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Abstract

In this paper, we explore the link between the sum-product algorithm and the feedback
capacity of a channel with memory. We show that the optimal (i.e., capacity-achieving) feed-
back is captured by the causal posterior state probabilities. For finite-state machine channels,
the optimal feedback is captured by the forward recursion of the sum-product (Baum-Welch,
BCJR) algorithm. This result drastically reduces the space over which the optimal feedback-
dependent source distribution needs to be sought. Further, the feedback capacity computation
may then be formulated as an average-reward-per-stage stochastic control problem, for which
numerical solutions of Bellman’s equation deliver the feedback-capacity-achieving source dis-
tribution. With the knowledge of the capacity-achieving source distribution, the value of the
capacity is easily estimated using accurate Markov chain Monte Carlo methods. We demon-
strate the applicability of the method by computing the feedback capacity of partial response
channels and the feedback capacity of run-length-limited (RLL) sequences over binary sym-
metric channels (BSCs).

1 Introduction

The feedback capacity of a memoryless channel equals the feed-forward capacity of the same
channel [1]. However, the computation (or characterization) of the feedback capacity of channels
with memory has long remained an open problem [2]. In 1990, Massey [3] showed that the directed
information rate is an upper bound on the feedback capacity. In 2000, Tatikonda [4] proved that
any directed information rate is always achievable, and thus proved that the feedback capacity is
the supremum of the directed information rate.

In this paper, we develop a numerical procedure to compute the feedback capacity for channels
that can be represented as finite-state machines. We first give two theorems that drastically simplify
the computation problem. Namely, 1) finite-memory feedback-dependent Markov sources achieve
the feedback capacities, and 2) the optimal feedback is computed by the sum-product (Baum-
Welch, BCJR) algorithm [5]. The feedback capacity is then evaluated by combining three tools:
1) the sum-product (Baum-Welch, BCJR) algorithm [5], 2) dynamic programming (for solving
Belmann’s equation [6]), and 3) Monte-Carlo evaluation of the entropy rate of a hidden Markov
process [7, 8].

It is interesting to contrast the feedback capacity to the feed-forward capacity. For a memoryless
channel, the feedback capacity equals the feed-forward capacity, and the capacity is achieved by a
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Figure 1: A finite state machine channel (concatenated finite state machine and a memoryless
channel).

memoryless source [1]. It may be tempting to conjecture that the feed-forward capacity of a chan-
nel whose memory length is 1 symbol, is achieved by a 1-st order Markov process. This is clearly
not correct as demonstrated in [7, 8, 9], where higher-order Markov processes are constructed to
surpass the information rates of lower-order Markov processes. If, however, we utilize feedback,
we show in this paper that a feedback-dependent Markov process does achieve the feedback ca-
pacity. We get a generalized statement (which does not hold for the feed-forward capacity): the
feedback capacity of a channel whose memory length is L, is achieved by a feedback-dependent
L-th order Markov source. This generalizes a known fact that a memoryless source (i.e, a 0-th or-
der Markov source) achieves the capacity of a memoryless channel (i.e., a channel whose memory
length is 0).

Notation: Uppercase letters represent random variables (or vectors), while lowercase letters rep-
resent their realizations. An index t next to a random variable (e.g., Xt) denotes the random vari-
able at time t. A vector of time-dependent variables is denoted as X τ

t = [Xt, Xt+1, . . . , Xτ−1, Xτ ].
The mutual information is denoted by the letter I , while the information rate is denoted by the
letter I. The entropy is denoted by the letter H , while the differential entropy is denoted by the
letter h.

2 Channel Model

We assume that the channel is represented by a finite-state machine observed through a memoryless
noisy channel, see Figure 1. The state of the channel at time t is denoted by St, and the state
realization is denoted by st. The state alphabet S is finite, |S| = M < ∞, i.e., st ∈ S =

{0, 1, . . . ,M − 1}. The channel input process is denoted by Xt, while the input process realization
is denoted by xt. The process Xt is drawn from a finite alphabet X , i.e., xt ∈ X , and |X | < ∞.
The channel satisfies the following assumptions:

1. The state st is a function of st−1 and xt.

2. The finite-state machine output zt is a function of st−1 and st.

3. If the finite-state machine output Zt = zt is known, then the channel output Yt is stochasti-
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Figure 2: Trellis representation of the di-
code partial response channel.
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Figure 3: The trellis of the RLL(0,1) con-
straint.

cally independent of all other random variables, i.e.,

f
Yt|Zt,S

t
−∞

,Y t−1
−∞

(

yt

∣

∣zt, s
t
−∞, yt−1

−∞

)

