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Abstract

We address the problem of determining the minimum bit-rate needed to stabilize a linear
time-invariant process. For the noise free case, we determine a bit-rate below which stabilization
is not possible and above which asymptotic stabilization can be achieved. Inspired by differential
pulse code modulation (DPCM) techniques, we propose practical encoding/decoding schemes
that guarantee boundedness of the state for the case of a noisy linear time-invariant process.
With fixed-step quantization, we are only able to approach the minimum bit-rate for the noiseless
case. However, with variable-step quantization we are able to approach it even in the presence
of noise and disturbances.

1 Introduction

In this paper we address the problem of stabilizing a linear process through feedback under con-
strains on the bit-rate of the feedback loop. We assume that the actuator and the sensor used to
measure the process’ output are connected though a communication channel with finite bandwidth,
measured in terms of the maximum number of bits per second (bit-rate) that it can carry. In this
context we pose several questions; answering them will lead us to an efficient coding design:

1. What is the minimum bit-rate for which stabilization is possible?

2. In cases where the system state is multidimensional, should a different number of bits be used
to encode different dimensions of the state? if so, what are the right bit allocations?

3. Should the quantization step size be fixed or should it vary according to the state of the system?

We address these issues for linear time-invariant processes in the presence of (deterministic) input
disturbances and measurement noise. For simplicity, we assume that the sensors provide (noisy)
state measurements but most of the results would generalize for the case of output-feedback through
the use of state-estimators co-located with the sensors. The problem of stabilization with finite
communication bandwidth was introduced by Wong and Brockett [9, 10] and further pursued by
[6, 8, 7, 4]. The main novelty of our work is the introduction and analysis of practical quantization
schemes for communication-constrained stabilization under noisy conditions.

In Section 2, we address the question of determining the minimum bit-rate for which stabilization
of a noiseless process is possible. We compute a minimum average bit-rate below which it is not
possible to stabilize the process. This rate is determined by the unstable eigenvalues of the open-
loop process. We also show that this lower-bound for the bit-rate is tight in the sense that it is

†This material is based upon work supported by the National Science Foundation under Grant No. ECS-0093762.
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possible to achieve asymptotic stability for any rate above it. In defining bit-rate, our analysis in
Section 2 considers an approach where one bit is used for each sampling time. However we do
not restrict our attention to transmitting single bits uniformly distributed over time. In fact, our
negative results state that stabilization is not possible if the average bit-rate falls below a certain
threshold fmin. This means that, e.g., using an N -symbol alphabet and sending k symbols every
time interval of length T , stabilization is only possible when k log2 N/T ≥ fmin. It is important to
clarify that we are equating stability with boundedness and therefore, when we say that stabilization
is not possible, we actually mean that the state will grow unbounded for some initial conditions.

In Section 3, we consider the design of encoder/decoder pairs for linear processes whose state can
be measured by noisy sensors and with an additive input disturbance that cannot be measured.
The approach pursued is inspired by the derivations in Section 2, where bit-rate efficient coding is
based on encoder/decoder pairs that have an internal state that is kept synchronized. This intuition
leads to the design of a novel predictive coding scheme, similar to standard Differential Pulse Code
Modulation (DPCM) [3], where the predictor incorporates all available knowledge of the dynamics
of the system. In our case, since the goal is for both encoder and decoder to track the state of the
system, our predictor is constructed using the reconstructed state data to estimate the expected
state of the system at the next sampling time. Then the encoder will transmit to the decoder the
quantized difference between actual state and predicted state. By quantizing an estimation error
instead of the process’ state, we are able to significantly reduce the bit-rate needed to stabilize the
process (cf., e.g., [2, 4]).

We propose two distinct predictive encoding/decoding schemes and study their performances.
The first one (cf. Section 3.1) employs fixed-step quantization, which means that the number of,
and distance between, quantization steps remain constant. This scheme is simpler but can lead to
poor performance, especially for large initial conditions of the process. To overcome this difficulty
we also propose a encoding/decoding scheme with variable-step quantization, in which the number
of quantization steps remains constant but the distance between steps may vary (cf. Section 3.2).
This allows us to improve the quality of the steady-state response of the closed-loop system, with
respect to a fixed quantization step-size at the same coding rate.

Section 4 presents two example systems to illustrate the efficiency of our work. One of the exam-
ples is based on the predictive coding introduced in Section 3 and is applied to a one-dimensional
process. The second example deals with a two-dimensional process, where we make use of the
analysis to demonstrate the importance of bit allocation (i.e., using different number of bits for
each state dimension, in accordance with its importance for system stability.)

