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Abstract

Packet Scale Rate Guarantee (PSRG) is a node model used by IETF for Expedited

Forwarding, a priority service defined in the context of Differentiated Services [10]. We

review probabilistic performance bounds that apply to PSRG nodes, and improve a

previous bound for loss probability.

1 Introduction

Differentiated Services. Expedited Forwarding (EF) is a Per-Hop Behavior (PHB) of

Differentiated Services (DiffServ), designed to offer a low-loss, low-latency, low-jitter service

[10]. In an EF network, packet flows are shaped individually at the network ingress points,

but are served as aggregates by the nodes in the network. The definition of EF PHB relies

on Packet Scale Rate Guarantee (PSRG) [10] (defined later). Some sample-path properties

of PSRG nodes are established, e.g., in [3, 6, 5]. In our prior work [23, 24] we obtained some

probabilistic bounds on the performance that apply to PSRG nodes. It is of network engi-

neering interest to have tight bounds on the performance of PSRG nodes, which would enable

one to dimension the network such that some notion of quality-of-service is guaranteed.

Our approach is based on combining some deterministic results of network calculus (see,

e.g., [5] and the references therein) with stochastic majorization such that we obtain bounds

on performance that hold in probability. While accounting for statistical multiplexing gain,

the probabilistic bounds are typically much tighter estimates of the actual performance than

the worst-case deterministic bounds. We discuss some related probabilistic approaches later.

Abstract Node Models: PSRG, GR, Service Curves. Consider a node that serves

packets and let (Tn)n, n ∈ Z
+, (resp. (T ′n)n), be the sequence of packet arrival (resp.

departure) times. Denote with Ln the size in bits of the packet that arrives at Tn.

A node is said to offer PSRG with rate r and latency e, if for all n ∈ Z
+, T ′n ≤ Vn + e;

where V0 = 0, and else

Vn = max
{

Tn, min[Vn−1, T
′
n−1]

}

+
Ln

r
, n > 0.

An equivalent definition [6] is that for all j ≤ n

T ′n ≤

{

e + T ′j +
Lj+1 + ... + Ln

r

}

∨
n

∨

k=j+1

{

e + Tk +
Lk + ... + Ln

r

}

. (1.1)
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Another node model is Guaranteed Rate (GR) [12]. We say that the node is GR with

rate r and latency e [12], if, similarly, T ′
n ≤ Vn + e where V0 = 0 but the recursion for Vn is

replaced by

Vn = max [Tn, Vn−1] +
Ln

r
, n > 0. (1.2)

An equivalent definition of GR is that for all n

T ′n ≤
n

∨

k=1

{

e + Tk +
Lk + ... + Ln

r

}

. (1.3)

Both PSRG and GR capture how much a real node differs from a hypothetical minimum

rate server: the GR model puts a bound on how much later the real node is, whereas PSRG

puts a bound on how much earlier or later it is. The difference is important if a node

multiplexes several flows into one single aggregate, thus PSRG is used in the context of

aggregate scheduling, while GR is in the context of per-flow scheduling. It can easily be seen

that PSRG is a stricter definition than GR, i.e., if a node is PSRG with rate r and latency e,

then it is also GR with rate r and latency e (the converse is not true); see [3] for a detailed

comparison of PSRG and GR.

We next recall the concept of service curves [21], and then discuss the relationship between

PSRG and GR, on one hand, and service curves, on the other hand. We need some further

notation. Let R(t) be number of bits observed in [0, t] at the node input. Likewise, R∗(t) be

the number of bits observed in [0, t] at the node output.

A node is said to offer the service curve β (positive-valued, wide-sense increasing), if

R∗ ≥ R ⊗ β. (1.4)

where ⊗ is the (min,+) convolution: R⊗ β(t) = infu∈[0,t][R(u) + β(t− u)].

A special case of service curve (“strict” service curve) is when the node guarantees that for

an interval of length v that is contained in a busy period, the service offered by the node is at

least β(v). Note however that is not generally true; in contrast, it is a merit of this definition

(like other node models mentioned in this paper) to apply to complex nodes, possibly non

work conserving, where the concept of busy period is not relevant (consider for example a

node made of a delay element followed by a server of a constant rate r, fed with a flow of

constant rate ε ≤ r; the amount of service received during a busy period of duration t is εt

which can be arbitrarily small).