= fYt|Zt
(yt |zt ) . (2.1)

We generally assume that the finite-state machine is indecomposable, and that the initial state
S0 = s0 is known. Then, from assumptions 1-3, we have that

I) There is a 1-to-1 correspondence between (S0, X
t
1) and St

0

(

S0, X
t
1

) 1:1←→ St
0. (2.2)

II) The conditional probability density function (pdf) of the channel output satisfies

f
Yt|St

−∞
,Y t−1

−∞

(

yt

∣

∣st
−∞, yt−1

−∞

)

= fYt|St−1,St
(yt |st−1, st ) . (2.3)

In a finite-state machine, some state pairs (st−1, st) = (i, j) may not be valid, that is, the machine
cannot be taken from state i to state j. We denote the set of all valid state pairs by T .

Example 2.1 (The dicode partial response channel). Let X = {−1, 1} and let

Zt = Xt −Xt−1 (2.4)

Yt = Zt + Wt, (2.5)

where Wt is white Gaussian noise with variance σ2, shortly denoted by Wt∼N (0, σ2). Denote the
state by St = 1−Xt

2
. So, st ∈ S = {0, 1}. Clearly, Zt = 2St−1 − 2St, and

fYt|St−1,St
(yt |st−1, st ) =

1√
2πσ2

e−
[yt−(2st−1−2st)]

2

2σ2 . (2.6)
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The channel is represented by the trellis in Figure 2. As evident from the figure, the set of valid
state pairs is T = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Example 2.2 (RLL(0,1) sequences over binary symmetric channels). Let Xt be a run-length-
limited (RLL) sequence with the constraint RLL(0,1), i.e., no consecutive zeros appear in the se-
quence X0, X1, · · · , Xt, · · · . The memory in the channel is exhibited by the constraint that if
Xt−1 = 0, then necessarily Xt = 1. The sequence Xt is transmitted over a binary symmetric chan-
nel (BSC) with cross-over probability p. We may define the state as St = Xt, so st ∈ S = {0, 1}.
The channel is represented by

Zt = Xt (2.7)

Yt = Zt ⊕Wt, (2.8)

where ⊕ denotes binary addition, and Wt represents a sequence of binary independent and identi-
cally distributed (i.i.d.) random variables with Pr (Wt = 1) = p. The channel law is

Pr (Yt = yt |St−1 = st−1, St = st ) =

{

p if yt = st

1− p otherwise
. (2.9)

The channel is represented by the trellis in Figure 3. As evident from the figure, the set of valid
state pairs is T = {(0, 1), (1, 0), (1, 1)}.

3 The Feedback Capacity

Tatikonda [4] proved that the feedback capacity of a channel is the supremum of the directed
information rate. The directed information rate is defined as

I (X → Y ) = lim
n→∞

1

n
I (Xn

1 → Y n
1 )

= lim
n→∞

1

n

n
∑

t=1

I
(

X t
1; Yt

∣

∣Y t−1
1

)

. (3.10)

For the channel model given in Section 2, we know that the sequence st
0 is in a 1-to-1 relation-

ship with the sequence (s0, x
t
1). For this reason, the feedback capacity of the finite-state machine

channel may be expressed as

C(fb) = sup
P
I (S → Y )

= sup
P

lim
n→∞

1

n
I (Sn

1 → Y n
1 |S0 = s0) . (3.11)

In (3.11), the supremum is taken over the set P , where the set P is the collection of all (causal
conditional) probability measure functions

P =
{

Pr (S1 |S0 ) , Pr
(

S2

∣

∣S1
0 , Y1

)

, · · · , Pr
(

St

∣

∣St−1
0 , Y t−1

1

)

, · · ·
}

(3.12)
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Figure 4: Feedback loop that achieves the feedback capacity.

If we were to apply (3.11) directly, the computation of the feedback capacity would be an enor-
mously complex problem since we would need to specify Pr

(

St

∣

∣St−1
0 , Y t−1

1

)

for every time
t and every realization

(

St
0, Y

t−1
1

)

=
(

st
0, y

t−1
1

)

. As t gets larger, the number of realizations
(

St
0, Y

t−1
1

)

=
(

st
0, y

t−1
1

)

becomes unbounded, and the problem would become intractable. The
next two theorems help us to reduce the problem to a manageable complexity.