Related work

The problem of determining the minimum bit-rate to achieve stability has been addressed in [6,
8]. Nair and Evans [6] considered the stabilization of infinite-dimensional discrete-time linear
processes. They considered the noiseless case, where the initial condition is a scalar random variable.
When transposed to the finite-dimensional case, the minimum-rate found in [6] is actually smaller
than the one determined here. However, this is an artifact of considering a single scalar initial
condition. Tatikonda [8] considered the stabilization of finite-dimensional discrete-time noiseless
linear processes. We provide analogous results for continuous-time systems. The formulas derived
here match the ones that would have been obtained from [8] for the discrete-time process obtained
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from sampling the continuous-time one. This shows that sampling does not have a negative impact
on the minimum bit-rate needed for stabilization (assuming that controllability is not lost through
sampling). Our negative results on non-stabilizability are somewhat stronger than those in [8]
because we consider more general classes of encoders (e.g., not necessarily a fixed number of bits per
sampling interval) and a less restrictive notion stability (just boundedness as opposed to Lyapunov
asymptotic stability).

The use of a prediction-based encoder was also proposed by Liberzon [4], where a ball around
the most updated state-estimate is broken into square boxes (one for each symbol in the alphabet).
However, since there is no attempt to do optimal relative bit allocation, the bit-rates required by
[4] are higher than the ones needed here when considering states of dimension higher than one.
This penalty is paid due to using the same number of bits to represent all dimensions of the state
instead of, as we propose, using for each dimension the minimum number of bits that will guarantee
convergence.

The use of variable-step quantizers was inspired by the work of Brockett and Liberzon [1], where
they are used to achieve global asymptotic stability. As we do here, they decrease the step-size
as the system approaches the origin to achieve convergence to zero. To achieve global results,
they increase the step-size when the system’s state is outside the range of the quantizer. This
technique could also be used here to make our results global. In [1] no attempt is made to reduce
the bit-rate, as the goal of that work is to study the stabilization of quantized systems. By using
variable-step quantizers, we were able to stabilize linear processes affected by additive disturbances
and measurement noise, at any rate above the minimal one that was determined for the noiseless
case. This shows that additive noise/disturbances do not have a negative impact on the minimum
bit-rate needed for stabilization.

2 Minimum bit-rate

Consider a stabilizable linear time-invariant process

ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m, (2.1)

for which it is known that x(0) belongs to some bounded measurable set X0 ⊂ R
n with positive

measure. We are interested in stabilizing this process using a control law that utilizes limited
information about the state. In particular, we assume that we have an encoder that observes x(t)
and generates a stream of bits {bk : k = 0, 1, 2, . . . } at times {tk : k = 0, 1, 2, . . . }. The control
signal u(t) is then determined solely from observing the stream {bk} by a pair decoder/controller
(cf. Figure 1). One can then ask the question: What is the minimum bit-rate for which one can
stabilize the closed-loop system?

controller process

encoderdecoder

u x

bk ∈ {0, 1}

Figure 1: Closed-loop with binary feedback path
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Clearly, when A is stable no information is needed to stabilize (2.1) as one can just set u(t) = 0,
t ≥ 0. Also, when A has a stable A-invariant subspace, one can assume that x(0) has no component
on that subspace because even if this is not the case, such component will decay exponentially fast
to zero. We will therefore consider the most interesting case in which all the eigenvalues of A have
nonnegative real part.

Let us put ourselves in the position of the decoder/controller that observes the sequence of bits
{bk} and attempts to generate u. In case x was precisely known at some time tk, it would be
possible to compute an open loop law u(t), t ≥ tk that would drive x to zero (even in finite
time). However, this is not possible because the k bits available up to time tk are not sufficient
to determine the precise value of x(tk). In practice, with k bits one is only able to determine that
x(tk) belongs to some set Xk ⊂ R

n. If the sequence of sets {Xk} grows as k → ∞, it is impossible
to stabilize the system because, in the worst case, one could always be in a point of the set that
is at an increasing distance away from the origin. However, if the sequence {Xk} is bounded then
it is possible to stabilize the system because, by choosing appropriate controls, one can steer the
system so that the Xk are always centered at the origin and therefore the state remains bounded.
So the question formulated above is equivalent to: What is the minimum bit-rate for which one can
keep the sequence of sets {Xk} uniformly bounded?

We start by searching for a negative result, i.e., a bit-rate below which the sequence of sets is
unbounded. Actually, it is slightly easier to search for a bit-rate below which the “volume” of the
sets {Xk} is unbounded. To this effect, consider two instants of time tk, tk+1 at which consecutive
bits were received1 and let µ(Xk) :=

∫
x∈Xk

dx. be the volume of the set to which x(tk) is known to
belong immediately after the bit bk is received. By the variation of constants formula

x(tk+1) = eA(tk+1−tk)x(tk) + uk,

where uk :=
∫ tk+1

tk
eA(tk+1−τ)Bu(τ)dτ . Therefore, before the bit bk+1 is received, x(tk+1) is only

known to be in the set X−
k+1 := eA(tk+1−tk)Xk + uk. We are assuming here that the decoder knows

the input u that it applied during this period. The volume of X−
k+1 is then given by

µ(X−
k+1) :=

∫
x∈eA(tk+1−tk)Xk+uk

dx =
∫

z∈Xk

|det eA(tk+1−tk)|dz = |det eA(tk+1−tk)|µ(Xk).

