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Abstract- The establishment of the overall ob-
jectives of a distributed sensor network is a dynamic
task so that it may sufficiently well ‘track’ its environ-
ment. Both resource allocation to each input data flow
and congestion control at each decision node of such
a network must be performed in an integrated frame-
work such that they are sensitive to this dynamically
established overall objectives. In this paper, the effec-
tiveness of a ‘per-flow’ virtual queuing framework that
decouples the input data flows to each decision node is
demonstrated. Under this framework, the buffer set-
point level of a decision node is established via the
control of setpoint levels of individual virtual buffers
assigned to each source node. Network calculus no-
tions are utilized to model the end-to-end flow and de-
sign a simple yet effective feedback control law for
each input data flow. The control strategy, while en-
abling satisfactory tracking of a dynamically allocated
buffer queue setpoint, is also robust against the time-
varying nature of network delays and buffer depletion
rate.

I INTRODUCTION

Distributed sensor networks (DSNs) utilize a vari-
ety of sensors that may be distributed logically, spa-
tially, and geographically. In a highly dynamic envi-
ronment, the observed ‘scene,’ and hence the overall
objectives, can change frequently and hence a DSN
requires a resource allocation and congestion control
scheme that is sensitive to the overall objectives of the
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DSN and accounts for the following concerns in an ef-
fective manner [7, 11, 12]:

(a) time-varying (TV) network-induced delays;
(b) inherent nonlinearities of the network such as

buffer cutoff/saturation and limitations on the output
rate of each node;

(c) dynamic allocation of available bandwidth to
input data flows; and

(d) maintenance of satisfactory buffer occupancy
levels at each decision node.

Strategies that address some of these concerns have
appeared in the literature. For example, effective con-
gestion control strategies based on conventional con-
trol theoretic techniques are in [10, 8]. However, in a
highly dynamic environment, all these concerns must
be addressed in an integrated framework in order to
obtain satisfactory results.

The modeling and congestion controller design in
the work presented herein utilize notions from network
calculus which is an alternate strategy for determin-
istic analysis of networks. It uses the concept of an
impulse response in a certain min-plus algebra to char-
acterize each network element thus providing a con-
venient mathematical framework for maintaining QoS
guarantees [5]. In this paper, we extend and adapt
these notions for the purpose of resource allocation
and congestion control of DSNs operating in a highly
dynamic environment. In particular, the TV nature of
network delays, source-node rate cutoff, and dynamic
allocation of buffer setpoints and depletion rates are
all accounted for. Robustness against these constitute
the major significance of the proposed control strategy.
The simulation results demonstrate its effectiveness in
satisfactorily maintaining the buffer levels.



This paper is organized as follows: in Section II,
a new ‘per-flow’ virtual queuing framework for analy-
sis of DSNs is presented; in Section III, the main no-
tions and results of min-plus algebra and network cal-
culus needed for the purpose at hand are presented; in
Section IV, a new controller strategy is derived using
network calculus approach; in Section V, simulation
results are provided to justify and clarify the notions
presented.

II VIRTUAL PER-FLOW FRAMEWORK

A DSN CONFIGURATION

For simplicity and ease of presentation, consider a
hierarchically organized DSN with the following node
layers [12]: sensor-nodes at the lowest level leaf-node
layer; sup-nodes at each intermediate level supervi-
sory layers; and the root node at the highest level. See
Fig. 1. Nodes at a given hierarchical level may com-
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Figure 1: A tree structured DSN.

municate with multiple sup-nodes at the next level.
This ensures fault tolerance and adaptability. Informa-
tion received at each sup-node from its corresponding
sensor-nodes must be buffered for processing and ex-
traction of information at a higher abstraction level so
that it can then be passed onto the next hierarchical
level. This is one major difference between a DSN and
a conventional communication network where the pri-
mary objective is reliable transfer of information from
a source to its destination. Each sup-node of a DSN has
a processing bandwidth that is a reflection of its data
processing speed. This latter quantity can be looked on
as the depletion rate of the sup-node buffer. Clearly,
to prevent data loss and improve performance, an ef-
fective resource management and congestion control
scheme is necessary.

