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Abstract

This paper investigates the performance of the Kalman filter as a timing recovery
system in tracking mode, subject to a wide range of operating conditions. Our simu-
lation compares the Kalman filter and the phase-locked loop based on the number of
divergences for various values of timing disturbance and SNR. They are shown to work
equally well in low SNR and disturbance. However, the Kalman filter outperforms
the phase-locked loop when both SNR and disturbance are high. The simulation also
suggests that the Kalman filter is more robust to variations in operating conditions.

1 Introduction

One of the most essential parts of synchronous data transmission is timing recovery. In a

PRML channel employed in a high density disk drive, the analog read signal is sampled by

an A/D converter and then equalized by a digital equalizer. Based on the equalized digital

signal, the objective of timing recovery is to adjust the clock of the A/D converter to the

correct frequency and phase.

There are many challenges in timing recovery. First the initial phase is not known in

advance, and the initial frequency is known only to some degree of confidence. Second,

disturbances in the system such as motor speed variation can change the phase and frequency

of the read signal. Third, measurement noise can corrupt the signal, and so the timing

information embedded in the signal is harder to extract. Last, timing error cannot be
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directly computed from the measured signal. A phase-locked loop (PLL), the most common

timing recovery system, can deal with these problems to some extent. In this paper, we

incorporate the well known Kalman filter to the timing system and show how it improves

the performance of timing recovery. The relationship between timing recovery and Kalman

filtering was discovered independently by Christiansen [1] and Driessen [2], who show that

for a specific timing model, the second order PLL has the same structure as the Kalman

filter. However, the Kalman filter has an advantage over the PLL in that it is time-variant

in nature. In [2], Driessen demonstrates that this time-variant property of the Kalman filter

makes it more favorable in acquisition mode in which the timing system adjusts the receiver

clock to the initial phase and frequency. In this paper, we explain the relationship between

PLL and Kalman filter in a different way from [1, 2]. Then we focus on the so called tracking

mode and show that our Kalman filter works well in this mode as well.

In the next section, we briefly explain the concept and give a big picture of timing recovery.

In section 3, we review the linear state space model and the state feedback and state esti-

mation problem. The Kalman filter is also described in this section. In section 4, we derive

the state space timing model used in the Kalman filter and PLL. We give a brief description

of our PLL in section 5. Our simulation results are presented in section 6. Section 7 is the

conclusion.

2 Timing recovery

There are many levels of synchronization, including bit, frame, and packet synchronization.

In this paper, we consider only the lowest level: bit synchronization, the objective of which

is to find where each bit starts. We assume that each data frame comprises three parts:

preamble, frame sync word, and data (see Figure 1). Each frame begins with a preamble

which is a periodic pattern of bits, usually with a short period. The preamble is used to

achieve bit sync, i.e. to adjust the receiver’s clock. Next is the frame sync word which is

a known, fixed length word with good correlation property. After bit sync is achieved, the

receiver will look for this word to determine where the data starts.

The timing recovery algorithm starts with its acquisition mode. In this mode the timing

algorithm takes advantage of knowing the preamble and thus can be made aggressive. The

clock must be adjusted to the correct phase and frequency as quickly as possible so that the

overhead of the frame can be made small. Then it switches to tracking mode. In contrast

to the acquisition mode, the tracking mode must deal with variation in the data. We shall

focus only on the tracking mode.

There are many configurations for timing recovery. We shall use the structure presented

in Figure 2. First the read signal is calibrated by a gain control algorithm and sampled by

a clock provided by a timing loop. The samples are then equalized to a partial response

target (such as PR4 = 1 − D2) by an FIR equalizer and fed back to provide information to

the timing and gain control loop. Thus the timing loop essentially sees the equalized signal
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Figure 1: Frame components
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Figure 2: Timing recovery diagram

with some delay due to the equalizer. The timing loop is usually a phase-locked loop (PLL)

which is described in section 5. In this paper we employ the Kalman filter in the timing loop

and investigate its performance compared to the PLL.