Here, we made the change of integration variable z := eA(tk+1−tk)(x − uk). Using the fact that
det eM = etrace M = e

∑n
i=1 λi[M ] for any n × n matrix M with eigenvalues λ1[M ], λ2[M ], . . . , λn[M ],

we conclude that2

µ(X−
k+1) = e(tk+1−tk) trace A µ(Xk) = e(tk+1−tk)

∑n
i=1 λi[A] µ(Xk).

Suppose now that the coding is optimal in the specific sense that it would minimize the volume of
the set Xk+1 to which x(tk+1) will be known to belong. To maximize the volume reduction provided

1The times tk and tk+1 need not be distinct. In fact, we should regard using an alphabet with N > 2 symbols, as

receiving several bits simultaneously.
2In case we were working on discrete-time, we would have

µ(X−
k+1) = |detAtk+1−tk |µ(Xk) = | detA|tk+1−tk µ(Xk) =

∣∣∣ n∏
i=1

λi[A]
∣∣∣tk+1−tk

µ(Xk).
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by bit bk+1, this bit should allow us to locate x(tk+1) in one of two half-volumes of X−
k+1. Thus,

µ(Xk+1) ≥ 1
2
µ(X−

k+1) =
1
2
e(tk+1−tk)

∑n
i=1 λi[A] µ(Xk),

with equality achievable though optimal volume-reduction coding. Iterating this formula from 0 to
k, we conclude that

µ(Xk) ≥ etk(
∑n

i=1 λi[A])−k log 2 µ(X0).

Suppose then that

lim
k→∞

tk

( n∑
i=1

λi[A]
)
− k log 2 = +∞. (2.2)

This would mean that the volume of the sets {Xk} grows to infinity as k → ∞, which in turn
means that we can find points in these sets arbitrarily far apart for sufficiently large k. In this
case, stability is not possible because the state could be arbitrarily far from the origin regardless
of the control signal used. Moreover, any other encoding would also necessarily lead to unbounded
volumes and therefore instability because it could do no better than the optimal volume-reduction
coding considered. To avoid (2.2) – which would necessarily lead to instability – the sequence tk
must grow no faster than k log 2/

∑n
i=1 λi[A] for stability to be possible. This leads to the following

result:

Theorem 1. It is not possible to stabilize the process (2.1) with an average bit-rate smaller than

rmin :=
1

log 2

∑
i:�λi[A]≥0

λi[A].

For a discrete-time process rmin is given by

rmin :=
1

log 2
log

∣∣∣ ∏
i:|λi[A]|≥1

λi[A]
∣∣∣.

We show in Section 3 how to apply some of the ideas derived from this ideal case to the design a
practical coding system.

Optimal Encoding

Suppose now that the average bit-rate is larger than rmin and therefore that

lim
k→∞

tk

( n∑
i=1

λi[A]
)
− k log 2 = −∞,

which means that the volume of the sequence of sets {Xk} converges to zero. It turns out that this
is not sufficient to guarantee that these sets are uniformly bounded. In fact, their diameter could be
increasing if the sets were becoming increasingly “thin.” We show next that this does not happen
when one chooses an appropriate encoding scheme. For simplicity we assume that the matrix A
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is diagonal3 and use the norm ‖x‖∞ = maxi |xi| to compute the diameter of sets. Suppose that
one utilizes an encoding scheme that first places a bounding hyper-rectangle R−

k around X−
k , then

partitions this hyper-rectangle in two sub-rectangles R0
k and R1

k along the largest axis of R−
k , and

finally selects

bk =

{
0 x(tk) ∈ R0

k

1 x(tk) ∈ R1
k

.

Using this coding scheme, Xk is necessarily inside the hyper-rectangle Rk := Rbk
k . We show next

that all the axes of these hyper-rectangles converge to zero as k → ∞. To this effect, for each
i ∈ {1, 2, . . . , n} let ai

k denote the size of the ith axis of the hyper-rectangle Rk and ri ∈ [0, 1] the
average rate at which the ith axis is divided by two in the encoding scheme (i.e., the rate at which
this axis is the largest). These quantities can be related by

lim
k→∞

eλitk

2rik
ai

0 − ai
k = lim

k→∞
eλitk−rik log 2ai

0 − ai
k = 0, i ∈ {1, 2, . . . , n}.

By contradiction suppose that m of the ai
k are not converging to zero (the first m for simplicity)

and that the remaining are. This means that, for each i ∈ {1, 2, . . . ,m},

lim sup
k→∞

eλitk−rik log 2 > 0 ⇔ lim sup
k→∞

λitk − rik log 2 > −∞ ⇒ ri ≤ λi

log 2
lim sup

k→∞
tk
k

. (2.3)

Moreover,
∑m

i=1 ri = 1 because these must be the largest axes after some finite time. Therefore,
we must have

1 ≤ 1
log 2

( m∑
i=1

λi

)
lim sup

k→∞
tk
k

.