B A VIRTUAL PER-FLOW QUEUING

FRAMEWORK

In a highly dynamic environment, the relevance of
data from each sensor-node, as perceived by its sup-
nodes, the quality of data from each sensor-node, and
indeed the number of sensor-nodes in the network are
all highly TV. Hence a mechanism that allows nodes at
one hierarchical level to allocate system resources dy-
namically and treat each sensor-node decoupled from
the others would be a convenient analytical tool. The
‘per-flow’ virtual queuing framework in Fig. 2 fulfills
these requirements thus rendering the controller design
simpler. Here, a ‘virtual’ buffer (which is not a phys-
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Figure 2: ‘Per-flow’ virtual queuing framework.

ical entity) is assigned to each virtual circuit or flow.
Data cells from each flow gets queued up in its own vir-
tual buffer. Fig. 2 illustrates the situation for

A
flows;

for BDC EGF A , HJI are sensor-nodes, KML<N are forward de-
lays, KJO�N are backward delays, PRQSI are rate controllers
(located at the sup-node) that dictate the instantaneous
rate for each sensor-node, and TVU I are virtual buffers.
The advantages offered by the per-flow framework in
Fig. 2 are the following: (a) system resource alloca-
tion algorithm can be seamlessly incorporated by dis-
tributing available system bandwidth and buffer level
setpoint to the sensor-nodes; (b) the decoupling of the
flows makes the analysis easier; (c) it is easier to incor-
porate different delay characteristics and nonlinearities
that may reside in each loop; and (d) it can address
end-to-end congestion management.

As will be demonstrated later, this per-flow frame-
work allows setpoint control of the sup-node buffer
by controlling the buffer level of each of its virtual
buffers. It is our contention that the bandwidth and vir-



tual buffer setpoint the sup-node allocates to each flow
must be determined by how important it perceives the
information from each sensor-node is. For example,
the work in [12] utilize a suitably defined importance
measure for each flow and allocates virtual buffer set-
points and depletion rates proportionally. This essen-
tially means that, even if the sup-node buffer setpoint
and depletion rate are constant, the resources allocated
to each virtual buffer can change significantly espe-
cially when the DSN is operating in a highly dynamic
environment where the importance of sensor-nodes are
highly dynamic as well.

III NETWORK CALCULUS

Network calculus is an elegant framework for anal-
ysis and maintenance of deterministic QoS guarantees
in packet switched networks [5, 9, 4].

A NOTATION

Let ��� and � ������ denote the nonnegative reals and� �	��
 respectively. We use � to denote the min-
operator. Define
 C�������� ���� � ������ ��� �� ������� s.t. �������! #"%$!&'
 C)( '�*��� ��+ � � �� � ������ �%�-, F���� �� '�.�-, F���� s.t.���-, F����/ 0" F213,54	6 " F��87-9;: (1)

One may view
'


as a generalization of



via the map-
ping
 �� '
 ��������� �� '���-, F����

C=< ������>?,@� F for ,A4B6 " F��87C&
 F otherwise.
(2)

When ���D"�� C�" , 
 is denoted as

FE

; when
'�����3F���� C" FG1F� , '
 is denoted as

'
 E
. Given �H4 
 (or


 E
), the

function obtained via (2) will be denoted by
'��4 '
 (or'
IE

). As an example, consider JK4 
LE and
'JM4 '
IE

where J.�����DC < " F for �DCN"O&
 F otherwise
&'JP�-, F���� CQ< JR���S>B,@� F for ,A4B6 " F��C78&
 F otherwise : (3)

B MIN-PLUS ALGEBRA

Definition 1 (Min-plus linearity) [3] The system op-
erator T�� 
 �� 
 �VU ��XW is said to be (min-plus)
linear if, (i) for any index set Y , T�6�Z\[^]�I�_a`cbdU Ie9a7 CZ\[^] I�_a` bfTG6 U I 7-9 , 1gU I 4 
 , and (ii) TG6 h\iNU�7 Cjh\iTk6 Ul7�F�13h�4m� ������ FS1gUn4 
 .

