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Abstract

We consider the problem of timing recovery at low signal-to-noise ratio. We first

derive a lower bound for the timing estimation error variance in the presence of a

random walk timing jitter, for the PR-IV channel. Then, we look at the trained phase-

locked loop, which gives a heuristic lower bound for the performance of iterative timing

recovery schemes involving phase locked loops.

1 Introduction

The push for higher recording densities has motivated the development of iterative error-

control codes of unprecedented power, whose large coding gains enable low error rates at

very low SNR [1] [2]. In addition, the iterative decoding technique has been extended to

turbo equalization, where the equalizer and the decoder iterate [3]. Consequently, timing

recovery, which typically derives no benefit from coding, must be performed at an SNR lower

than ever before.

At high SNR, the timing recovery process can be separated from the decoding process with

little penalty; timing recovery can use an instantaneous decision device to provide tentative

decisions that are adequately reliable, which can then be used to estimate the timing error.

In essence, the timing recovery process is able to ignore the presence of the code, and assume

instead that neighboring symbols are independent. At low SNR, however, timing recovery

and decoding are intertwined. The timing recovery process must exploit the presence of the

code to get reliable decisions, and the decoder must be fed well-timed samples to function

properly.

In principle one could formulate the problem of jointly determining the maximum-likelihood

(ML) estimates of the timing offsets and message bits, but the complexity would be pro-

hibitive. A solution based on the expectation-maximization (EM) algorithm would also be

complex [4]. A method for jointly performing the tasks of timing recovery and turbo equal-

ization was proposed in [5], with complexity comparable to a conventional turbo equalizer.

In this paper, we look at fundamental limits to the performance of timing recovery systems.

We present a lower bound on the timing estimation error variance based on the Cramér-Rao

bound. Due to the nature of the system model chosen, this bound is not achievable, and the

closest we can get is by ML estimation, which is prohibitively complex. Therefore, to get a

tighter practical bound, we look at the performance of a trained phase-locked loop (PLL)

which gives a heuristic lower bound for the performance of iterative PLL-based receivers.
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2 Lower Bound on Timing Error Variance

2.1 System Model
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Figure 1: Block diagram of the system model.

Consider the system shown in Figure 1, where the channel output waveform y(t) is given

by

y(t) =
N−1
∑

k=0

akh(t− kT − τk) + n(t), (1)

where T is the bit period, ak ∈ {±1} are the N i.i.d. data symbols, h(t) is the channel

impulse response, n(t) is additive white Gaussian noise, and τk is the unknown timing offset

for the kth symbol. This is the generic model of bandlimited communication channels with

timing error. Our motivation is in magnetic recording where h(t) is some so-called partial

response (PR) target. We consider h(t) = p(t)−p(t−2T ), which is the perfect PR-IV pulse,

where p(t) = sin(πt/T )/(πt/T ) is a 0% excess bandwidth pulse. We model the timing offset

as a random walk, according to

τk+1 = τk + wk+1 = τ−1 +
k+1
∑

j=0

wj, (2)

where wk ∼ N (0, σ2
w) are i.i.d. and σ2

w determines the severity of the timing jitter. The

random walk model is chosen because of its simplicity and because of its ability to model

a wide range of channels by varying a single parameter. We assume perfect acquisition by

setting τ−1 = 0.

For the case where the timing offset remains constant over the duration of the packet,

the Cramér-Rao bound on the timing estimation error variance for generic channels is well

known [6]. For the magnetic recording channel, a variety of symbol rate timing recovery

techniques are available [7]. Our goal is to arrive at a lower bound on timing estimation

error variance in face of a time-varying timing offset.

At the receiver, a front-end lowpass filter (with impulse response p(t)/T ) is used to elim-

inate out-of-band noise from the readback waveform y(t), producing the bandlimited wave-

form r(t). We then sample r(t) at instants kT to get rk =
∑

l alh(kT−lT−τl)+nk, where {nk}
are i.i.d. N (0, σ2). Define the observation vector r = [r−M r−M+1 . . . rN+M−1]

T , where we

have collected N + 2M samples, and where we will eventually let M →∞.

We aim to estimate the data vector a = [a0 a1 . . . aN−1]
T . One way is to estimate the

timing vector τ = [τ0 τ1 . . . τN−1]
T and use this information in estimating a. So, our prob-

lem can be reformulated as estimation of the parameter θ1 = [τ T aT ]T , which has 2N
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unknown elements. The analysis that follows requires a to come from an open subspace of

RN . Therefore, we add an independent zero-mean Gaussian random variable of variance σ2
a

to each of the symbols ak. As σa becomes smaller, we approximate the discrete pdf better.