Since the axes that are not converging to zero they must correspond to unstable eigenvectors, and
we conclude that

rmin :=
1

log 2

∑
i:�λi[A]≥0

λi[A] ≥ 1
log 2

m∑
i=1

λi ≥ lim sup
k→∞

k

tk
.

Since this contradicts the fact that the average bit-rate is larger than rmin, we conclude that all
axes must be converging to zero. Since x(tk) is known to be inside Rk, this means that as k → ∞
the decoder/controller can determine the precise value of the state and drive it to the origin. The
following can then be added:

Theorem 2. Assume that A is diagonalizable:

1. It is possible to asymptotically stabilize (2.1) with any bit-rate larger than rmin.

2. It is possible to stabilize4 (2.1) with a bit-rate equal to rmin.
3If this was not the case but A was diagonalizable we could always consider a different norm that is obtained

from ‖x‖∞ through a similarity transformation. In case A had complex conjugate eigenvalues, the pair of conjugate

eigenvalues would have to be treated jointly but the results would still hold (cf. Remark 7 in Section 3.1).
4To prove this, one would replace the three inequalities in (2.3) by · = +∞, · = +∞, and · < ·, also arriving at a

contradiction.
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Remark 3. Diagonalizability is almost certainly not needed for part 1 and almost certainly needed
for 2. Uniformity in the convergence could be achieved if one required some form of uniformity in
the sampling (cf. Remark 9 in Section 3.2).

It is interesting to compare the results above with those in Elia and Mitter [2], where it is shown
that the memoryless quantization scheme that minimizes the product of quantization density times
sampling rate requires a sampling rate of

1
T ∗ :=

1
log(1 +

√
2)

∑
i:�λi[A]≥0

λi[A] ≈ rmin

1.27
.

Theorem 2 indicates that, on average, only 1.27 bits need to be transmitted at this rate, when one
considers encoding/decoding schemes with memory. Liberzon [4] also proposes an encoding scheme
for stabilization under limited communication. For a diagonal (or diagonalizable) matrix A, that
scheme would need an average bit-rate strictly larger than n�λmax[A]

log 2 , where λmax[A] denotes the
(unstable) eigenvalue of A with largest real-part. For a one-dimensional process this bit-rate is
precisely rmin, but for higher dimensions it is generally larger than rmin.

Remark 4. When the state is not directly measurable but only accessible through an output y :=
Cx + Du (through which the system is assumed detectable), the same bounds on the minimum
stabilizable bit-rates would hold because one could embed a state estimator in the encoder. As
before, we assume that the encoder knows the control law that is being used and can therefore
“guess” the control signal being applied.

Remark 5. A key observation to be made is that the encoder and decoder used to achieve optimality
had an internal state that was kept synchronized. In the above discussion this was implicit, as we
assumed that encoder and decoder both had knowledge of the rectangles Rk where the state was
known to be at time tk. In the next section we use this idea to introduce explicitly state prediction
in the coding algorithm.

3 State-prediction coding

Consider now a linear process with measurement noise and input disturbance given by

ẋ = Ax + B(u + d), y = x + n, x,n ∈ R
n, u,d ∈ R

m, (3.4)

where d denotes an exogenous disturbance and w measurement noise. Both n and d cannot be
directly measured but are assumed bounded. For generality we assume that the symbols {wk : k =
0, 1, 2, . . . } generated by the encoder at the times {tk : k = 0, 1, 2, . . . } are not necessarily binary.
Instead, each wk is a symbol in a finite alphabet with N distinct symbols. For simplicity we now
assume that the times tk are equally spaced by a fixed sampling interval Ts. The corresponding
feedback loop is shown in Figure 2. We restrict our attention to linear state-feedback controllers of
the form

u = Ky, (3.5)

where K is a state-feedback matrix that makes A+BK asymptotically stable. Clearly, (3.5) cannot
be implemented because y is not available to the controller. We use instead

u = Kyq, (3.6)
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controller process

encoderdecoder

u y

yq

d n

wk ∈ {1, . . . , N}

Figure 2: Closed-loop with process’ state encoding

where yq denotes the decoder’s output.

Based on Remark 5, we propose a specific encoder/decoder pair to stabilize (3.4) under communi-
cation constrains. This system is similar to standard Differential Pulse Code Modulation (DPCM)
techniques in that a prediction is generated by both encoder and decoder based on past quantized
data. However, a key difference is that the system we consider has a deterministic component that
controls the evolution of the state. Thus our predictor is meant to track the state of the system
based on information available at encoder and decoder (including both past state and the various
matrices that define the system dynamics.) Then, as in standard DPCM schemes, the difference
between the predicted and the measured stated values is quantized at the encoder and transmitted
to the decoder, thus reducing the number of bits required. Because encoder and decoder produce
state predictions based on quantized data, both can generate the same prediction.