Definition 2 (Min-plus convolution) Min-plus con-
volution (in � 
 F '
 � ) of Uo4 
 and

'p 4 '
 is defined as�DU�q 'p �r����� CMZ\[^]s _ut Ewv xzy bdU{�-,@�Ii 'p �-, F����|9�:
Remarks:

1. For U}4 
 and
'~ F 'p 4 '
 , it is easy to show that���DU�q '~ �Oq 'p �r�����

C�Z�[^]s _ut Ewv xzy-� U��-,��ci�Z\[^]� _ut s v xzy ( '~ �-, F��%�Vi 'p �D� F����d���
2. Hence min-plus convolution (in � '
 F '
 � ) of

'~ F 'p4 '
 is taken as� '~ q 'p �r�-, F������KZ\[�]� _�t s v xzy ( '~ �-, F��%�Vi 'p �D� F����d�A:
Now the relationship �DU{q '~ �rq 'p C�U{q!� '~ q 'p �
holds.

3. With Definition 2 in mind, and using the map-
ping (2), min-plus convolution (in � 
 F 
 � ) forURF��Q4 
 may be defined as�DU�q��\�r�������MZ\[�]s _�t Ewv xzy bdU��-,@�Vi������S>	,��|9�:

4. We use U�� I^� to denote the B -fold min-plus con-
volution of U with itself.

5. Elements of

 E

and
'
 E

are referred to as pro-
cesses [5, 4]. Flows in a network, when they
represent the number of cells accumulated dur-
ing the time interval 6 " F��87 , can be described via
processes.

Min-plus convolution forms the basis for the fol-
lowing notions:



Theorem 1 (Impulse response) [3] For a given lin-
ear system TG6�� 7 , there exists a unique function

'p 4 '
 ,
referred to as its impulse response, s.t., for all input-
output pairs bdURF W 9 F U F W 4 
 ,W ����� C Tk6 U������87 C Z\[^]s _ ��� (%U��-,��Ii 'p �-, F����d� :

Unless otherwise mentioned, we deal with causal
systems for which Theorem 1 yieldsW �����DC TG6 U{�����87 C��DU�q 'p �r����� :
The following result will be useful later.

Lemma 1 Consider the input process 4 
uE to a buffer
which possesses a depletion rate

� ����� and depletion
process �P����� C��

x�	� E � �D�%�?4 
IE
. Then the corre-

sponding output is W ����� C��DU�q 'H�
 �r�����/4 
 E where'H 
 �-, F���� C �P�����2>?���-,@�;4 '
IE :
Proof: For causality, we clearly must haveW �����
�#U��-,��ci �P�����S>?���-,@� F213,54	6 " F��87 :
This, together with the fact that W ����� Cj������� F 1F��4��� , yieldW �����DCMZ\[^]s _�t Ewv xzy b U��-,��ci��������2>����-,��|9 :
This proves the claim. �
Remark: Lemma 1 imply that, for input processes in
IE

,
'H 
 4 '
 E can be considered the ‘impulse response’

of a buffer with depletion process �Q4 
 E .
Definition 3 The flow

'P�4 '
 (or P)4 
 ) is said to be'�
-constrained if

'P �-, F������ � 'P q '� �r�-, F���� F�1c,m4 6 " F��C7
(or P\������� ��PBq '� �r�-, F���� F�13,54	6 " F��87 ).

The above definitions provide the following impor-
tant result:

Theorem 2 (Backlog bound theorem) Consider a
'�

-
cons-trained, but otherwise arbitrary, input U 4 

to a network element with impulse response

'H 4 '

.

Then the backlog of the network element defined asU{�����2> W ����� is guaranteed to be bounded by U*4 
 if'� �-, F����
� 'H!�-, F����Ii U\����� F213, 4B6 " F��87 .