Service curve and GR are, roughly speaking, equivalent, when the service curve is a rate-

latency function (i.e., has the form β(t) = r(t − e)+, with (·)+ := max[·, 0]). A more

precise statement ([5], Chapter 2) is as follows: a FIFO node that offers a service curve

β(t) = r(t − e)+ is GR with rate r and latency e; conversely, a GR node with rate r and

latency e offers the service curve β(t) = r(t − e − Lmax

r
)+, (even if it is non-FIFO), where

Lmax is the maximum packet size of the input. Also note that the definition of GR in (1.3)

is the max-plus equivalent of the min-plus definition (1.4) of service curve.
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Another node abstraction is adaptive guarantee [18, 1] (also called adaptive service curve

[5], Chapter 7). A node is said to offer the adaptive service curve β if for all t ≥ 0, and all

s ≤ t,

R∗(t) ≥ [R∗(s) + β(t− s)] ∧ inf
u∈[s,t]

[R(u) + β(t− u)]. (1.5)

The adaptive service curve is the min-plus equivalent of the max-plus definition of PSRG in

(1.1), and there is the same type of relationship between PSRG and adaptive service curve

([5], Chapter 7): a FIFO node that offers an adaptive service curve β(t) = r(t−e)+ is PSRG

with rate r and latency e; conversely, a PSRG node with rate r and latency e offers the

service curve β(t) = r(t − e − Lmax

r
)+. Similarly also, adaptive service curve is a stronger

property than service curve.

Probabilistic Bounds. In this paper we focus on probabilistic performance bounds for

an isolated PSRG or adaptive service curve node. We review our previous results on service

curve nodes [23, 24]; from the discussion above, it follows that all the results obtained for

service curve nodes also apply to PSRG nodes. Further, we give an improved loss bound

that exploits the adaptive service curve or PSRG definition, and does not seem to be readily

available for a service curve element. The study of probabilistic guarantees for a network of

nodes with aggregate scheduling turns out to be a non-trivial problem, and we leave it aside

here; see for example [24] for some indications.

In Section 2, we review the main lines of a bounding method, which has two phases. First,

we exploit events that are expressed in terms of arrival flows only. Then we find bounds on

the probabilities of these events using one of several Hoeffding’s inequalities [13]. We explain

how this method extends, and simplifies, previously known bounds. In Section 3, we explain

in this framework our previous bounds for backlog, delay and loss, that are all based on the

service curve property. We also give a new bound, which is an improved bound on loss that

exploits the adaptive service curve property. We show some numerical results for the loss

bound in Section 4.

Notation. Let Q(t) denote the number of bits present in a node at time t (we call this

backlog); also let L(t) be the number of bits lost in [0, t] at the node input, and R′(t) =

R(t)− L(t). For convenience, suppose R(0) = 0 and Q(0) = 0. We say R is α-smooth (or α

is an arrival curve for R, or R conforms to α), if α is a positive-valued wide-sense increasing

function such that R ≤ R ⊗ α, i.e. for all s ≤ t, R(t) − R(s) ≤ α(t − s). If the input R

is a superposition of I number of the flows, then with Ri(t) we denote number of the bits

observed in [0, t] that belong to the flow i, i = 1, 2, . . . , I. In the case of regulated flows,

we call αi an arrival curve for flow i. Next, for two functions α and β, let v(α, β) be their

maximum vertical deviation. A classical result is that if a node offers the service curve β

and the input is α-smooth, then v(α, β) is an upper bound on the backlog at any time.
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2 A Bounding Method

Phase 1: Reduction to Arrival Events. All bounds we present in this paper use the

following reduction, which was already found for example in [16, 26, 22, 7]. Events of the

interest such as “steady-state backlog larger than a given value”, “waiting time larger than

a given value”, “loss for a lossy node larger than a given value”, are shown to be subsets of

inclusions of the following events; for s ≤ t that belong to some countable set:

{

I
∑

i=1

Ri(t)− Ri(s) ≥ g(t− s)

}

, (2.6)

where g is some appropriately defined positive-valued non-decreasing function. The details

are given in Section 3.

Phase 2: Bounding the Probability of Arrival Events (2.6). A classical approach

that was used in the past consisted in posing some a-priori bounds for the probability of

(2.6): Kurose [16] assumes that, for each fixed s ≤ t, and 1 ≤ i ≤ I, Ri(t) − Ri(s) is

stochastically majorized by some known random variable; Yaron and Sidi [26] suppose that

the probability of (2.6) is upper bounded by a time-invariant exponential and then build

calculus under this assumption; this is later extended by Starobinski and Sidi [22]; Chang

assumes in [7] that, for each fixed s ≤ t, the moment generating function of R(t) − R(s) is

exponentially bounded and then establishes another calculus under this assumption.