The Cramér-Rao bound gives a lower bound on the estimation error variance of unbiased

estimators of deterministic parameters. This has been extended to get a lower bound on the

mean-squared estimation error for any unbiased estimator θ̂1(r) which is given by [8]

E[(θ̂1i(r)− θ1i)
2] ≥ J

−1
θ1

(i, i), (3)

where θ̂1i(r) and θ1i denote the ith element of θ̂1(r) and θ1 respectively, the expectation is

taken over r and θ1, and J
−1
θ1

(i, i) is the ith diagonal element of the inverse of the matrix

J θ1
defined by

Jθ1
= E







[

∂

∂θ1

ln fr,θ1
(r, θ1)

] [

∂

∂θ1

ln fr,θ1
(r, θ1)

]T






, (4)

where the expectation is taken over r and θ1, and fr,θ1
(r, θ1) is the joint probability density

of r and θ1. More generally,

E[(θ̂1(r)− θ1)(θ̂1(r)− θ1)
T ] ≥ J

−1
θ1

. (5)

2.2 Computing J θ1

Instead of directly computing J θ1
, we define θ2 = [wT aT ]T , where w = [w0 w1 . . . wN−1]

T ,

compute J θ2
, and then compute J θ1

using J θ2
.

The vector θ2 consists of independent variables. After some manipulations, where we use

Bayes’ rule, Parseval’s theorem and let M →∞, we get

J θ2
=





1
σ2 H1 + 1

σ2
w

I 0

0 1
σ2 H2 + 1

σ2
a

I



 , where (6)

H1 = (1 + σ2
a)Eh′





















N N − 1 N − 2 . . . 1

N − 1 N − 1 N − 2 . . . 1

N − 2 N − 2 N − 2 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1





















, (7)

H2 =





































2 0 −1 0 . . . . . . 0

0 2 0 −1
. . .

...

−1 0 2 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 2 0 −1
...

. . . −1 0 2 0

0 . . . . . . 0 −1 0 2





































, (8)
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and Eh′ is the energy in the derivative of h(t), which evaluates to

Eh′ =
1

T 2

(

2π2

3
− 1

)

. (9)

The vectors θ1 and θ2 are related by the linear transformation

θ1 =

[

AN×N 0N×N

0N×N IN×N

]

θ2 = T θ2, (10)

where

A =

















1 0 0 . . . 0

1 1 0 . . . 0
1 1 1

. . .
...

...
...

...
. . . 0

1 1 1 . . . 1

















is a lower triangular matrix. (11)

Therefore the corresponding Fisher information matrices are related by [9]

J θ1
= T

−T
J θ2

T
−1, where T

−1 =

[

A
−1 0

0 I

]

. (12)

Combining (6) and (12), we get

J θ1
=

[

J
11
1 0

0 J
22
1

]

, where

J
11
1 =

1

σ2
A

−T
H1A

−1 +
1

σ2
w

A
−T

A
−1 and

J
22
1 =

1

σ2
H2 +

1

σ2
a

I. (13)

To compute A
−1, recognize the fact that we need now the inverse mapping of τk =

∑k
j=0 wj,

which is wk = τk − τk−1. Therefore,

A
−1 =

















1 0 0 . . . 0

−1 1 0 . . . 0
0 −1 1

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 −1 1

















. (14)

Combining (7) and (13), we get

J
11
1 =

1

σ2
w























λ −1 0 . . . 0

−1 λ −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 λ −1

0 . . . 0 −1 λ− 1























, (15)

where

λ = 2 + (1 + σ2
a)

(

2π2

3
− 1

)

σ2
w

σ2T 2
. (16)
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2.3 Inverting J θ1

From (13), we see that

J
−1
θ1

=

[

[J11
1 ]−1 0

0 [J22
1 ]−1

]

. (17)