We place inside the encoder and decoder identical “copies” of the process and controller that
are used to construct an estimate x̂ of the process’ state x. This can be done using the following
differential equation:

˙̂x = Ax̂ + Bu, u = Kx̂. (3.7)

At each sampling time tk, the difference ey := y − x̂ is quantized into one of N levels, producing
eq := Q(ey), where Q denoted a static quantization function. The corresponding word wk is then
transmitted to the decoder. Both in encoder and decoder, the state estimate x̂ is updated by

x̂(tk) = x̂−(tk) + e−q (tk) = x̂−(tk) + Q
(
e−y (tk)

)
= x̂−(tk) + Q

(
y(tk) − x̂−(tk)

)
,

where the superscript − refers to the limit from below. Note that if Q was the identity (no
quantization), we would have x̂(tk) = y(tk). Because of the quantization error, we actually have

x̂(tk) = y(tk) − ∆Q
(
y(tk) − x̂−(tk)

)
,

where ∆Q(z) := z−Q(z), ∀z ∈ R
n. The encoder and decoder just described are shown in Figure 3.

We will refer to these as a state-prediction encoder/decoder pair. With some abuse of notation we
used the same symbols to denote those signals inside the decoder and the encoder that will always
remain equal (assuming that there are no digital transmission errors).

3.1 Fixed-step quantization

We consider now the problem of designing a quantizer Q for which we have boundedness of the
process’ state x. To this effect let us define e to be the error between the process’ state x and its
estimate x̂, i.e., e := x − x̂. From (3.4) and (3.7), we conclude that between sampling times

ė = Ae + Bd, (3.8)
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+

−

˙̂x = (A + BK)x̂

x̂ = x̂− + Q(e−q )

˙̂x = (A + BK)x̂

x̂ = x̂− + Q(e−q )

yq = x̂

encoderdecoder

quant.
S&HAD AD

wk eqeq

x̂

e yyq

Figure 3: State-prediction encoder/decoder pair

and at a sampling time tk, e(tk) = ∆Q
(
e−(tk) + n(tk)

) − n(tk). Denoting by Ts a fixed sampling
interval and by tk and tk+1 := tk + Ts consecutive sampling times, we obtain

e(t) = eA(t−tk)∆Q
(
e−(tk) + n(tk)

)
+ w(t, tk), ∀t ∈ [tk, tk+1), (3.9)

where w(t, τ) :=
∫ t
τ eA(t−s)Bd(s)ds − eA(t−τ)n(τ). From (3.4) and (3.6) we also conclude that

ẋ = (A + BK)x − BKe + Bd, (3.10)

which shows that the estimation error e can be viewed as additive measurement noise on a non-
quantized closed-loop.

For simplicity, we assume for now that A is diagonal with real eigenvalues λi[A], i ∈ {1, 2, . . . , n}.
The fact that A is assumed diagonal introduces no loss of generality as long as A is diagonalizable.
The results that follow can also be adapted to handle the case when A has complex eigenvalues
(cf. Remark 7 below).

We consider here quantizers of the form

QK,�(e) =




�1 qK1(e1/�1)
�2 qK2(e2/�2)

...
�n qKn(en/�n)


 , e ∈ R

n, K ∈ N
n, � ∈ (0,∞)n

where qKi : R → R, Ki ∈ N denotes a uniform quantizer of the interval [−1, 1] into Ki levels.
Therefore, defining ∆qKi(s) := s − qKi(s), ∀s ∈ R we have that

|∆qKi(s)| ≤
1
Ki

, ∀s ∈ [−1, 1]. (3.11)

The following theorem provides conditions on the quantizer that guarantee boundedness of the
state of the closed-loop system. These conditions came in terms of the minimum number of quan-
tization levels needed for each component of the state, thus implicitly defining how the bit-rate
should be divided among the state components.

Theorem 6 (Bit-allocation for fixed-step quantization). Let wi ≥ 0 and ni ≥ 0 denote upper
bounds on the absolute values of the ith component of w(t, τ), τ + Ts ≥ t ≥ τ ≥ 0 and n(t), t ≥ 0,
respectively, and γ ∈ (0, 1], K ∈ N

n, � ∈ (0,∞)n be such that

Ki ≥ �i e
λi[A]Ts

γ(�i − ni) − wi
, γ(�i − ni) ≥ wi, ∀i ∈ {1, . . . , n}, (3.12)
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and consider the quantizer Q := QK,�. Initializing the encoder and decoder with x̂−(t0) = 0, where
t0 denotes the first sampling time, and assuming that

|xi(t0)| ≤ �i − ni, ∀i ∈ {1, . . . , n}, (3.13)

we have that

|ei(t)| ≤ γ(�i − ni), ∀t ≥ t0, i ∈ {1, . . . , n}, (3.14)

and the process’ state x remains uniformly bounded.

Before proving Theorem 6, it is instructive to compare it with Theorem 1. To this effect, note
that the encoder proposed here requires N :=

∏
i Ki symbols to be transmitted every Ts seconds.