Proof: Note that U�������� �DU0q '� �r����� and
'� �-, F������'H!�-, F����Ii U\����� F213, 4B6 " F��87 , imply thatU{�����
� Z\[�]s _�t Ewv xzy ( U��-,@�Vi '� �-, F���� �

� Z\[�]s _�t Ewv xzy (FU��-,@�Vi 'H!�-, F����ci U\�����d�
CMZ\[�]s _�t Ewv xzy ( U��-,@�Vi 'H!�-, F���� � i U\�����
C W �����ci U\����� F

where we used the relationship W �����DC��DU�q 'H��r����� . �
Remark: It is easy to show that, if

'H#4 '
IE , the equal-
ity in the proof above will be achieved, viz., the back-
log can be made equal (not only bounded) to U�4 
 .

Definition 4 (Closure) [3] The closure operator T�� of
the operator T is T � ��� � CM[^]��wb��
F�Tk��� � F�T ��� � ��� � Fa:a:a:f9 ;
the closure

'���	4 '
 E
of a function

'� 4 '

is
'��� C[^]��wb 'J F '� F '����� � Fa:a:a:d9 , where

'JP�-, F����;4 '
 E is as in (3).

Remark: Note that the closure is necessarily an ele-
ment of

'
IE
.

Definition 5 (Subadditivity) A function
'~ 4 '
 is said

to be subadditive if'~ �-, F������ '~ �-, F��%�Vi '~ �D� F���� F�1g��4?6�, F��C7 :
The following properties can be easily established:

Theorem 3

(i) For arbitrary
'~ 4 '
 ,

'~ � is subadditive.

(ii) If
'~ 4 '


is subadditive, then
'~ q '~ C '~

and'~ � C '~
.

Theorem 4 If � 4 
 is
'� � -constrained, then it is

'�
-

cons-trained as well.

Proof: Since � is
'� � -constrained, we have ����������D�	q '� � �r����� , viz.,��������� Z\[^]s _ut Ewv xzy (%���-,@�Vi '� � �-, F����d�A:

Now use the fact that
'� ��� '� F212�-, F���� :��������� Z\[^]s _ut Ewv xzy ( ���-,@�Vi '� �-, F���� � :

Hence � is
'�

-constrained as well. �



Theorem 5 (Departure process constraint) The out-
put of a linear network element with impulse response'� � 4 '
IE is

'�
-constrained.

Proof: Let U F W 4 
 denote the input and output of
the network element respectively. ThenW q '� � CNU�q '� � q '� � CNU�q '� � C W :
Hence W in

'� � -constrained. Now apply Theorem 4 to
prove the claim. �

IV VIRTUAL PER-FLOW CONGESTION

CONTROL

A IMPULSE RESPONSES OF NETWORK DELAY

ELEMENTS

Perhaps the first study of the types of TV delays
that may occur in a network and their system theoretic
models in a discrete-time setting appeared in [6]. Fur-
ther work appear in [11] and [7]; a continuous-time
analysis is in [2].

The underlying ‘sampling unit time’ is denoted by
�

. This corresponds to the rate at which the sensor-
node rate is computed by the discrete-time controller.
All delays are therefore nonnegative integer multiples
of

�
.

A.1 FORWARD DELAY ELEMENT

Forward delay K LL����� is experienced by the cell flow
from a sensor-node to a sup-node (see Fig. 2). If URF W4 
 E denote, respectively, the accumulated number of
cells arriving and leaving the forward delay element
during the time interval 6 " F��C7 , the input/output relation-
ship of a forward delay element can be described viaW ����� CNU�����> K LO������� F
where the characteristics of K LL����� (in particular, re-
strictions on how it may vary from one time instant
to the other) are described in detail in [6, 7, 11]. We
do not provide these details here because they are not
very crucial for the results presented in this paper. On
the other hand, what is important realize is that, from
Theorem 1, the impulse response of the forward delay
element can be found as'H���� �-, F����DC=< " F if �S>	, C K L%����� &
 F otherwise : (4)

Observe that
'H����.4 '
 and W ����� CQ�DUBq 'H���� �r����� . The

minimum and maximum possible values of the for-
ward delay are denoted by K L and K L respectively.