Letting σa → 0, we see from (13) that [J 22
1 ]−1 → 0N×N . To invert J

11
1 , we follow a three

step procedure. First we do a Cholesky factorization of σ2
wJ

11
1 to get σ2

wJ
11
1 = LL

T , where

L is a lower triangular matrix. Then, we solve LC = I. Next, solve L
T
B = C, and

finally, [J11
1 ]−1 = σ2

wB. Recognizing that B, which is the inverse of a symmetric matrix, is

symmetric, we get

[J11
1 ]−1

ij = σ2
w[B]ij = σ2

w

amax(i,j)nmin(i,j)

nN − nN−1

, (18)

where

aj =
ηN−j + η−N+1+j

η + 1
, nj =

ηj+2 − η−j

η2 − 1
, and η =

λ +
√

λ2 − 4

2
. (19)

2.4 The lower bound

From (3), we see that we are interested in the diagonal entries of [J 11
1 ]−1. Combining (16),

(18), and (19), and simplifying, the lower bound can be expressed as

E[(τ̂i(r)− τi)
2]

T 2
≥ [J11

1 ]−1
ii

T 2
= h · f(i), (20)

where

h =
σ2

w

T 2

η

η2 − 1
is the steady state value, (21)

f(i) = tanh
(

(N +
1

2
) ln η

)



1−
sinh

(

(N − 2i− 3
2
) ln η

)

sinh
(

(N + 1
2
) ln η

)



 , (22)

η =
λ +

√
λ2 − 4

2
and λ = 2 +

(

2π2

3
− 1

)

σ2
w

σ2T 2
, (23)

where we have taken the limit σa → 0.

Figure 2 plots the bound for SNR = 5 dB (SNR defined as 10 log10 (1/σ2)), and for σw/T ∈
{0.005%, 0.05%, 0.5%, 5%}. Along with the bounds, we have plotted a horizontal line,

whose height is h. As σw/T increases, we see that the shaping function f(i) tends towards

a constant, independent of i. The steady state bound can be rewritten as

h =
σ σw

T
√

K1(4 + K1
σ2

w

σ2T 2 )
, (24)

where K1 = (2π2/3) − 1. For σ2
w/T 2 � σ2, which would be the case, for example, with

SNR ∼ 5dB and σw/T < 10%, we can approximate

h ≈ K2
σw

T
σ, (25)
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Figure 2: The lower bound on timing estimation error variance at SNR = 5.0 dB.

where K2 = 1/(2
√

K1). So, the steady state lower bound is linear in both σw/T and σ. If

we look at the other extreme σ2
w/T 2 � σ2, we get

h ≈ σ2

K1
, (26)

independent of σw/T . This behavior is illustrated in Figure 3.

Figure 3-(a) plots h vs. σ for σw/T going from 0.1 to 1 in steps of 0.1. The arrow shows

the direction of increasing σw/T . Figure 3-(b) plots h vs. σw/T for σ from 0.5 to 5 in steps

of 0.5. This is the case where we have σ2
w/T 2 � σ2, and h is linear in both σ and σw/T

as given by (25). Figures 3-(c) and 3-(d) deal with the other extreme. In Figure 3-(c), we

have h vs. σ for σw/T going from 0.03 to 0.3 in steps of 0.03, and in Figure 3-(d), we have

h vs. σw/T for σ from 0.01 to 0.1 in steps of 0.01. We see that whenever σ2
w/T 2 � σ2, h is

quadratic in σ and independent of σw/T , as given by (26).

Consider next the shaping function f(i). We can expect this to be a non-decreasing

function of the symbol index i, due to the random walk model being used for the timing

jitter. Since we start off with perfect acquisition, we expect the variance to rise from 0, as

is indeed the case. As i increases, we reach the steady state bound. But as we approach

the end of the packet, we see a curious exponential deviation from the steady state value,

governed by

[J11
1 ]−1

(N−j)(N−j)

T 2
− h ≈ σ2

w

T 2

η2−2j

η2 − 1
, (27)

the shape of which is independent of N as shown in Figure 4, where SNR = 5 dB and

σw/T = 0.05%. As N increases, this end effect affects a smaller and smaller fraction of

symbols. In other words, the steady state bound becomes more representative.
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Figure 3: Steady state bound at the two extremes.
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Figure 4: Shape of the end effect is independent of packet length.

Let r be the ratio of the variance of the last symbol to the steady state value. From (20)

and (27), r ≈ 1 + η−1. From (23), η ≥ 1. When σ2
w/T 2 � σ2, η ≈ 1 and therefore, r ≈ 2.