This corresponds to an average bit-rate of

r :=
log

∏
i Ki

Ts log 2
=

∑
i log Ki

Ts log 2
.

According to Theorem 6, we can choose Ki as low as min{1, �i eλi[A]Ts

γ(�i−ni)−wi
}, which would yield a

minimum bit-rate for the state-prediction encoder of

rSPE =
1

log 2

( ∑
i:�i eλi[A]Ts>γ(�i−ni)−wi

λi[A] +
1
Ts

log
�i

γ(�i − ni) − wi

)
. (3.15)

Thus for γ = 1 and wi + ni much smaller then �i, we essentially recover the minimum bit-rate
derived in Theorem 1. This indicates that, at least under low noise, this type of encoding scheme
is not overly conservative.

The role of the constant γ can be understood from equation (3.14), which shows that smaller
values of γ will lead to a smaller error e between the process’ state x and its estimate x̂. This in
turn will lead to smaller values for x because of (3.8). This means that small values of γ lead to
better steady-state performance. The price paid for a small γ is a larger minimum bit-rate rSPE

required by this encoding scheme (cf. (3.15)).

Proof of Theorem 6. Since x̂−(t0) = 0, we have that e−(t0) = x(t0) and therefore

|e−i (t0) + ni(t0)| = |xi(t0) + ni(t0)| ≤ |xi(t0)| + |ni(t0)| ≤ �i.

From this, (3.9), and (3.11), we conclude that

|ei(t)| ≤ eλi[A]t�i

∣∣∣∆qKi

(e−i (t0) + ni(t0)
�i

)∣∣∣ + |wi(t, t0)| ≤ �i e
λi[A]t

Ki
+ wi, ∀t ∈ [t0, t1),

where t1 := t0 + Ts denotes the next sampling time. Since �i eλi[A]Ts

Ki
+ wi ≤ γ(�i − ni), we further

conclude that |ei(t)| ≤ γ(�i − ni), ∀t ∈ [t0, t1). Since γ ≤ 1, equation (3.14) follows by induction.
Once it has been established through (3.14) that e remains bounded, one concludes that x also
remains bounded because of (3.8).

Remark 7. The results above still hold with small modifications when A has complex conjugate
eigenvalues. In case λi[A], λj [A] is a complex conjugate pair, it would be enough, e.g., to quantize
the real part of xi and the complex part of xj because both xi and xj could be reconstructed from
these. Since in a sampling interval both the real and imaginary parts grows as fast as eTs�λi[A],
(3.12) should be replaced by

Ki = Kj ≥ �i e
Ts�λi[A]

γ(�i − ni) − wi
, γ(�i − ni) ≥ wi.

10



3.2 Variable-step quantization

The quantizer proposed in the previous section may lead to a poor steady-state response if one is
forced to choose the �i large to deal with large initial conditions. Indeed, if |xi(t0)| is large, because
of (3.13) we need to choose �i large and therefore the upper bound on ei given by (3.14) is also
large. In practice, and because of (3.10), this may lead to large values for x. We propose to use
variable-step quantization to overcome this difficulty.

To construct a variable-step quantizer we start with a sequence of scaling vectors {�(k) ∈ (0,∞)n :
k = 1, 2, . . . } and use the quantizer QK,�(k) at the kth sampling time. To improve the steady-state
response, the entries of the scaling vectors �(k) should increase as e becomes smaller, leading
to better resolution and smaller quantization errors. The number of quantization steps and the
sampling rate remains constant and therefore the bit-rate also does not change. The following
theorem provides a variable-step quantizer that also guarantees boundedness of the closed-loop
system. This quantizer has the desirable feature that even in the presence of noise it allows for a
bit-rate arbitrarily close to the minimum one that was derived in Theorem 1 for the noiseless case.

Theorem 8 (Bit-allocation for variable-step quantization). Let wi ≥ 0 and ni ≥ 0 denote
upper bounds on the absolute values of the ith component of w(t, τ), τ + Ts ≥ t ≥ τ ≥ 0 and n(t),
t ≥ 0, respectively, and γ ∈ (0, 1], K ∈ N

n, �(0) ∈ (0,∞)n be such that

Ki > γ−1eλi[A]Ts , ∀i ∈ {1, . . . , n},

and consider a variable-step quantizer constructed using the following sequence of scaling vectors

�i(k + 1) =
eλi[A]Ts

γKi
�i(k) +

1
γ

wi + ni, k = 0, 1, . . . (3.16)

Initializing the encoder and decoder with x̂−(t0) = 0, where t0 denotes the first sampling time, and
assuming that

|xi(t0)| ≤ �i(0) − ni, ∀i ∈ {1, . . . , n}, (3.17)

we have that

|ei(t)| ≤ γ(�i(k) − ni), ∀k ≥ 1, t ∈ [tk, tk+1), i ∈ {1, . . . , n}, (3.18)

and the process’ state x remains uniformly bounded.