Theorem 3.1. For a finite-state channel, the feedback capacity is achieved by a feedback-dependent
Markov process determined by the following collection of state transition probabilities

PMarkov =
{

Pr (S1 |S0 ) , Pr (S2 |S1, Y1 ) , · · · , Pr
(

St

∣

∣St−1, Y
t−1
1

)

, · · ·
}

(3.13)

Theorem 3.2. For a finite-state channel, after observing the channel output sequence Y t
1 = yt

1, the
optimal feedback is the vector of causal posterior state probabilities

αt = [αt(0), αt(1), · · · , αt(M − 1)]T , (3.14)

where
αt(i) = Pr

(

St = i
∣

∣Y t
1 = yt

1

)

. (3.15)

(Note that the values αt(i) can be recursively computed using the sum-product (Baum-Welch,
BCJR) algorithm [5].)

Combining Theorems 3.1 and 3.2, we conclude that the feedback capacity can be formulated as

C(fb) = sup
P

(Markov)
α

I (S → Y ) , (3.16)

where the supremum is taken over the set

P (Markov)
α =

{

Pr (S1 |S0, α0 ) , Pr (S2 |S1, α1 ) , · · · , Pr
(

St

∣

∣St−1, αt−1

)

, · · ·
}

. (3.17)

We note that all elements of the set P (Markov)
α are time-invariant. We may therefore write

C(fb) = sup
Pr(St|St−1,αt−1 )

I (S → Y ) . (3.18)

The block diagram of a system that achieves the capacity is given in Figure 4.
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4 Stochastic Control Formulation

We denote by {Pij (a)} the set of all probabilities Pij (a) = Pr
(

St = j
∣

∣St−1 = i, αt−1 = a
)

for
all pairs (i, j) ∈ T , and all possible realizations αt−1 = a. If the set {Pij (a)} is known (and
fixed), given the knowledge of the vector αt−1 and the channel output realization yt, the vector αt

is a function of {Pij (a)}, αt−1 and yt, i.e.,

αt = FBCJR

(

αt−1, {Pij (a)} , yt

)

. (4.19)

If expanded, equation (4.19) takes the form
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F
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BCJR

(

αt−1, {Pij (a)} , yt

)













, (4.20)

where from [5] we have

αt (`) = F
(`)
BCJR

(

αt−1, {Pij (a)} , yt

)

=

∑

i:(i,`)∈T

αt−1(i)Pi`

(

αt−1

)

fYt|St−1,St
(yt |i, `)

∑

i,j:(i,j)∈T

αt−1(i)Pij

(

αt−1

)

fYt|St−1,St
(yt |i, j )

. (4.21)

Since yt is a realization of a random variable Yt, we can regard αt as a realization of a random
vector At. Using (4.19), the random vector At is recursively described as

At = FBCJR

(

At−1, {Pij (a)} , Yt

)

. (4.22)

The process At is a Markov process since

f
At|At−1

1

(

αt

∣

∣αt−1
1

)

= f
At|At−1

(

αt

∣

∣αt−1

)

. (4.23)

The Markov process At is fully determined by the set {Pij (a)} and by the channel law (conditional
pdf) fYt|St−1,St

(yt |i, j ). Thereby, the channel law is fixed, but we have the freedom of choosing
the values in the set {Pij (a)}. Our task is to find the optimal set {Pij (a)} that maximizes the
directed information rate, and evaluate this maximized directed information rate, i.e., we seek to
find

{

P ∗
ij (a)

}

= arg max
{Pij(a)}

I (S → Y ) (4.24)

C(fb) = I (S → Y )|{Pij(a)}={P ∗

ij
(a)} . (4.25)

Problem (4.24) can be formulated as a stochastic control problem as follows. We rewrite the
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directed information rate I (S → Y ) as

I (S → Y ) = lim
n→∞

1

n

n
∑

t=1

I
(

St
1; Yt

∣

∣S0, Y
t−1
1

)

(4.26)

= lim
n→∞

1

n

n
∑

t=1

[

h
(

Yt

∣

∣S0, Y
t−1
1

)

− h
(

Yt

∣

∣St
0, Y

t−1
1

)]

(4.27)

= lim
n→∞

1

n

[

n
∑

t=1

h
(

Yt

∣

∣S0, Y
t−1
1

)

]

− h (Yt |St−1, St ) (4.28)

= lim
n→∞

1

n
E

[

n
∑

t=1

− log f
Yt|S0,At−1

(

Yt

∣

∣S0, At−1

)

]

− h (Yt |St−1, St ) , (4.29)

where (4.26) and (4.27) are definitions of the directed information rate, (4.28) follows from the
channel property (2.3), and (4.29) is shown by Theorem 3.2. From (4.29), problem (4.24) is
equivalent to the following optimization problem

{

P ∗
ij (a)

}

= arg max
{Pij(a)}

lim
n→∞

1

n
E

[

n
∑

t=1

− log f
Yt|At−1

(

Yt

∣

∣At−1

)

]

. (4.30)

This optimization problem can be regarded as an average-reward-per-stage stochastic control prob-
lem [6]. For this problem, at each stage (or time) t, the state is the vector αt, which evolves accord-
ing to (4.19), the control is the set of Markov transition probabilities {Pij (a)} which is assumed
to be stationary, and the reward is taken to be − log f

Yt|At−1

(

yt

∣

∣αt−1

)

.