A.2 BACKWARD DELAY ELEMENT

We assume that feedback information, sent from a
sup-node to a sensor-node, is carried by control cells
that are periodically (in terms of the number of cells)
inserted into the data stream1. The backward delay is
hence experienced by control cells only (see Fig. 2). In
this paper, what is being fed back is taken to be the pro-
cess information, viz., the information carried by con-
trol cells indicate the accumulated number of cells the
virtual controller wants the sensor-node to have sent
within the duration 6 " F��C7 . This is a departure from the
usual practice where the control information is the de-
sired sensor-node rate. Although either is a simply a
matter of choice, the approach taken in this paper al-
lows us to model the control flow and other related
flows as elements of



which requires nonnegativity

(see (1)). As before, if U F W 4 
 E denote, respectively,
the accumulated number of cells arriving and leaving
the backward delay element during the time interval6 " F��C7 , its input/output relationship can be described viaW ����� C�U{����> K Oa������� F
where K Of����� denotes the time difference between the
time instance the control information is ready and the
instance it arrives at the sensor-node. We assume that,
if no control cell is received during ���r> EGF��C7 , the sensor-
node will assume congestion in the data flow path and
stop sending data until it receives a new control cell.
Hence, the characteristics of K Of����� are identical to those
of K L%����� [6, 7, 11]. As before, the impulse response of
the backward delay element is'H���� �-, F���� CQ< " F if �2>B, C K Oa�����r&
 F otherwise : (5)

Observe that
'H�� � 4 '
 and W ����� C �DU	q 'H�� � �r����� . The

minimum and maximum possible values of the back-
ward delay are denoted by K O and K O respectively.

We also identify two types of roundtrip delays:
� L C K LL�����Vi K Oa���S> K LL������� &
� O C K Of�����Vi K LO���S> K Of������� :

1In ATM networks, RM cells play this role.



Also,
� � K L i K O and

� � K L�i K O .
A single loop in the virtual framework in Fig. 2

is depicted in Fig. 3; the forward delay, virtual buffer,
and backward delay network elements are identified
via their impulse responses

'H�� � 4 '

,
'H 
 4 '
IE

, and'H�����4 '
 respectively.

�

�

������ ����

�

����
	

� � ��
 �

�
� 


�

� ����� ��� � ������� � ����� �������

Figure 3: A single loop of the per-flow framework.

In Fig. 3, UM4 
IE is the input cell flow process
of the sensor-node, � F��  4 
IE are the data cell flow
processes from sensor-node to sup-node before and af-
ter experiencing the corresponding forward delay, andW 4 
IE is the output cell flow process of the virtual
buffer at sup-node. Of course, this latter process is
identical to the depletion process �Q4 
�E of the virtual
buffer. The control information is carried in Q , P , and
P  

. These are necessarily processes; P F�P  4 
 are the
control cell flows from sup-node to sensor-node before
and after experiencing the corresponding backward de-
lay, and Q 4 
 is the control command which, when
added to the virtual buffer output process W 4 
@E , in-
dicates accumulated number of cells the virtual con-
troller wants the sensor-node to have sent within the
duration 6 " F��87 .
B CONTROL OBJECTIVE

Our control objective is to ensure that the virtual
buffer backlog �  > W C �  > � remains at a dy-
namically assigned setpoint level U�4 
 . With the im-
pulse response

'H 
 4 '
IE of the virtual buffer and The-
orem 2 in hand, we may ensure this if the arrival pro-
cess �  4 
 E can be constrained by

'�
where

'� �-, F����
�'H�
!�-, F����ui U\����� F�13, 4B6 " F��C7 . To proceed, we first need
the impulse response of the throttle node (indicated by� in Fig. 3).

B.1 IMPULSE RESPONSE OF THROTTLE NODE

Note that�  CN�Bq 'H�� ��& W C��  q 'H 
 &
P C W i Q C W q 'p & P  C P?q 'H � ��F

where
'p 4 '
 is given by'p �-, F����DC�< Q\����� F for , CN� &
 F otherwise :

Hence

P  C��D�	q 'H�� � q 'H 
 i Q � q 'H � �
C��Bq 'H����2q 'H 
 q 'p q H���� CN�Bq 'H"!$#%#'& F

where
'H"!$#%#'&B� 'H�����q 'H 
 q 'p q 'H���� 4 '


. Then the
output process of the sensor-node is� C P  �RU C��D�Bq 'H"!$#�#'& �V��U : (6)

The solution to this can be obtained via the following
result:

Lemma 2 If

Q������)(#�����Vi � �S>?������� F21g�  > K O F (7)

then � CQU�q 'H �!$#%#'& is the unique solution of (6) and

hence
'H �!$#�#'& is the impulse response of the throttle node.