Before proving Theorem 8, one should note that the minimum bit-rate for the variable-step
quantizer proposed is

r :=

log
∏

i:Ki>1

Ki

Ts log 2
>

1
log 2

( ∑
i:eλi[A]Ts≥γ

λi[A] − log γ

Ts

)
. (3.19)

Therefore, by choosing γ = 1, this quantizer is actually able to achieve any bit-rate above the
minimum one that was derived in Theorem 1 for the noiseless case. Moreover, for γ = 1 the
sampling interval Ts does not affect the minimum bit-rate required by the quantizer.

11



With respect to the steady-state performance, we conclude that limk→∞ �i(k) =
1
γ

wi+ni

1− eλi[A]Ts

γKi

and

therefore |ei(t)| is asymptotically bounded by

γ
( 1

γ wi + ni

1 − eλi[A]Ts

γKi

− ni

)
=

wi + ni
eλi[A]Ts

Ki

1 − eλi[A]Ts

γKi

.

Not surprisingly, to achieve the minimum bit-rate, we would need to choose γ = 1 and the Ki

arbitrarily close to eλi[A]Ts, which would lead to a very large upper bound on ‖e‖ and consequently
on ‖x‖. On the opposite extreme, we can choose Ki much larger than eλi[A]Ts

γ , which results in a
bit-rate much larger than the minimal one but a smaller upper bound for ‖e‖ and ‖x‖. The best
achievable upper bound for each |ei| is wi.

Remark 9. In the absence of noise and disturbances ni = wi = 0, all the �i(k) converge to zero
exponentially fast and therefore so does e and the process’ state x. This means that, for the noiseless
case, we can actually have exponential convergence to zero for any bit-rate arbitrarily close to the
minimum one derived in Theorem 1.

Proof of Theorem 8. We shall prove by induction that

|e−i (tk)| ≤ �i(k) − ni, ∀i ∈ {0, . . . , n}. (3.20)

Equation (3.17) provides the basis for induction because e−i (t0) = xi(t0). Assuming then that (3.20)
holds for some k ≥ 0, we conclude that |e−i (tk) + ni(tk)| ≤ |e−i (t0)| + |ni(t0)| ≤ �i(k). From this,
(3.9), and (3.11), we obtain

|ei(t)| ≤ eλi[A]t�i(k)
∣∣∣∆qKi

(e−i (tk) + ni(tk)
�i(k)

)∣∣∣ + |wi(t, t0)| ≤ �i(k) eλi[A]t

Ki
+ wi, ∀t ∈ [tk, tk+1),

where tk+1 := tk + Ts is the next sampling time. From this and (3.16) we further conclude that

|ei(t)| ≤ γ(�i(k + 1) − ni), ∀t ∈ [tk, tk+1). (3.21)

This finishes the induction argument since γ ≤ 1 and therefore (3.20) holds for k + 1. Moreover,
because of (3.21) we actually conclude that (3.18) holds. This essentially finished the proof since
boundedness of e (and therefore of x) now follows from the fact that the �i(k) are uniformly
bounded.

4 Examples and experimental results

As discussed in the introduction, the preceding sections served to establish several important facts
that have direct applicability to the design of practical coding systems. In this section we present
examples to illustrate the usefulness of these results.

Let us consider first a process with a one-dimensional state-space model given by

x[k + 1] = 1.6x[k] + u[k] + d[k], y[k] = x[k] + n[k].

Under no bandwidth constrains, we would apply a control input u[k] = −Ky[k], where K is the
optimal control gain that would minimize a given quadratic cost function. Our results compare
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Compression Scheme Quantization Levels 103
∑

x2 103
∑

u2

None ∞ 2.379 1.8041
USQ 16 13.605 1.8756

Standard PC 16 2.523 1.9374
Optimal PC 16 2.410 1.8324

USQ 18 3.497 1.8527
VS-USQ 18 2.462 1.8657

PC-VS-USQ 18 2.305 1.8954

Table 1: Comparison of different encoding schemes.

the performance of six different forms of transmission of the observations y[k]: (i) no compression,
(ii) uniform scalar quantization (USQ) with constant step size, (iii) predictive coding with simple
prediction based on previous observations (Standard PC),(iv) predictive coding with optimal state
prediction (Optimal PC), (v) variable step size scalar quantization without prediction (VS-USQ),
and (vi) variable step size scalar quantization with prediction (PC-VS-USQ).

In all cases, the overall cost function was chosen to be
∑∞

0 (x2 + u2) over the trajectory, starting
from an arbitrary initial condition of x0 = 20. Pseudo-random noise processes d and n were
simulated as white Gaussian with variance 1. The constant γ in Theorems 6 and 8 was chosen to
be 0.1. Following Theorem 6, the minimum bit-rate for this system is 4 bits/sample. Indeed it
was observed that the system does not converge for a quantization rate of 3 bits/sample. Results
for convergence cost (measured by

∑
x2) and control cost (measured by

∑
u2) were averaged over

1000 simulations for each case, and are shown in Table 4.