3 Background on control and estimation

In this section, we describe the general problem of control and estimation using a state

space model. For more information, the reader is referred to excellent textbooks in the field,

e.g. [3, 5, 4].

The (discrete time) state space model can be described by

xi+1 = Fxi + Gui

yi = Hxi

where xi is a state vector, ui is an input vector, and yi is an output vector. The system is

characterized by three matrices: a dynamic matrix F , an input matrix G, and an output

matrix H. This model leads to a powerful control law known as state feedback, in which the

input is a linear function of the current state

ui = −Kxi.
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In practice, the state is not usually known. Instead, we have some measurement yi which

conveys information on the state. This measurement is used to compute the estimate of

the state by a state estimator. The estimator alternatively updates the estimate using a

time update and a measurement update which can be described as follows. Let x̂i and x̄i

denote the estimates of xi given the measurement up to time i and i − 1 respectively. The

measurement update “corrects” the estimate by its gain L and the difference between the

measurement (actual output) yi and the expected output Hx̄i

x̂i = x̄i + L(yi − Hx̄i).

Then the time update “propagates” the estimate by the system dynamics and the input

x̄i+1 = Fx̂i + Gui.

-K Estimator

System

x̂

u y

Figure 3: State feedback and state estimator

Using this approach, the control and estimation problem is to find appropriate gains K

and L. Note that the system model F , G, H and both control gain K and estimator gain L

can be time-variant. In fact, K and L are usually time-variant even when F , G and H are

not.

Next we consider the noise in the system which is modeled as

xi+1 = Fxi + Gui + wi

yi = Hxi + ni

where wi is the process noise or disturbance and ni is the measurement noise. They are both

assumed to be white, zero-mean with covariance matrices W and N respectively. They are

also assumed to be uncorrelated with each other. The mean, (resp., covariance) of the initial

state x0 is denoted µ0, (resp. Π0). With these assumptions, the Kalman filter produces the

gain Li such that the error variance E(xi − x̂i)(xi − x̂i)
T is minimized. Its algorithm can be
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described as follows. Let x̄0 = µ0 and P̄0 = Π0; then for each i ≥ 0,

Li = P̄iH
T (HP̄iH

T + N)−1 (3.1)

x̂i = x̄i + Li(yi − Hx̄i) (3.2)

P̂i = (I − LiH)P̄i (3.3)

x̄i+1 = Fx̂i + Gui = (F − GK)x̂i (3.4)

P̄i+1 = FP̂iF
T + W (3.5)

where P̄i and P̂i represent the covariance of x̄i and x̂i respectively. Note that equations (3.1)-

(3.3) characterize the measurement update; and equations (3.4) and (3.5) characterize the

time update.

4 Timing model

4.1 State space model

�� �� �� ��

��

× × × ×

×
τi τi+1

Ti

Ri

time

actual sample time

ideal sample time

Figure 4: Time axis

Consider the time axis in Figure 4. We want to sample the signal at the ideal sample time,

which can be viewed as the correct time instance that we expect to get the lowest bit error

rate. The ideal inter-sample interval Ti can vary because of timing disturbances. The timing

error τi is defined to be the difference between the actual and the ideal sample time. The

clock increment, returned by a timing algorithm, is denoted by Ri. From the time axis we

can see that

τi+1 = τi + Ti − Ri. (4.6)

Our goal is to produce the clock increment Ri which minimizes the timing error. This is

done by computing estimates of τi and Ti, denoted by τ̂i and T̂i respectively, and then setting

Ri = τ̂i + T̂i − vi (4.7)
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where vi is a velocity disturbance. The ideal inter-sample interval is perturbed by an accel-

eration disturbance ai

Ti+1 = Ti + ai. (4.8)

Both timing disturbances represent the variation of motor speed and other mechanical units

including the heads. They also include defects on the recording surface and vibration due to

the movement of the disk drive. From equations (4.6)-(4.8), we obtain the timing model

τi+1 = τi + Ti − τ̂i − T̂i + vi (4.9)

Ti+1 = Ti + ai. (4.10)

The initial state [ τ0 T0 ]T is assumed to have mean [ 0 µT ]T and, as in the preceding

section, its covariance matrix is denoted Π0. The disturbance wi = [ vi ai ]T is assumed to

have zero mean and its covariance matrix is denoted W .

