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Abstract

We present results on symbolic reachability analysis for hybrid systems with linear autonomous dy-

namics in each location.

1 Introduction

A great deal of attention has been being focused on algorithmic approaches to reachability analysis of hybrid
systems, as evidenced by the number of papers devoted to this topic in recent workshops [5, 6]. In this paper
we present results on symbolic reachability analysis for hybrid systems with linear dynamics. The two step
approach involves finding stable partitions are formed for each linear vector field of the hybrid system by
finding expressions for the local first integrals in a compact region of the continuous state space, assuming
that the dynamics are in Jordan form. Second, the enabling, reset, initial and final conditions are selected
or are pre-defined to be compatible with these partitions. This gives an analytical representation of a finite
bisimulation of the hybrid system. The analytical representation can be used to obtain the symbolic execution
theory of the hybrid automaton [3] which enables a symbolic reachability algorithm to be developed.

The practical difficulties in applying this method are in finding the expressions for the first integrals and
in obtaining the enabling, and reset conditions that are compatible with the partitions. It is the goal of
this paper to address the first difficulty by explicitly carrying out the computation of first integrals for
linear systems in Jordan form. The latter difficulty, which involves methods of partition refinement will be
addressed in future papers. The paper is organized as follows. In Section 2 we define the hybrid automaton
and review our method to construct bisimulations. In Section 3 we derive expressions for the first integrals
for a linear system in Jordan form. These results are used in Section 4 to obtain the symbolic execution
theory needed for symbolic reachability analysis.

2 Bisimulation for hybrid automata

Let X (Rn) denote the sets of smooth vector fields on Rn. A hybrid automaton is a tuple H = (Q,Σ, D, E, I,G, R)
with the following components. Q = L× Rn consists of a finite set L of control locations and n continuous
variables x ∈ Rn. Σ is a finite observation alphabet. Σ is partitioned into controllable events Σc and uncon-
trollable events Σu. D : L → X (Rn) is a function assigning a linear autonomous vector field to each location.
We use the notation D(l) = Jlx, where Jl ∈ Rn×n. E ⊂ L× Σ× L is a set of control switches. e = (l, σ, l′)
is a directed edge between a source location l and a target location l′ with event label σ. I : L → 2Rn

is a
mapping assigning a compact invariant condition I(l) = I l ⊂ Rn to each location. G : E → {ge}e∈E is a
function assigning to each edge an enabling (or guard) condition g ⊂ I l. We use the notation G(e) = ge.
R : E → {re}e∈E is a function assigning to each edge a reset condition, re : Rn → 2Rn

, where we use the
notation R(e) = re and re(ge) ⊂ I l′ .
Semantics. The state of H is a pair (l, x), where l ∈ L and x ∈ I l. Trajectories of H evolve in steps of
two types. A σ-step is a binary relation σ→⊂ Q × Q, and we write (l, x) σ→ (l′, x′) iff (1) e = (l, σ, l′) ∈ E,
(2) x ∈ ge, and (3) x′ = re(x). A t-step is a binary relation t→⊂ Q×Q, and we write (l, x) t→ (l′, x′) iff (1)
l = l′, and (2) for t ≥ 0, x′ = φt(x), where φ̇t(x) = Jlφt(x).

Let λ ∈ R represent an arbitrary time interval. A bisimulation of H is an equivalence relation '⊂ Q×Q

such that for all states p1, p2 ∈ Q, if p1 ' p2 and σ ∈ Σ ∪ {λ}, then if p1
σ→ p′1, there exists p′2 such that
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p2
σ→ p′2 and p′1 ' p′2. If ' has a finite number of equivalence classes the quotient system A is the finite

automaton A = (Q',Σ ∪ {λ}, E'). Q' is the set of cosets of '. q ∈ Q' is written q = [(l, x)] for some
l ∈ L, x ∈ Rn such that (l, x) ∈ q. The transitions of A defined by E' and denoted →' are as follows. For
q = [(l, x)], q′ = [(l′, x′)], q →' q′ iff there exists (l, y) ∈ q and (l′, y′) ∈ q′ such that (l, y) σ→ (l′, y′) where
σ ∈ Σ ∪ {λ} (for t-steps q and q′ are contiguous). If initial and final conditions Q0, Qf are specified these
are quotiented by ' as well.

We construct bisimulations in a two part procedure: first, construct a stable partition with respect to
the flow for each location, and, second, check a compatibility condition on the invariant, enabling, reset,
initial and final conditions. It is straighforward to show that once stable partitions are constructed and
compatibility conditions satisfied, one obtains a bisimulation. This is summarized in Lemma 2.1.