Proof: Use Lemma 8 of [1]: if[�]��* v +-, s/.0*1. + . x 'H"!$#�#'&L�32 F'4 �5(#" F213,A4B6 " F��C7�F (8)

then U q 'H �6�787:9 is the unique solution of (6). Let us
proceed as follows:� 'H�� �Sq 'H 
 �r�-, F����DC Z\[^]� _ut s v xzy ( 'H�� �u�-, F��%�Vi 'H 
 �D� F����d�

C 'H 
 �-,;i K LO��;��-,@��� F����
CN�������2>����-,;i K LL��;��-,@��� F

where ;��-,@� is the maximum solution of the equation�k> K LO�D�%�DC�, for a given ,A4?6 " F��C7 . In arriving at this,



we have used (4) and the fact that � 4 
�E is nonde-
creasing. Now it is fairly straight-forward to obtain an
expression for

'H"!$#%#'& :'H"!$#%#'&RC�� 'H�� �Sq 'H 
 �Oq 'H����Si Q?q 'H����
C 'H 
 �-,/i K LL��;��-,@��� F��2> K Of�������Vi Q\���2> K Oa�������
CN�����2> K Oa�������2>?���-,/i K LO��;��-,@�����i Q\���2> K Of������� F (9)

where we have used (5). Hence, to ensure (8), we need

Q����S> K Oa�������5(#���-,;i K LO��;��-,@�����2>?�����S> K Oa������� F
for all ,R4 6 " F��C7 . Again noting that � 4 
OE is nonde-
creasing, a corresponding sufficient condition is

Q����S> K Oa�������5(#�����ci K LO��;��-,@�����2>?�����S> K Of������� F
for all ,�4�6 " F��87 . Changing the variable ��> K Of����� , it is
easy to see that (7) is indeed a sufficient condition for
this to be true. �
C DERIVATION OF THE CONTROL STRATEGY

As elaborated upon in Section B, if we desire to
keep the virtual buffer level bounded by U�4 
 , its ar-
rival process �  4 
 E should be

'�
-constrained where'� �-, F���� � 'H�
��-, F����!i U\����� Fm1c,N4 6 " F��C7 . As Theo-

rem 5 implies, we can ensure this if �  
is the output

process of a network element with impulse response'� � , viz., �  C U q '� � . But, we already know that�  CNU\q 'H �!$#%#'& q 'H���� . Hence, to implement the control
strategy, a sufficient condition is'� � C 'H �!$#�#'& q 'H�����: (10)

The remainder of this section is dedicated to establish-
ing the conditions required to solve this for

'�
.

C.1 AN UPPER BOUND ON CONTROL FLOW

Lemma 3 If

Q\�����; #�����ci � �2>?������� F21F�; > K O3F (11)

then
'H"!$#%#'& is subadditive.

Proof: Use (9) to show the following:'H"!$#�#'&L�-, F��%�Vi 'H !$#%#'&L�D� F�����> 'H"!$#%#'&O�-, F����
C Q\�D�\> K Of�D�%���2>?���D� i K LL��;��D�%�����i����D� > K Of�D�%��� F for arbitrary � 4?6�, F��87 :

Now apply Definition 5:
'H !$#%#'& is subadditive iff, 13� 46�, F��87 ,

Q��D� > K Of�D�%���/ 0�P�D� i K LL��;��D�%������>?���D� > K Oa�D�%��� :
Change the variable ��> K Of�D�%� and take into account
the fact that � 4 
gE is nondecreasing to establish the
claim. �

Lemma 4 If

Q\�����; #�����ci � i K L��S>B�P����� F21F�; > � F (12)

then
'H �!$#�#'& q 'H ��� is subadditive.