��
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��
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s̄ i+

1
−s̄ i−

1

T i−
1
+
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Figure 5: Output equation computation

Next, we shall compute the output equation using Figure 5. The curve shows the signal

equalized to the PR4 target; thus the ideal sample s̄i can take the values -1,0,1. The actual

sample that we measure is denoted by si. Since we have no knowledge about the data,

the ideal sample values must be computed from the actual sample values. This is done by

a simple threshold detector (if si > 0.5 then set s̄i = 1, if si < −0.5 then set s̄i = −1,

otherwise set s̄i = 0). The output yi of the system is defined to be si − s̄i. From the figure,

we can see that the output can be estimated by

yi ≈
(

s̄i−1 − s̄i+1

Ti−1 + Ti

)
τi ≈

(
s̄i−1 − s̄i+1

2µT

)
τi. (4.11)

Patapoutian investigates this idea of using the slope for the output equation in [7]. He uses

a more accurate nonlinear description of the measurement and then applies an extended

Kalman filter to his model.
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Combining equations (4.9),(4.10), and (4.11), and incorporating the measurement noise ni

into the output equation, we have the state space model

[
τi+1

Ti+1

]
=

[
1 1

0 1

] [
τi

Ti

]
−

[
1 1

0 0

][
τ̂i

T̂i

]
+

[
vi

ai

]
(4.12)

yi =
[

s̄i−1−s̄i+1

2µT
0

] [
τi

Ti

]
+ ni (4.13)

In terms of the system model in section 3, we have:

xi =

[
τi

Ti

]
(4.14)

F =

[
1 1

0 1

]
(4.15)

G =

[
1 1

0 0

]
(4.16)

K =

[
1 0

0 1

]
(4.17)

H =
[

s̄i−1−s̄i+1

2µT
0

]
(4.18)

From this model, τ̄i, the estimate of τi given the measurement up to time i− 1, is zero for

all i (see equation (3.4)). Thus the timing error estimator becomes

τ̂i = L1,iyi (4.19)

T̂i = T̂i−1 + L2,iyi (4.20)

where Li = [ L1,i L2,i ]T .

4.2 Loop delay

The reader may notice that this model is not causal; it involves the term s̄i+1 in the output

equation. Thus it cannot be directly implemented. Moreover, the A/D converter and the

equalizer also introduce delay into the timing loop. To take care of this delay, we need some

modification. Originally, the estimator assumes that the measurement yi, yi−1, . . . and the

input ui−1, ui−2, . . . are known to estimate the state xi. However, with the delay, the only

measurement we have in order to estimate xi is yi−d, yi−d−1, . . ..

Let x̂i|j be the estimate of xi based on the measurement up to time j and the input up to

time i − 1. We remark that x̂i|i = x̂i and x̂i|i−1 = x̄i. We start by doing usual estimation at

time i − d to obtain x̂i−d|i−d. Then we propagate this estimate using the state space model
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and the knowledge of the input

x̂i−d+1|i−d = Fx̂i−d|i−d + Gui−d

x̂i−d+2|i−d = Fx̂i−d+1|i−d + Gui−d+1 = F 2x̂i−d|i−d + FGui−d + Gui−d+1

...

x̂i|i−d = F dx̂i−d|i−d +
[

G FG . . . F d−1G
]



ui−1

ui−2

...

ui−d


 .

This is a natural way of extending an estimator to a predictor, where we estimate the

future state, not the current state. A similar approach is given by Christiansen in [1].