Definition 2.1. For each l ∈ L, let 'l be an equivalence relation on l × Rn We say 'l defines a stable
partition with respect to the flow φl if (l, x) 'l (l, x′) implies that for all y ∈ Rn and t ≥ 0, if y = φl

t(x),
then there exists y′ ∈ Rn and t′ ≥ 0 such that y′ = φl

t′(x
′) and (l, y) 'l (l, y′).

Definition 2.2. Let e = (l, σ, l′) ∈ E and let {'l}l∈L define a set of stable partitions. Given 'l at l ∈ L, we
say ge is compatible with 'l if (l, x) ∈ {l} × ge implies [(l, x)] ⊆ {l} × ge. That is, the enabling condition is
a union of cosets of 'l. Analogous definitions for compatibility of Q0, Qf , and I l apply. For e = (l, σ, l′) we
say that re is compatible with 'l′ if (l′, x′) ∈ {l′}× re(x) implies [(l′, x′)] ⊆ {l′}× re(x), and [(l, x)] = [(l, y)]
implies re(x) = re(y). Finally, we say A is compatible with {'l} if for each e ∈ E, ge and re are compatible
with 'l, 'l′ , respectively, and for each l ∈ L, I l is compatible with 'l, and Q0 and Qf are compatible with
{'l}.

Lemma 2.1. Given H and {'l} defining a set of stable partitions such that H is compatible with {'l},
then '⊂ Q×Q defined by: (l, x) ' (l′, x′) iff (1) l = l′, and (2) (l, x) 'l (l′, x′), is a bisimulation for H.

We build stable partitions using foliations. We know from the Pre-Image theorem [7, p. 31] that the
pre-image of a submersion is a foliation with regular leaves. Let f ∈ X (Rn). We require two types of
co-dimension one foliations. A tangential foliation F of Rn is a co-dimension one foliation that satisfies
f(x) ∈ TxF,∀x ∈ Rn; that is, f is a cross-section of the tangent bundle of F . A transversal foliation F⊥ of
Rn is a co-dimension one foliation that satisfies f(x) 6∈ TxF,∀x ∈ Rn. A stable partition on I l is constructed
using a set of co-dimension one tangential foliations with submersions Ψl

i : Rn → R, i = 1, . . . , n − 1 and a
co-dimension one transversal foliation with submersion Ψl

n : Rn → R, l ∈ L, such that Ψl = (Ψl
1, . . . ,Ψ

l
n) :

I l → [−1, 1]n form coordinates on I l. Ψl
i, i = 1, . . . , n − 1 are obtained using local first integrals of Jlx

on I l. A first integral of ẋ = f(x) is a function Ψ : Rn → R satisfying LfΨ = 0, where LfΨ is the Lie
derivative of Ψ along f . We discretize the foliations by selecting a finite set of leaves. Fix k ∈ Z+ and let
∆ = 1

2k . Define Ck = {0,±∆,±2∆, . . . ,±1}. Each Ψl
i = c for c ∈ Ck, i = 1, . . . , n defines a hyperplane

in Rn denoted W̃ l
i,c, and a submanifold W l

i,c = (Ψl)−1(W̃ l
i,c). The collection of submanifolds is denoted

W l = { W l
i,c | c ∈ Ck, i ∈ {1, . . . , n} }. Define an equivalence relation 'l on I l × I l by x ' x′ iff (1) x /∈ I l

iff x′ /∈ I l, and (2) if x, x′ ∈ I l, then for each i = 1, . . . , n, Ψi(x) ∈ (c, c + ∆) iff Ψi(x′) ∈ (c, c + ∆), and
Ψi(x) = c iff Ψi(x′) = c, for all c ∈ Ck. It was shown in [1] that 'l defines a stable partition.

3 Jordan form

We derive expressions for Ψi, i = 1, . . . , n− 1 when the linear dynamics are in Jordan form. The procedure
consists of the following steps: (1) for each type of elementary Jordan block derive expressions for the local
first integrals, and (2) for each pair of Jordan blocks derive an expression for the coupling first integral,
defining another tangential foliation.

Consider the linear system ẋ = Jx where J ∈ Rn×n is of the form J = diag(Jr, · · · , Jr, Jc, · · · , Jc). Jr and
Jc are elementary Jordan blocks corresponding to the real (repeated) eigenvalues and complex (repeated)
eigenvalues of J , respectively. The expression F (t, x, c) = x − φt(c) vanishes on solutions of the linear
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system. For values of t, x, and c where F is non-singular the implicit function theorem can be applied to
obtain ci = gi(x, t), i = 1, . . . , n and t = gn(x, c). g1, . . . , gn−1 are time-varying first integrals of the linear
system. To obtain time-invariant first integrals we substitute t in F (t, x, c) to obtain F (x, c). Using F we
seek functions Ψi(·) : Rn → R for i = 1, . . . , n − 1 such that F i(x, c) = 0 = Ψi(x) − Ψi(c). Ψi(x) are
time-invariant first integrals.