Hoeffding’s Bounds for Phase 2. Instead of a-priori imposing a bound on the proba-

bility of the event in (2.6), we can establish a bound from the following assumptions: (A1)

Ri, 1 ≤ i ≤ I, are mutually independent; (A2) Ri is αi-smooth, all 1 ≤ i ≤ I; (A3) we

know ρ such that E[R(t)− R(s)] ≤ ρ(t− s), for all s ≤ t.

We argue that the above assumptions make sense for EF networks. Firstly, we expect

at the network ingress points that the independence assumption (A1) would be verified.

Secondly, with EF, it is supposed the flows are individually shaped at the network access,

thus (A2) would hold. Thirdly, without loss of generality, we can suppose αi is sub-additive;

thus, for all 1 ≤ i ≤ I, we can take

ρi = lim
t→∞

αi(t)

t
= inf

t>0

αi(t)

t
,

thus, in (A3), one can always use ρ =
∑I

i=1 ρi.

Now the event (2.6) is the deviation of the sum
∑I

i=1 Ri(t)−Ri(s) from its mean E[R(t)−

R(s)] by g(t−s)−E[R(t)−R(s)]. By assumption, the sum is of independent random variables

(A1), with bounded support (A2), and known upper bound on E[R(t)−R(s)] (A3). This is

exactly the framework of the bounds known as Hoeffding’s inequalities [13].

For instance, one Hoeffding’s inequality is for the case of a of random variables with the

same support; in our setting, this corresponds to the homogeneous case αi = α1, for all

1 ≤ i ≤ I. This gives, for ρt ≤ g(t) ≤ α(t),
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P(
I

∑

i=1

Ri(t)−Ri(0) ≥ g(t)) ≤

(

ρt

g(t)

)−I
α(t)
g(t)

(

α(t)− g(t)

α(t)− ρt

)−I(1− g(t)
α(t))

. (2.7)

The bound is tight; it is attained for Ri(t)−Ri(0) = αi(t), with probability pi = ρt

α(t)
, and

Ri(t) − Ri(0) = 0, with probability 1 − pi. As pointed out by Hoeffding [13] this bound is

the best one can obtain from Chernoff’s bound under the given assumptions. Hoeffding [13]

also gives bounds for the sum of random variables with non-identical supports, but those are

looser; see [24] for the application of these bounds to our case.

A related work that combines the regulation constraints with stochastic majorization is

that of Elwalid et al [11], Lo Presti et al [19], and Massoulié and Busson [17]. In [4, 8, 14]

the authors impose similar assumptions as those in (A1)–(A3). We demonstrate in [23, 24]

that most of the results derived under these assumptions can be obtained as an application

of Hoeffding’s inequalities.

The Bounds in this Paper. In the following section we give bounds in terms of the

probability of the events in (2.6). Combined with a direct application of (2.7), this gives final

bounds for the homogeneous case. The alert reader will enjoy making up the corresponding

final formulas. For the heterogeneous case, replace (2.7) by the corresponding Hoeffding’s

inequality (see [23, 24]).

It is worth mentioning that it is also possible to combine the bounds in the following

section with a-priori bounds on the probability of (2.6), as in [16, 26, 22], thus replacing

assumptions (A1) to (A3) by direct assumptions on the probability of (2.6). This effectively

provides a generalization of many results in [16, 26, 22] to the case of service curve or PSRG

nodes.

3 Bounds on Backlog, Delay, and Loss

3.1 A Bound on Backlog for Service Curve Nodes

Define

τ = sup[v|v ≥ 0, α(v) ≥ β(v)].

An intuitive, but over-simplifying, interpretation of τ is a (deterministic) bound on the

duration of the busy period in a node with service curve β, fed by an α-smooth flow.

Proposition 3.1. Consider a node that offers the service curve β and has a buffer of size

b ≥ v(α, β). For any fixed t > 0, any n ∈ N and any 0 = s0 ≤ s1 ≤ · · · ≤ sn−1 ≤ sn =

t− (t− τ)+,

P(Q(t) ≥ q) ≤
n−1
∑

k=0

P(R(t)−R(t− sk+1) ≥ β(sk) + q). (3.8)

The condition on buffer means that it is large enough for loss-free operation.
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Proof. (sketch) Fix any t > 0. By definition of the service curve β,

Q(t) ≤ sup
s∈[0,t]

[R(t)− R(t− s)− β(s)].