Several observations can be made on the results. First, we can see how the selection of the
predictor based on knowledge of the system, as described in Section 3 results in a lower cost. In
optimal PC, the aim is to make the best possible prediction of the next input sample, given the
previous sample and the system dynamics. In our system, the best predictor of x[k] given x[k − 1]
would be x̂[k] = (A + BK)x[k − 1], where A = 1.6, B = 1 and K is the optimal control gain. The
difference between this prediction and the actual input sample, x[k] − x̂[k], is then quantized with
a fixed uniform quantizer. At the decoder, we receive Q(e[k]), and we update the current estimate
of the state as x̂[k] = Q(e[k]) + x̂[k − 1]. Both encoder and decoder retain a one-step memory of
the state. To synchronize the encoder and decoder, we work with the state estimate rather than
the actual state at every step. In the standard predictive coder, we simply have x̂[k] = x[k − 1].
We find that the optimal PC scheme has a lower convergence and control cost than the standard
PC, since it makes use of the system dynamics to make a better prediction. It also outperforms the
non-predictive USQ scheme; since the prediction error has a lower dynamic range than the actual
observations, we get better performance with the predictive approach.

A second observation is that VS-USQ can outperform standard USQ. To illustrate this, we
simulate a variable step-size quantizer following the adaptation schedule in (3.16). Given a fixed
number of levels K1 (corresponding to a bit-rate greater than the minimum one), the quantizer
starts with a large dynamic range �(0) for the input, and progressively scales it down, as �(k +1) =

A
γK1

�(k). In our simulations, we assumed K1 = 18, �(0) = 50, and stopped scaling the step size at
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Compression Scheme Quantization Levels 103
∑

(x2
1) 103

∑
(x2

2) 103
∑

(u2)

None ∞ 2.0447 3.4577 1.837
USQ 8, 8 1338.0 3.6 1.9245
USQ 16, 4 212.53 3.68 1.9249
USQ 18, 6 120.02 3.59 1.882

Optimal PC 16, 4 29.899 3.549 1.9223
VS-USQ 18, 6 2.3138 4.0995 2.295

PC-VS-USQ 18, 6 2.1587 3.8339 2.3795

Table 2: Comparison of quantization schemes for the two-dimensional system.

�final = 6. Clearly, we do better by dynamically adapting the quantizer to the dynamic range of the
input. Note that an adaptive quantization will be needed when the initial conditions of the system
are allowed to be arbitrary [1]. Also note that unlike well known adaptive quantization techniques
used for source coding, here the adaptation is driven by the knowledge of the system structure.
Thus, a system with known equations to which a given amount of control has been applied, can be
expected to be with high likelihood within a certain distance of the origin, and therefore a choice
of step size that is well suited to the current state of the system is possible.

In a second experiment we consider the two-dimensional process given by

x[k + 1] = [ 1.6 0
0 .4 ] x[k] + [ 1

1 ] (u[k] + d[k]), y[k] = x[k] + n[k].

As before, we consider an ideal control input u[k] = −Ky[k]. We use this experiment to illustrate
how in the case of multidimensional state variables, one should use more bits to encode those
dimensions that are more important for convergence. The eigenvalues of A are simply 1.6 and
0.4. Given γ = 0.1, the optimal bit-allocation scheme should quantize the first element of the
observation vector with at least 4 bits, and the second with at least 2 bits. Any other bit-allocation
would perform worse – and this is verified by our results for USQ with 3 bits each, and USQ with 4
and 2 bits respectively. If we allow a bit-rate greater than the minimum, we find a variable step-size
scheme (with �(0) and �final as in the one-dimensional case) outperforms the fixed step size scheme.

5 Conclusions

We addressed the problem of determining the minimum bit-rate needed to stabilize a linear time-
invariant process. In particular, we determined a bit-rate below which stabilization is not possible
and above which asymptotic stabilization can be achieved.

Inspired by DPCM, we proposed encoding/decoding schemes that guarantees boundedness of
the state for the case of a noisy linear time-invariant process. With fixed-step quantization, we
are only able to approach the minimum bit-rate in the noiseless case. However, with variable-step
quantization we are able to approach it even in the presence of noise and disturbances.

We assumed that the state of the process was accessible (or could be estimated by the encoder)
and was transmitted digitally. We are currently exploring transmitting the process output or the
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control signals instead. Another topic of future research is the development of Adaptive DPCM
encoding schemes to be used when bounds on the noise are not known a priori.

We considered a purely deterministic framework, where boundedness was required for every
initial condition and noise/disturbance (inside pre-specified bounded sets). It is worth it to explore
how the results derived here would change if one were working in a stochastic setting by attaching
probability distributions to the initial conditions/noise/disturbance and relax stability to an average
sense. One would then expect that entropy-like coding (characterized by a variable number of bits
per symbol) would lead to lower bit-rates.
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