3.0.1 Real Eigenvalues

Consider the elementary Jordan block Jr ∈ Rm×m given by

Jr =


λ 1

. . . . . .
1
λ

 (3.1)

where λ ∈ R. The solution of ẋ = Jrx with initial condition c ∈ Rm is

x(t) = eλt


1 t t2

2! . . . tm−1

(m−1)!

1 t . . .
. . . . . .

...
1 t

1

 c. (3.2)

We obtain m − 1 first integrals Ψr
1, . . . ,Ψ

r
m as follows. From the solution of xm we find eλt = xm

cm
. The

solution of xm−1 gives t = xm−1
xm

− cm−1
cm

. Substituting t in eλt we obtain the first integral

Ψr
m−1 := xm exp (−λ

xm−1

xm
) = dm−1 (3.3)

where dm−1 ∈ R. The remaining m − 2 first integrals are found by substituting eλt and t in the solutions
for x1 through xm−2. Carrying out this operation recursively, we obtain the first integrals

Ψr
m−2 :=

xm−2

xm
−

x2
m−1

2x2
m

= dm−2 (3.4)

Ψr
m−3 :=

xm−3

xm
− xm−2xm−1

x2
m

−
x3

m−1

3x3
m

= dm−3 (3.5)

...

Ψr
m−k :=

xm−k

xm
−

k−2∑
j=1

1
j!

xj
m−1

xj
m

Ψr
m−(k−j) −

1
k!

xk
m−1

xk
m

= dm−k (3.6)

where dj ∈ R. We show these are first integrals by an inductive argument. First, DΨm−2 ·Jrx = 0. Suppose
DΨr

m−j · Jrx = 0 for j = 2, . . . , k − 1. Then we obtain

DΨm−k · Jrx =
xm−k+1

xm
−

xk−1
m−1

(k − 1)!xk−1
m

−
k−2∑
j=1

xj−1
m−1

(j − 1)!xj−1
m

Ψr
m−k+j = 0.

3.0.2 Complex Eigenvalues

Consider the elementary Jordan block Jc ∈ Rm×m given by

Jc =


D I2

. . . . . .
I2

D

 (3.7)
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where

D =
[

a −b

b a

]
; I2 =

[
1 0
0 1

]
.

The solution of ẋ = Jcx is found by converting to the complex domain. Let z : R → C m
2 , i · i = −1, and

consider ż = Bz, where

B =


µ 1

. . . . . .
1
µ

 ; µ = a + ib. (3.8)

We identify C m
2 with Rm by the correspondence (z1, . . . , zm

2
) = (x1 + ix2, . . . , xm−1 + ixm). The solution of

ż = Bz is

zk(t) = eµt

m
2∑

j=k

tj−k

(j − k)!
cj .

We obtain m − 1 first integrals Ψc
1, . . . ,Ψ

c
m as follows. First, from the solutions of xm−1 and xm we derive

the useful expressions:

eat =

(
x2

m−1 + x2
m

c2
m−1 + c2

m

) 1
2

(3.9)

eat cos bt =
cm−1xm−1 + cmxm

c2
m−1 + c2

m

(3.10)

eat sin bt =
cm−1xm − cmxm−1

c2
m−1 + c2

m

. (3.11)

Let

Xk+ =
xm−kxm−1 + xm−k+1xm

x2
m−1 + x2

m

Xk− =
xm−kxm − xm−k+1xm−1

x2
m−1 + x2

m

.

Evaluating X3+ gives

t =
xm−3xm−1 + xm−2xm

x2
m−1 + x2

m

− cm−3cm−1 + cm−2cm

c2
m−1 + c2

m

. (3.12)

Equipped with (3.9) - (3.12) we can find m− 1 first integrals. Considering the last two equations of ẋ = Jcx

and using polar coordinates, we obtain a first integral

Ψc
m−1 :=

√
x2

m + x2
m−1 exp

(
−aX3+

)
= dm−1 (3.13)

where dm−1 ∈ R. The remaining m − 2 first integrals are found by evaluating Xk+ and Xk− for k =
3, 5, 7, . . . ,m− 1 and substituting (3.9) - (3.12) in the solutions for xm to x1. Considering the evaluation of
Xk− we obtain the first integrals

Ψc
m−2 := X3− = dm−2

...