Notice for α-smooth input and τ as defined above, we can restrict the supremum in the

above inequality to [(t − τ)+, t]. Next, for any fixed n ∈ N and any 0 = s0 ≤ s1 ≤ · · · ≤

sn−1 ≤ sn = t− (t− τ)+,

{Q(t) ≥ q} ⊂
⋃

k∈[0,n−1]

{R(t)−R(t− sk+1) ≥ β(sk) + q} .

(3.8) can then be obtained by the union bound P(
⋃

n An) ≤
∑

n P(An).

3.2 A Bound on Delay for Service Curve Nodes

In order to accommodate the stationary framework, locally to this section, we extend the

definition of the GR property to hold on R; the whole real line. We say that a node offers

the GR with rate r and latency e, if there exists a sequence, defined by the recursion in

(1.2), such that for all n ∈ Z, there exists some m ≤ n with Vm ≤ Tm. We suppose (Tn)n

and (T ′n)n, n ∈ Z, are defined on R.

Consider a GR node with rate r and latency e. Let Dn be delay incurred at the node by

a packet labeled with n. We show in [25] that

Dn ≤
Q̃(Tn)

r
+ e, (3.9)

where Q̃ is the backlog of the hypothetical work-conserving server with constant rate r,

which is fed with the same input as our original system. It is known that for PSRG node

with rate r and latency e, the delay at any time t is bounded with Q(t)
r

+ e; this is known as

the delay-from-backlog property, and it holds for both FIFO and non-FIFO PSRG nodes [6].

In contrast, the delay cannot be bounded from backlog for GR nodes. Notice that by (3.9)

we establish the delay-from-backlog property for GR nodes, but with respect to the backlog

of the hypothetical system. This observation has a merit in deriving probabilistic bounds on

delay as we will see later.

Suppose R and Q are right-continuous with left-hand limits. From (1.3), and Dn =

T ′n − Tn ≤ Vn − Tn + e, we obtain:

Dn ≤ max
k≤n

[
R(Tn)− R(Tk−)

r
− (Tn − Tk)] + e.

Define Q̃(t) = sups≤t[R(t)−R(s)− r(t− s)], and then combining with the last inequality

we directly obtain (3.9). A reflection to Reich’s formula [20] justifies the interpretation of Q̃

as the backlog of a work-conserving server with constant service rate r.
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Now to consider the waiting-time distribution we need to introduce Palm probability P
0
T

[2], which is in simple terms probability of an event at time 0 with T0 = 0, i.e. there exists

an arrival at 0. Suppose the increments of R are stationary, and E[R(t)] = ρ̄t. Then, from

distributional Little’s law [15] and (3.9), we obtain, for any u ≥ 0 (see [25], Eq. (10)),

P
0
T (D0 ≥ u) ≤

r

ρ̄
P(Q̃(0) ≥ r(u− e−

Lmax

r
)+). (3.10)

Notice the bound is in terms of the stationary distribution of the backlog Q̃, which can be

further bounded as shown in Section 3.1.

Lastly, we briefly comment an alternative approach [24]. We could use the delay-from-

backlog bound of PSRG nodes and obtain (3.10) with Q̃ replaced by Q, the backlog of

the original system. Then, again we bound the right-hand side in (3.10) as in Section 3.1.

However, note that this would amount to accounting for the latency e twice, which will give

a loser bound than if we use (3.10) instead.

3.3 A Bound on Loss for Service Curve Nodes

Assume time is discrete (t ∈ Z
+). Fix any m ≥ 0. Redefine

τ(m) = max{v ∈ Z
+|α(v) ≥ β(v) + b + m}. (3.11)

For example, with α(t) = ρt + σ, such that ρ < r, we have v(α, β) = σ + ρe, and

τ(m) =
v(α, β)− b−m

r − ρ
+ e.

Proposition 3.2. Consider a node that offers the service curve β and has a buffer of size

b < v(α, β). Then, for any t > 0 and m > 0,

P(L(t)− L(t− 1) ≥ m) ≤
t−1
∑

s=(t−τ(m))+

P(R(t)− R(s) ≥ β(t− s) + b + m), (3.12)

and P(L(t)− L(t− 1) ≥ 0) = 1.

Remark 3.1. The following may help in positioning the result. The bound comes from

majorizing L(t)− L(t− 1) with L(t)− L(s), where s < t is the beginning of the busy period

in which t is contained. This is rigorously true if β would be a strict service curve.