Let λ∗ be the maximum average reward, and let h∗(a) be the optimal reward-to-go (or return)
function. Bellman’s equation for this stochastic control problem (4.30) is the following [6]

λ∗ + h∗(a) = max
{Pij(a)}

E
{

− log f
Yt|At−1

(Yt |a) + h∗(FBCJR (a, {Pij (a)} , Yt))
}

. (4.31)

Under the assumption that the state process At forms a steady state recurrent class, there exists at
least one optimal stationary control

{

P ∗
ij (a)

}

which satisfies Bellman’s equation (4.31). Further,
there exist efficient dynamic programming algorithms, e.g., value iteration and policy iteration [6],
which solve Bellman’s equation (4.31) and thus find an optimal feedback-dependent source distri-
bution

{

P ∗
ij (a)

}

which achieves the feedback capacity.
Once the optimal source distribution

{

P ∗
ij (a)

}

for problem (4.24) is found, we can use the Monte
Carlo method in [7, 8] to compute the feedback capacity.

5 Numerical Results

We get numerical solutions to (4.31) by applying the dynamic programming algorithm [6]. Since
the state αt and the control {Pij (a)} are real-valued vectors, we quantize them to get a finite state
space and a finite control space. We use the value iteration algorithm to get the optimal (actu-
ally, optimal to within the quantization accuracy) Markov channel input transition probabilities
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Figure 5: Capacity bounds for the dicode (1 − D) channel. At low SNRs, the feedback capacity
surpasses the waterfilling channel capacity for continuous-valued channel inputs. At high SNRs,
the feedback capacity is just above the feed-forward capacity estimate [9].

{Pij (a)}. Then, we compute the optimized directed information rate I(S → Y ) using the Monte
Carlo method in [7, 8]. Strictly speaking, the directed information rate computed in this way is a
lower bound on the feedback capacity, which converges to the feedback capacity only if we have
an infinite number of quantization levels for αt and {Pij (a)}.

Figure 5 shows the capacity bounds of the dicode partial response channel in Example 2.1.
The feedback capacity is compared to the waterfilling capacity [1, 10], the tightest known feed-
forward capacity lower bound computed by the EM (expectation-maximization) algorithm in [9],
and the feed-forward capacity upper bound shown in [11]. At low SNRs, the feedback capacity
surpasses the waterfilling capacity, which numerically verifies that feedback increases the capacity
of channels with memory. At high SNRs, the feedback capacity is very close to the feed-forward
capacity lower bound computed by the iterative algorithm given in [9].

In Figure 6, we show the capacity bounds for the RLL(0,1) sequences over BSCs in Example 2.2.
The feedback capacity surpasses the tightest known feed-forward capacity lower bound computed
by the iterative algorithm given in [9]. However, the difference is not significant (at most 10% as
seen in Figure 6. For comparison, shown in Figure 6 is the BSC capacity C = 1 − H(p), where

8



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BSC crossover probability p

In
fo

rm
at

io
n 

ra
te

 (
bi

ts
/c

ha
nn

el
 u

se
)

feedforward optimized
feedback
1−H(p)

Figure 6: Capacity bounds for the RLL(0, 1) code over BSC channel. For this channel the feed-
back capacity is much higher than the tightest known feed-forward capacity lower bound [9].

H(p) is the binary entropy function [1].

6 Conclusion

The feedback capacity of a finite-state channel is achieved by a feedback-dependent Markov chan-
nel input. The memory length of the feedback-capacity-achieving Markov channel input equals
the channel memory length. The optimized transition probabilities are only dependent on the for-
ward α-coefficients computed using the Baum-Welch (BCJR) algorithm [5]. That is, the entire
past of the observations is captured by the α-coefficients. We formulated the feedback-dependent
channel input distribution optimization problem as an average-reward-per-stage stochastic control
problem and applied a dynamic programming algorithm to solve it numerically. Using the pro-
posed methods, we computed the feedback capacities of partial response (PR) channels and BSC
channels with run-length-limited (RLL) input constraints. Closed form computations of the opti-
mal feedback-dependent Markov transition probabilities and the feedback capacity are still open
problems.
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