a few types of symmetries in the

discrete dynamics that can be exploited by the algorithm.

In the case of unrestricted switching, the hybrid RRT algorithm is exactly the same as

outlined above, except that the control set is augmented to allow mode changes: U 7→ U×Q.

The other cases are non-trivial. In the case of homogeneous specifications, xrand lives, and

6

distances are measured in, the continuous state space X; in the general case, xrand lives, and

distances are measured in, the hybrid state space X × Q. The latter brings up the issue of

designing metrics for combined continuous and discrete space, which is a topic of current

research. In either case, the NEW-STATE function must respect the hybrid dynamics.

Typically, for purely continuous RRTs, the states examined come from extending the state

xnear according to the dynamics f(x, ·) for a fixed time and for various (sampled) u ∈ U . In

the hybrid case, this continues to hold for (xnear, qnear) if there are no intersections with the

jump set J(·, qnear). If there are, evolution continues from the destination point(s), using the

same or different u, until the desired amount of time elapses.

In Figure 4 we give an example of a hybrid RRT. Pictured from left to right in each row are

four square floors, 1 through 4. Stairs (jumps) are given by triangles, with destinations given

by inverted triangles in the next highest floor. The tree started in the gray square in the

center of floor 1, and the target set is the gray square on floor 4. Successive rows represent

different stages in the expansion process. The hybrid state is s = (x, y, q) ∈ [−20, 20] ×

[−20, 20] × {1, 2, 3, 4}. The distance metric used is ρ(s1, s2) =
√

(x1 − x2)2 + (y1 − y2)2 +

20|q1 − q2|.

Figure 4: Stair Climbing: an example hybrid RRT.

7

References

[1] N. M. Amato and Y. Wu. A randomized roadmap method for path and manipulation

planning. In IEEE Int. Conf. Robot. & Autom., pages 113–120, 1996.

[2] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed representation

approach. Int. J. Robot. Res., 10(6):628–649, December 1991.

[3] M. S. Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995.

[4] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid control:

Model and optimal control theory. IEEE Trans. Automatic Control, 43(1):31–45, 1998.

[5] M.S. Branicky, T.A. Johansen, I. Petersen, and E. Frazzoli. On-line techniques for

behavioral programming. Proc. IEEE Conf. on Decision and Control, Sydney, AUS-

TRALIA, December 2000.

[6] M.S. Branicky, S.M. LaValle, K. Olson, and L. Yang. Quasi-randomized path plan-

ning. Proc. IEEE International Conf. Robotics and Automation, pp. 1481–1487, Seoul,

KOREA, May 2001.

[7] Michael S. Branicky, Steven M. LaValle, Kari Olson, and Libo Yang. Deterministic vs.

Probabilistic Roadmaps. IEEE Trans. on Robotics and Automation, Jan. 2002. Submit-

ted. Electronically available at http://dora.cwru.edu/msb/pubs/BLOY2002.ps

[8] M.S. Branicky and S.K. Mitter. Algorithms for optimal hybrid control. Proc. IEEE

Conf. Decision and Control, New Orleans, LA, pp. 2661–2666, Dec. 1995.

[9] M.S. Branicky and G. Zhang. Solving hybrid control problems: Level sets and behavioral

programming. Proc. American Control Conf., Chicago, IL, June 28–30, 2000.

[10] D. Challou, D. Boley, M. Gini, and V. Kumar. A parallel formulation of informed

randomized search for robot motion planning problems. In IEEE Int. Conf. Robot. &

Autom., pages 709–714, 1995.

[11] Peng Cheng and Zuojun Shen and Steven M. LaValle. Using Randomization to Find and

Optimize Feasible Trajectories for Nonlinear Systems, by Proc. 38th Annual Allerton

Conference on Communication, Control, and Computing. 2000.

[12] J. M. Davoren and A. Nerode. Logics for hybrid systems. Proceedings of the IEEE,

88:985–1010, July 2000.

[13] E. Frazzoli. Robust Hybrid Control for Autonomous Vehicle Motion Planning. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, June 2001.

[14] E. Frazzoli, M.A. Dahleh, and E. Feron. A hybrid control architecture for aggressive

maneuvering of autonomous helicopters. In IEEE Conf. on Decision and Control, De-

cember 1999.

8

[15] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile au-

tonomous vehicles. AIAA Journal of Guidance, Control, and Dynamics, May 2002. To

appear.

[16] L. J. Guibas, D. Hsu, and L. Zhang. H-Walk: Hierarchical distance computation for

moving convex bodies. In Proc. ACM Symposium on Computational Geometry, pages

265–273, 1999.

[17] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration

spaces. Int. J. Comput. Geom. & Appl., 4:495–512, 1999.

[18] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. &

Autom., 12(4):566–580, June 1996.

[19] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Int. J.

Robot. Res., 5(1):90–98, 1986.

[20] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. TR

98-11, Computer Science Dept., Iowa State University, Oct. 1998.

[21] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proc. IEEE

Int’l Conf. on Robotics and Automation, pages 473–479, 1999.

[22] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and

prospects. In Workshop on the Algorithmic Foundations of Robotics, 2000.

[23] Steven M. LaValle and James J. Kuffner, Jr. Randomized Kinodynamic Planning. In-

ternational Journal of Robotics Research. 20(5):378–400, May 2001.

[24] M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance computation.

In IEEE Int. Conf. Robot. & Autom., 1991.

[25] J. Lygeros. Hierarchical Hybrid Control of Large Scale systems. PhD thesis, University

of California, Berkeley, CA, 1996.

[26] N. Lynch, R. Segala, and F. Vandraager. Hybrid I/O automata revisited. In M.D.

Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid Systems IV: Computa-

tion and Control, volume 2034 of Lecture Notes in Computer Science, pages 403–417.

Springer-Verlag, 2001.

[27] E. Mazer, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm. J. Artificial

Intell. Res., 9:295–316, November 1998.

[28] E. Mazer, G. Talbi, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm.

In Proc. Int. Conf. of Society of Adaptive Behavior, Honolulu, 1992.

[29] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. Technical Report

TR97-05, Mitsubishi Electronics Research Laboratory, 1997.

9

[30] M.W. Spong. Swing up control of the acrobot. Proc. IEEE Internationl Conf. on

Robotics and Automation, San Diego, CA, pp. 2356–2361, May 8–13, 1994.

[31] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA, 1998.

[32] C. Tomlin, J. Lygeros, and S. Sastry, Computing controllers for nonlinear systems, Proc.

Hybrid Systems: Computation and Control, Nijimegen, The Netherlands, March 1999.

[33] Y. Yu and K. Gupta. On sensor-based roadmap: A framework for motion planning for

a manipulator arm in unknown environments. In IEEE/RSJ Int. Conf. on Intelligent

Robots & Systems, pages 1919–1924, 1998.

10