Another observation from [24], which can be also observed from the sketch of the proof

below, is that for all t > 0,

L(t)− L(t− 1) ≤ [Q̃(t)− b]1Q(t)=b ≤ (Q̃(t)− b)+,

where Q̃ is the backlog of the hypothetical system with input R and output R∗ = R⊗β (min-

plus linear system [5]), with buffer of size b̃ ≥ v(α, β). Notice, L(t)−L(t− 1) ≤ v(α, β)− b,

for any t > 0.

7



We have [24]:

E[L(t)− L(t− 1)] ≤ E[(Q̃(t)− b)+] ≤ [v(α, β)− b]P(Q̃(t) ≥ b). (3.13)

Suppose R is with stationary increments and E[R(u)] = ρ̄u. Then, for any fixed t ≥ τ , a

bound on the long-run loss ratio l̄ is [24]:

l̄ =
E[L(t)− L(t− 1)]

ρ̄
≤

v(α, β)− b

ρ̄
P(Q̃(t) ≥ b).

Proof. (sketch) We have L(t)−L(t− 1) = [L(t)−L(t− 1)]1Q(t)=b ≤ [L(t)−L(s)]1Q(t)=b, for

any s ∈ [0, t− 1]. It follows from the definition of the service curve β that there exists some

s ∈ [0, t] such that

L(t)− L(s) ≤ R(t)−R(s)− β(t− s)−Q(t).

If s = t, then Q(t) ≤ −β(0) ≤ 0, and thus L(t) − L(t − 1) = 0. As a result, we can write:

for some s ∈ [0, t− 1],

L(t)− L(t− 1) ≤ [R(t)− R(s)− β(t− s)− b]1Q(t)=b

≤ [R(t)− R(s)− β(t− s)− b] ∨ 0.

Thus, for any m > 0,

{L(t)− L(t− 1) ≥ m} ⊂
⋃

s∈[(t−τ(m))+ ,t−1]

{R(t)− R(s) ≥ β(t− s) + b + m} . (3.14)

Above we reduce the union of events from [0, t−1] to [(t−τ(m))+, t−1]. This follows directly

from the definition of τ(m) (3.11). Suppose t > τ(m). Then, for all s ∈ [0, t − τ(m) − 1],

{R(t)− R(s) ≥ β(t− s) + b + m} is not true. (3.12) is obtained from (3.14) by the union

bound.

3.4 A Bound on Loss for Adaptive Service Curve Nodes

We refine Proposition 3.2 under the stricter assumption that the node offers an adaptive

guarantee. Thus it applies in particular to a PSRG node, whereas the bound in Proposi-

tion 3.2 applies more generally to a GR node. Time is discrete (t ∈ Z
+). By convention,

[x, y] = ∅, for any x > y.

Theorem 3.1. Consider a node that offers the adaptive service curve β and has a buffer of

size b < v(α, β). Then, for any t > 0 and m > 0,

P(L(t)− L(t− 1) ≥ m) ≤
t−1
∑

z=(t−τ(m))+

P(R(t)− R(z) ≥ β(t− z) + b + m) ∧B(z), (3.15)

and P(L(t)− L(t− 1) ≥ 0) = 1, where

B(z) = min
u∈[z+1,t−1]

P(R(t)− R(u) ≥ β(t− u) + m).
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Remark 3.2. Compare with Proposition 3.2 (which is under a weaker assumption that the

node offers the service curve β). The bound in (3.15) may be tighter, and this is confirmed

numerically in Section 4. An alert reader may also find useful to relate the result with that

of Cruz and Liu [9]. As an aside, note that the result can be readily extended to a more

general definition of the adaptive guarantee (def. 7.2.1 in [5], Chapter 7), but we defer that

for brevity.

From the proof below we can deduce the following counterpart to the last bound in (3.13):

E[L(t)− L(t− 1)] ≤ ([v(α, β)− b] ∧ [α(1)− β(1)])+
P(Q̃(t) ≥ b),

where Q̃ is as defined in (3.13). This bound is clearly tighter than the last bound in (3.13).

Proof. The definition of the adaptive service curve β is equivalent to: for all t ≥ 0, and all

s ∈ [0, t], either

R∗(t)− R∗(s) ≥ β(t− s), (3.16)

or

∃ u ∈ [s, t] : R∗(t) ≥ R′(u) + β(t− u). (3.17)

Note that the inequality in (3.16) can be written as:

R(t)−R(s) ≥ β(t− s) + Q(t)−Q(s) + L(t)− L(s), (3.18)

and, the inequality in (3.17) as:

R(t)−R(u) ≥ β(t− u) + Q(t) + L(t)− L(u). (3.19)

Fix any t > 0. Let z be the largest integer in [0, t] such that R∗(t) ≥ R′(z)+β(t−z). There

always exists such an integer; note that both (3.16) and (3.17) are verified for u = s = 0.