Patapoutian [9] studies this in a more general way by considering two different delays simul-

taneously: one before the timing loop and the other after the timing loop.

5 Classical phase-locked loop

In a second order classical phase-locked loop (PLL), τ̂i and T̂i are computed by

τ̂i = Kpγi (5.21)

T̂i = T̂i−1 + Kcγi (5.22)

where γi is the timing gradient computed by [6]

γi = yi(s̄i−1 − s̄i+1)

= (si − s̄i)(s̄i−1 − s̄i+1).

Kp and Kc are the proportional gain and cumulative gain which adjust the effect of the timing

gradient on the estimate. Finding appropriate gains is not easy and often done by trial-and-

error. Note that γi = 2µT yihi where Hi = [ hi 0 ]; thus, by comparing equations (4.19)-

(4.20) and (5.21)-(5.22), we can see that the Kalman filter and the PLL indeed have the

same structure. While there are many varieties of PLLs, we shall use the one described here

to compare with the Kalman timing loop.

In [1, 2, 8], timing (phase) error is assumed to be measurable by a phase detector, resulting

in a time-invariant output equation in contrast to equation (4.13). For the time-invariant

model F , G, and H, the Kalman gain Li and state covariance Pi will converge quickly to

a steady state gain L∞ and covariance P∞. Thus there cannot be much improvement over

PLL in tracking mode for a time-invariant model.

By comparing the Kalman and PLL algorithms, an obvious drawback of the Kalman filter

is its complexity. However, Patapoutian [8] shows that for the time-invariant timing model,

the Kalman gain can be explicitly given in terms of the time index and disturbance and

noise variance. For our model, the output equation is time-variant. Hence, a nonrecursive

expression for the Kalman gain is not possible.
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6 Simulation results

There are many figures of merit which judge the performance of the timing loops, such

as mean square of timing error and bit error rate. In this paper, we use the number of

divergences as our criterion (we say that a divergence occurs if the timing error grows without

bound; and we expect to see the bit error rate of approximately 0.5 if it occurs). In fact,

the ultimate goal is to reduce the bit error rate. However, given that the timing loop does

not diverge, the bit error rate of each timing loop is very close for the same value of SNR.

Furthermore, the mean square timing error does not relate directly to the bit error rate. For

these reasons we choose the number of divergences, as determined by bit error rate, as a

measure of performance.

6.1 Performance

We are interested in a wide range of operating points; each is characterized by the SNR (for

measurement noise) and the variance of the acceleration disturbance. For each operating

point, we generate 1000 synthetic waveforms of length 24 sectors (≈ 105 bits) and run both

the PLL and Kalman timing algorithms and count the number of divergences. A run is

classified as a divergence if the number of bit errors exceeds 4000. First we fix SNR and

set the acceleration disturbance to the maximum such that Kalman timing diverges on

approximately 100 runs or 10%. With this disturbance, the gains Kp and Kc of the PLL are

adjusted to give the best result. They are found by running the PLL over a wide range of

gain on a smaller number of waveforms. The result is shown in Table 1.

SNR (dB) Accel. Var. Kalman PLL Kp Kc

18 1 × 10−10 88 100 4 × 10−4 4 × 10−7

22 2 × 10−8 92 90 1 × 10−3 6.7 × 10−6

26 3.5 × 10−7 116 555 2 × 10−3 3 × 10−5

30 1.5 × 10−6 112 856 2 × 10−3 8 × 10−5

Table 1: Number of divergences with total of 1000 runs

Observe from the table above, that both timing algorithms appear to work well when the

disturbance is low and the measurement noise is large. This can be explained by showing

that in this case the Kalman filter looks very much like the PLL. To see this, first observe

that it is natural to assume that, with the possible exception of the (1,1)-entry, all entries of

the initial covariance matrix Π̄0 = P̄0 are very small. Now, we can use equations (3.1), (3.3)

and (3.5) to iteratively pass from P̄i from P̄i+1. A computation based on this reveals that in

each such iteration, all entries except perhaps for (P̄i)1,1 remain small and the (1,1)-entry is

scaled by a factor of roughly 1
1+(P̄i)1,1/N

, and will therefore decrease exponentially until the

(1,1)-entry becomes much smaller than N . Indeed, simulations confirm that P̄i settles very
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quickly to a roughly constant value much less than N . Therefore from equation (3.1), we see

that Li is approximately a constant matrix multiplied by the slope hi. This explains why

both timing loops exhibit similar performance (compare equations (4.19) and (4.20) with

equations (5.21) and (5.22)).