Proof: Since (12) implies (11), from Lemma 3,
'H !$#%#'&

is subadditive, and therefore,
'H �!$#�#'& C 'H !$#%#'& . We then

have'H �!$#%#'& q 'H � � C 'H"!$#%#'&�q 'H � � C 'H"!$#%#'&O�-, F��2> K LL������� :
Now apply Definition 5:

'H �!$#%#'& q 'H���� is subadditive if,1g��4B6�, F��C7 ,
Q\�D� > � LO�D�%���/ 0�P�D� i K LL��;��D�%������>?���D� > � LO�D�%��� :
Change the variable ��> � LO�D�%� and take into account
the fact that � 4 
gE is nondecreasing to establish the
claim. �

In summary, Lemmas 3 and 4 provide conditions
on the control flow Q������ so that

'H !$#%#'& and
'H �!$#%#'& � 'H ���

are subadditive, respectively. A sufficient condition for
both these quantities to be subadditive is (12). The
latter condition however may not imply (7) unless we
impose the following upper bound on the control flow:

Q\�����)(#�����ci � i K L��S>B�P����� F21F�; > � : (13)

Lemma 5 Suppose the control flow QK4 �
satisfies

(13). Then a solution for
'� � C 'H �!$#�#'& q 'H���� in (10) is'� C 'H"!$#�#'& � 'H ��� .

Proof: Suppose
'� C 'H"!$#%#'& � 'H ��� . Then'� � C � 'H"!$#%#'& � 'H�� ��� � C � 'H �!$#�#'& � 'H������ � C 'H �!$#%#'& � 'H�� ��:

This completes the proof. �



C.2 A LOWER BOUND ON CONTROL FLOW

Now, with (13) true, there remains only one more
condition to keep the virtual buffer level at the dynam-
ically assigned setpoint U�4 
 :

Lemma 6 If (13) is true and

Q\�����
�#�����fi � ��>5�������ai U\���fi � � F21F�/ > � F (14)

then
'� �-, F������ 'H 
 �-, F����ci U\����� F213,A4B6 " F��87 .

Proof: Lemma 5 implies that'� C 'H"!$#�#'& � 'H ���
C 'H����2q 'H 
 q 'H����Lq 'H ���!i Q�q 'H����%q 'H����
C 'H � �2q 'H�� i Q���F

where
'H���4 '
 and Q���4 
 are defined as'H��d�-, F�������� 'H 
 q 'H�� � q 'H�� � �r�-, F����
C 'H 
 �-, F���> � LO�������DCN�����S> � LO�������2>B�P�-,@� &

Q��f����������QBq 'H����%q 'H����@�r�����
C Q��-, F��2> � L ������� : (15)

We also have� 'H � ��q 'H�� �r�-, F����DC 'H�
��-,/i K LO��;��-,@��� F���> � LO�������
C��P���2> � LO�������2>?���-,/i K LO��;��-,@����� :

Hence, noting that �Q4 
 E is nondecreasing, we have� 'H����2q 'H��|��� 'H�� F21c,54B6 " F��C7 :
Therefore, 13, 4B6 " F��C7 ,'� C�� 'H"!$#%#'&�q 'H���� �r�-, F������ 'H��d�-, F����ci Q��d����� :
Hence, a sufficient condition for

'� �-, F���� � 'H 
 �-, F����Ii
U\����� , 13,54B6 " F��C7 , to be valid is'H��d�-, F����ci Q��d�����
� 'H 
 �-, F����Vi U������ F�13,54B6 " F��C7 :
Substitute from (15):

Q\���3> � LO�������
�#�������3> �����c> � LO�������Fi U\����� F21F�/ #" :
Change the variable ��> � LO����� and take into account
the fact that � 4 
gE is nondecreasing to establish the
claim. �

C.3 CONTROL STRATEGY

In summary, to implement our control objective of
keeping the virtual buffer level at the dynamically es-
tablished setpoint U 4 
 , we combine (13) and (14):
For all �; > � ,�P���Vi � i K L��2>?�������

� Q\�������#�����Vi � �2>B�P�����ci U����ci � � F
Hence the total feedback process P C Q i W C Q0i�Q4 
 satisfies�P���Vi � i K L�� � P\�������#�����Vi � �ci U\���Vi � � F1F�/ > � : (16)

This of course requires the following constraint on the
setpoint dynamics:

U\���Ii � �)(#�����ci � i K L���>?�����3i � � F21F�; > � :
(17)

Assuming (17) to be true, suppose we adopt the control
strategy

P\����� CN�����ci � �Vi U����ci � � F21F�; > � :
With this strategy, the rate with which the sensor-node
is required to send data is

� ����� C P\�����2> P\���2> Ed�
C � ���Ii � �Ii��O���ci � � F21F�; > � F (18)

where �������DC �
x� � E � �D�%� and U������ C �

x� � E �O�D�%� .
We may study the effect of sensor rate cutoff on

this control strategy as follows: Suppose � � � �����
� � .
Then (18) provides bounds on the dynamics of the vir-
tual buffer setpoint that guarantees success in the con-
trol objective of keeping the buffer level at the setpoint:

� > � �����
�	�O�����
� � > � ����� F21g�; > � i � : (19)

For example, suppose U\����� is decreased so that �O�����
moves beyond the left hand limit of (19). There are
essentially two ways the sensor-node can ‘accommo-
date’ this: an increased depletion rate of its virtual
buffer and/or a decreased rate at which it can transmit
data. If the depletion rate is held constant and the sen-
sor rate ‘hits’ its minimum � , the control strategy above
will fail. The only solution available is to temporarily
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Figure 4: Simulation results.

stop the sensor-node from transmitting altogether; this
may be implemented by holding the control command
P\����� constant until virtual buffer level goes down to
the desired setpoint at the depletion rate currently al-
located to it. Once this is achieved, the control law in
(16) can be resumed.

In essence, the dynamics of the virtual buffer set-
point should, whenever possible, be confined to (19).
When this is true, use the control law in (16):

(a) When (19) is violated from the left hand side,
hold the feedback control command constant at the
current value until the buffer level reaches the desired
setpoint.

(b) When (19) is violated from the right hand side,
one runs the risk of an overflowing buffer and data loss.

The above strategy also takes care of a situation
when the constraint on setpoint dynamics in (17) may
be violated if, for example, the setpoint experiences a
significant decrease while the depletion rate is low.

V SIMULATION RESULTS AND

CONCLUSION

To illustrate the effectiveness of the proposed con-
trol strategy, several simulations were performed. Vir-
tual per-flow framework enables setpoint control of the
bottleneck buffer via the setpoint control of each of the
virtual buffers. Hence, the controllers may be indepen-
dently designed for each virtual buffer; Fig. 4 shows
the performance of only one such virtual buffer. The
major parameters used in this simulation—buffer set-

point level trajectory, TV forward and backward de-
lays, and the TV depletion rate—are shown in Fig. 4.
The underlying sampling unit time

�
of the simulation

is Ea" ms, and as one can observe from Fig. 4, we have
used the valuesb�K L F K Lu9 C}b�K O F K O|9 C}b�� F Ea"u9�&b � F � 9 C}b�� F��@"u9 units :
We assume that this information is available; in a DSN
environment, it is also reasonable to assume that infor-
mation regarding the depletion rate allocated to each
virtual buffer is available to the the virtual controller
especially when the latter is located at the sup-node it-
self where the bandwidth allocation decision is being
made [12].

The simulation results clearly illustrate the effec-
tiveness of the proposed control strategy; it maintains
tight buffer level control in the presence of TV delays
and buffer depletion rate. It is these robustness prop-
erties that render the work in this paper significant. In
the simulation in Fig. 4, the increase in buffer setpoint
command does not violate (19) while its decrease does.
Correspondingly, notice how the buffer level faithfully
follows the increase, while it is noticeably ‘sluggish’ at
the decrease and how the feedback control flow is held
constant until the buffer level ‘meets’ the setpoint; also
note the fact that the sensor rate command is reduced
to zero during this time period.
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