Ψc
m−k+1 := Xk− −

k−3
2∑

j=1

1
j!

Xj
3+Ψc

m−k+1+2j = dm−k+1.

Considering the evaluation of Xk+, we first obtain the first integral

Ψc
m−3 :=

x2
m−3 + x2

m−2

x2
m−1 + x2

m

−X2
3+ = dm−3.
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The first integrals for k = 5, 7, . . . are

Ψc
m−5 := X5+ −

1
2
X2

3+ = dm−5

...

Ψc
m−k := Xk+ −

k−5
2∑

j=1

1
j!

Xj
3+Ψc

m−k+2j −
1
p!

Xp
3+ = dm−k

where p = k−1
2 . We can verify by a recursive argument as in the real repeated case that these are first

integrals.

3.0.3 Coupling integrals

It remains to find the first integrals describing the coupling between elementary Jordan blocks. We consider
the pairs (Jr, Jr), (Jr, Jc), and (Jc, Jc).

For the coupling between a Jr and a Jc block, it suffices to find a coupling first integral for the system

ẋ =

 λ 0 0
0 a −b

0 b a

x. (3.14)

Using polar coordinates x2 = r cos θ, x3 = r sin θ, we have ṙ = ar, from which it is seen that

xa
1(x2

2 + x2
3)
−λ

2 = d

where d ∈ R. For the coupling between two Jr blocks it suffices to find a first integral for the system

ẋ =
[

λ1 0
0 λ2

]
x (3.15)

which corresponds to the last row of each Jr block. We obtain

λ2x1 − λ1x2 = d.

For the coupling between two Jc blocks it suffices to consider the system

ẋ =


[

a1 −b1

b1 a1

]
[

a2 −b2

b2 a2

]
x. (3.16)

Converting to polar coordinates, we have θ̇1 = b1 and θ̇2 = b2, so

b2 arctan(
x2

x1
)− b1 arctan(

x4

x3
) = d.

4 Effectiveness

In this section we discuss the effectiveness of our method. There are three steps: checking compatibility
conditions, constructing A, and performing a reachability analysis on A. Reset, invariant, initial, and final
conditions can be checked for compatibility at location l if they are defined using formulas Ψl

i % ci, where
i = 1, . . . , n, ci ∈ Ck and % ∈ {≤, <, =, >,≥}. If they must be over-approximated to satisfy compatibility
conditions as in [1], then we obtain an emptiness problem which again can be effectively solved, if Ψl

i

are polynomials, using Groebner bases. The last two steps are done symbolically. Here we consider only
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backward reachability analysis. Backward reachability analysis involves iterating on a Pre operator that
operates on regions of the hybrid state space represented by a set of formulas. Let F be a set of formulas
in the variables q ∈ Q. A subset of Q is called a zone. Each zone Z ⊂ Q can be uniquely decomposed
into a collection

⋃
l∈L{l} × Rl, where Rl ⊆ Rn. Let ]Z denote a set of formulas that define Z. We define

the operator Pre : 2Q × Σ ∪ {λ} → 2Q by Pre(Z, σ) = {q ∈ Q | ∃q′ ∈ Z . q
σ→ q′}. Following [4], A is

effective if there is a class of formulas F which permits the symbolic analysis of A; namely (1) the emptiness
problem for each predicate of cF is decidable, (2) cF is closed under boolean operations and Pre (and Post)
operations, (3) ]Qf , ]Q0 ∈ F .

Suppose that the tangential and transversal foliations used to construct equivalence relation 'l for each
l ∈ L are defined by submersions Ψl

i(x) = ci. Let F be the class of formulas Ψl
i(x) % ci with ci ∈ Ck,

% ∈ {≤, <, =, >,≥}, l ∈ L, i = 1, . . . , n, and all finite conjunctions and disjunctions of these expressions.

Proposition 4.1. Suppose A is compatible with the stable partitions defined by {'l}. Then A with F is
effective.

Proof. We observe that: (1) the zones Q0, Qf can be represented as predicates of F by the compatibility
assumption, (2) ]Pre(R, σ), ]Post(R, σ) ∈ F for ]R ∈ F , by the compatibility of ge and re and the stable
partitions construction, (3) the emptiness problem for F is decidable. Indeed, consider a predicate defining a
closed region: ∃x.(c1 ≤ Ψ1(x) ≤ d1)∧ · · · ∧ (cn ≤ Ψn(x) ≤ dn). This predicate is equivalent to the quantifier
free expression (c1 ≤ d1) ∧ · · · ∧ (cn ≤ dn).
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