When σ2
w/T 2 � σ2, η � 1 and therefore, r ≈ 1. So, for any particular σw/T , as SNR ranges

from −∞ to ∞, r goes from 2 to 1. In other words, the end effect becomes less and less

significant as SNR increases.

3 PLL-based timing recovery

The lower bound derived in the previous section applies to timing recovery systems in general.

In practice, timing recovery systems usually involve phase locked loops, as described below.

For the system described by (1), at the receiver, we first have a front-end low-pass filter

(with impulse response p(t)/T ) to eliminate out-of-band noise from the received waveform
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y(t), to get the bandlimited waveform r(t). Based on the estimates τ̂k of τk produced by a

timing recovery system, the waveform r(t) is then sampled at the timing instants kT + τ̂k,

producing samples rk =
∑

l alh(kT + τ̂k − lT − τl) + nk, where {nk} are i.i.d. N (0, σ2).

For simplicity and because our model has no frequency offset component, we restrict our-

selves to a first-order PLL, which updates its estimate of τk according to

τ̂k+1 = τ̂k + αε̂k, (28)

where α is the PLL gain, and where ε̂k is the detector’s estimate of the estimation error

εk = τk − τ̂k. The widely used Mueller and Müller timing-error detector (TED) generates

this estimate according to [10]:

ε̂k =
3T

16
(rkd̂k−1 − rk−1d̂k), (29)

where d̂k is an estimate of dk = ak − ak−2 ∈ {0,±2}, typically obtained by a memoryless

three-level quantization of rk. The constant 3T/16 ensures that there is no bias at high SNR,

so that E[ε̂k] = εk.

Performance of the Mueller and Müller TED can be improved by using soft estimates d̃k

in place of hard estimates d̂k in (29) [11]. Choosing d̃k = E[dk|rk] leads to a memoryless soft

slicer of the form

d̃k =
2 sinh(2rk/σ

2)

cosh(2rk/σ2) + e2/σ2
. (30)

In the preceding analysis of Section 2, we assumed a system with no coding and let the

symbols {ak} be independent. In [5], an error-control coded system was considered, where

turbo equalization was implemented at the receiver. In this setting, better soft decisions

about the symbols, coming from the turbo equalizer, were fed to the TED at the end of each

turbo iteration, and the new timing estimates were used to refine the observations. This

process continued, and as iterations progressed, the SNR requirement reduced significantly.

4 Comparing PLL-based structures and the CRB

Instead of feeding the TED decisions about the received symbols, if we allow it to have

access to the actual transmitted symbols {dk}, then we have a trained PLL, where the TED

generates ε̂k according to

ε̂k =
3T

16
(rkdk−1 − rk−1dk). (31)

The performance of trained PLL gives a heuristic lower bound for the performance of

receiver structures that use the PLL for timing recovery. In Figure 5, we plot the steady

state CRB and the performance of the trained PLL for the following system parameters:

σw/T = 0.5%, block length N = 500, and the PLL performance being averaged over 1000

trials. As seen in the figure, the performance of the PLL is a strong function of the gain

8



0 10 20 30
0

1%

2%

3%

4%

5%

E
S

T
IM

A
T

IO
N

 E
R

R
O

R
 J

IT
T

E
R

σ ε
⁄T

(%
)

SNR (dB)

7 dB

α = 0.01

α = 0.02

α
=

0.03
α

=
0.05

α
=

0.1

α
=

0.2

α = 0.03

α = 0.05

Steady State CRB

Figure 5: Trained PLL and the Cramér-Rao Lower Bound.

parameter α, and therefore, α has to be optimized for each SNR. The PLL error variance is

plotted for various values of α. Taking the minimum of the error variance over all α gives

us the best performance we can expect using the trained PLL. We see that the trained PLL

is about 7 dB away from the CRB.

This gap of 7 dB has to be put in perspective by the fact that the CRB is not attainable

in this case. For the CRB to be attainable, the a posteriori density fr|θ2
(r|θ2) needs to be

Gaussian, which is not the case here.

It would be of interest to get the actual error variance of the trained ML timing estimator

and the joint ML estimator that estimates both the timing offsets and the transmitted

symbols. The first one would give us the penalty with respect to the CRB due to the fact

that the required a posteriori density is not Gaussian, while the second would give us the

penalty due to the fact that we do not know the transmitted symbols at the receiver. A

better indicator of the effectiveness of PLL-based receivers would then be the gap from the

joint ML estimator. These are open problems, and future research should deal with these.
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