At large disturbance and low SNR, the Kalman loop outperforms the PLL in terms of the

number of divergences. In this situation, the gain Li will be more time-variant and this will

give an advantage over the PLL.

6.2 Robustness

In this section, instead of using the estimate τ̂i and T̂i directly, we can reduce their effect by

passing through another filter which implements the control gain similar to the one described

in section 3. In this scheme, we replace τ̂i and T̂i in equations (4.9) and (4.12) by τ ′
i and T ′

i

given by

τ ′
i = K11τ̂i + K12(T̂i − T ′

i )

T ′
i+1 = T ′

i + K21τ̂i + K22(T̂i − T ′
i )

where T ′
0 = µT . We have more degrees of freedom in this scheme which makes the design

more difficult. However, a good choice of control gain may result in a better performance

at a particular operating point. We have several assumptions for the Kalman filter to be

optimal and these assumptions cannot be all true in practice. Moreover, disturbance and

noise variance may not be accurately known at the design time. Thus, this scheme may be

a better alternative. Its drawback is that it is more complex and a good gain is difficult to

choose.

The following results demonstrate the robustness of the Kalman timing loop compared to

the classical PLL. We consider two different operating points. One has an SNR of 18 dB

with no disturbance. The other has an SNR of 22 dB with velocity disturbance of variance

10−3. We use two different PLLs, with gains optimized for each operating condition. For the

Kalman loop, the control gains are the same for both operating conditions. The parameters

for the PLL and Kalman timing loops are given in Tables 2 and 3. For both operating points,

each timing loop is run on 2000 synthetic waveforms. The numbers of divergences are shown

in Table 4.

Timing loop Kp Kc

PLL1 6 × 10−4 3 × 10−7

PLL2 1 × 10−3 3 × 10−7

Table 2: Parameters of the PLLs

We can see that although the PLLs work well for a given operating condition, they are

not robust to the change of the environment (in this case, SNR and disturbance). PLL1
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parameter value

disturbance variance W

[
10−3 0

0 10−11

]
measurement noise variance N 0.06

loop delay 9

control gains K11, K12, K22 0.03

control gain K21 3 × 10−5

Table 3: Parameters of the Kalman filter timing loop

SNR (dB) Velocity Var. Kalman PLL1 PLL2

18 0 120 250 1198

22 10−3 150 722 206

Table 4: Number of divergences with total of 2000 runs

has smaller gain and thus works well for low SNR. However, it cannot keep track of the

disturbance, resulting in a large number of divergences when the disturbance is present. On

the other hand, PLL2 has larger gain and the response of the timing loop is fast enough

to track the actual timing even with the disturbance. This also results in larger bandwidth

and the system is more sensitive to noise. For the Kalman timing loop, the numbers of

divergences are small for both operating points. Since we do not change the parameters of

the Kalman timing loop, this suggests that the Kalman timing may be more robust in some

circumstances.

7 Conclusion

We briefly summarize our contributions as follows.

• We give a different explanation of the relationship between PLL and Kalman filter

than in earlier work.

• By using the number of divergences as a criterion, we observe that:

– the tracking mode performance of the Kalman filter is comparable to the PLL

in low SNR and small disturbance; but in high SNR and large disturbance, the

Kalman filter gives much lower number of divergences,

– the Kalman filter may be more robust to variations in SNR and disturbance

compared to PLL.
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