Notice that by definition of β and z, (3.16) is verified for all s ∈ [z, t].

Further, clearly, for any u ∈ [0, t− 1],

L(t)− L(t− 1) = [L(t)− L(t− 1)]1Q(t)=b ≤ [L(t)− L(u)]1Q(t)=b.

By definition of β and z, from (3.19), we have

L(t)− L(z) ≤ R(t)− R(z)− β(t− z)−Q(t),

and, from (3.18), for all u ∈ [z, t],

L(t)− L(u) ≤ R(t)−R(u)− β(t− u)−Q(t) + Q(u).

From the last three inequalities, we conclude:

L(t)−L(t−1) ≤



(R(t)− R(z)− β(t− z)− b) ∧
∧

u∈[z+1,t−1]

(R(t)−R(u)− β(t− u))



 1Q(t)=b.

9



0 10 20 30 40 50
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

m (packet units)

P
(L

(t
)−

L(
t−

1)
>

=
m

)
π=50 r
100 r
200 r
400 r
800 r
inf

0 10 20 30 40 50
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

m (packet units)
P

(L
(t

)−
L(

t−
1)

>
=

m
)

π=50 r
100 r
200 r
400 r
800 r
inf

0 10 20 30 40 50
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

m (packet units)

P
(L

(t
)−

L(
t−

1)
>

=
m

)

π=50 r
100 r
200 r
400 r
800 r
inf

b = 10L b = 20L b = 40L

Figure 1: Bounds on the loss probability with varying peak-rate constraint π and the buffer

size b; L is packet length. The marks denote the bound in (3.15). The solid lines show (3.12);

the lines coincide in almost all the cases with an exception for π = 50r.

If z = t, then from (3.19), Q(t) = 0. Thus, we can write L(t)− L(t− 1) ≤

≤
∨

z∈[0,t−1]

[

(R(t)−R(z)− β(t− z)− b) ∧
∧

u∈[z+1,t−1](R(t)−R(u)− β(t− u))
]

1Q(t)=b

≤
∨

z∈[0,t−1]

[

(R(t)−R(z)− β(t− z)− b) ∧
∧

u∈[z+1,t−1](R(t)−R(u)− β(t− u))
]

∨ 0.

And, for any m > 0, we obtain {L(t)− L(t− 1) ≥ m} ⊂

⊂
⋃

z∈[(t−τ(m))+ ,t−1]

{R(t)− R(z) ≥ β(t− z) + b + m}
⋂

u∈[z+1,t−1]

{R(t)− R(u) ≥ β(t− u) + m} ,

where the reduction of the union clearly follows from the definition of τ(m) (3.11).

(3.15) follows by the union bound and the intersection bound P(
⋂

n An) ≤ minn P(An).

4 Numerical Examples

We show a numerical example for the bound on loss probability in (3.15) and compare with

(3.12). We consider a node that offers the adaptive service curve β(t) = rt, with r = 150

Mb/sec. The buffer size of the node is b and is varied. The input R is a superposition of

I = 100 flows; each with constant packet length L = 1500 bytes. The flow i ∈ {1, 2, . . . , I}

is regulated by the dual leaky-bucket αi(t) = min[πt, ρ1t + σ1], where ρ1 = I−1αr, σ1 = 8L,

and π is varied; α is set to 0.2 (it is an upper bound on the load). Notice π is the peak-rate

constraint; ρ1 is an upper bound on the sustained rate; σ1 is the burstiness parameter. Time

is discrete with each discrete time slot being equal to L
r

of real time (one slot equal to packet

transmission time). We use Hoeffding’s bound (2.7) on the probabilities in (3.12) and (3.15).
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Numerical results are shown in Fig. 1. Observe that the bound (3.12) remains fairly

insensitive to the value of π. In contrast, we observe, smaller π is, smaller the bound (3.15)

is. This is to be expected. Recall that the term B(z) in the bound (3.15) accounts for

the arrival overflow over small timescales. It is exactly for these small timescales where the

peak-rate constraint may act a role, and may decrease the term B(z). It is to be expected

from (3.15), larger b is, lessen the impact of B(z) is; this can be observed from the numerical

results.
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