
Controllabilities and Stabilities of switched Systems
(with applications to the Quantum Systems )

Leonid Gurvits

gurvits@lanl.gov

Los Alamos National Laboratory, Los Alamos , NM 87545 , USA.

Abstract

We study various stabilities and controllabilities of linear switched systems , including
those appearing in the quantum computations context . A number of new results and
connections is presented , most of them with proofs .

1 Main Definitions and Problems

Let us consider a set S = {Aγ : γ ∈ K}, Aγ : Cn → Cn. I.e., S is a set of complex n × n

matrices , K is an index set.
Recall that linear discrete inclusion LDI(S) is a set of discrete dynamical systems

xi+1 = AR(i)xi; i ≥ 0, R : N → K. (1)

Correspondingly , linear continuous inclusion LCI(S) is a set of continuous time dynamical
systems

˙X(t) = AR(t)X(t), (2)

where R(.) is a piece-wise continuous from the right switching rule .
LDI(S)(LCI(S)) is called Absolutely Asymptoticaly Stable (AAS) if all trajectories in (1) ((2))
converge to zero . LDI(S)(LCI(S)) is called Switching Asymptoticaly Stable (SAS) if there
exists at least one switching rule such that the corresponding time variant system is Asymp-
toticaly Stable .
It was shown in [1] , [2] that if the set S is bounded then the convergence is in fact uniform
, moreover LDI(S) is (AAS) iff there exists a norm ‖.‖d on Cn such that the induced norms
‖Aγ‖ ≤ a < 1 for all γ ∈ K ([1]) ;
LCI(S) is (AAS) iff there exists a norm ‖.‖c on Cn such that the induced norms
‖exp(Aγt) ≤ exp(at)‖ for all γ ∈ K, t ≥ 0 and some a < 0 (see , for example , [2] ) .
I will mostly consider in this paper the case when it is known in advance that there exists a
norm ‖.‖∗ on Cn such that the induced norms ‖Aγ‖ ≤ 1 for all γ ∈ K in the discrete case and
‖exp(Aγt) ≤ 1‖ for all γ ∈ K, t ≥ 0 in the continuous case .
Let us call such norms as a priori. In the discrete case , if a priori norm is ”good” , say polytope
or Hilbert , then , at least , there are finite algorithms to check (AAS) property . But even for
l1 norm this desision problem is NP-HARD [2] . One of the main results of this paper is that
in the continuous case if a priori norm is polytope then LCI(S) is (AAS) iff each Aγ , γ ∈ K

is Hurwitz . I will give also a generalization of this result for so called Lindblad’s operators
introduced first in the Quantum Mechanics context.
I will give a very powerful sufficient condition for Hilbert a priori norms in the continuous case
. A surprising feature of this result is that the proof is ”infinite dimensional” though the result
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itself is finite dimensional .

Definition 1.1: Let us denote linear space (over complex numbers ) of N×N complex matrices
as M(N) . A positive semidefinite matrix ρA,B : CN ⊗ CN → CN ⊗ CN is called bipartite
unnormalized density matrix
(BUDM ) , if tr(ρA,B) = 1 then this ρA,B is called bipartite density matrix .
It is convinient to represent bipartite ρA,B = ρ(i1, i2, j1, j2) as the following block matrix :

ρA,B =











A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N

. . . . . . . . . . . .

AN,1 AN,2 . . . AN,N











, (3)

where Ai1,j1 =: {ρ(i1, i2, j1, j2) : 1 ≤ i2, j2 ≤ N}, 1 ≤ i1, j1 ≤ N .
A (BUDM ) ρ called separable if

ρ = ρ(X,Y ) =:
∑

1≤i≤K

xix
†
i ⊗ yiy

†
i , (4)

and entangled otherwise .
If vectors xi, yi; 1 ≤ i ≤ K in (6) are real then ρ is called real separable .
A linear operator T : M(N)→M(N) called positive if T (X) º 0 for all X º 0 , and dominant
positive if T (X) º αX for all X º 0 and some α > 0. A positive operator T is called completely
positive if

T (X) =
∑

1≤i≤N2

AiXA
†
i ;Ai, X ∈M(N) (5)

Choi’s representation of linear operator T : M(N) → M(N) is a block matrix CH(T )i,j =:

T (eie
†
j). Dual to T respect to the inner product < X,Y >= tr(XY †) is denoted as T ∗. Very

usefull and easy Choi’s result [6] states that T is completely positive iff CH(T ) is (BUDM ) .
Using this natural (linear) correspondence between completely positive operators and (BUDM
) , we will freely ”transfer” properties of (BUDM ) to completely positive operators . For
example , a linear operator T is called separable iff CH(T ) is separable , i.e.

T (Z) = T(X,Y )(Z) =
∑

1≤i≤K

xiy
†
iZyix

†
i (6)

Or equivalently , for some Ai, Bi º 0

T (Z) =
∑

1≤i≤K

Aitr(ZBi) (7)

A positive operator T is called stochastic (substochastic ) if I = T ∗(I) (I º T ∗(I))

I will study in this paper quantum linear discrete inclusions , i.e. LDI(S) where S is a set of
positive substochastic operators . These linear discrete inclusions are motivated by the mod-
els of quantum computation where some ”information” leaks to the environment . From the
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other hand , quantum linear discrete inclusions generalize LDI(R) , where R is either a set of
standard substochastic matrices or a set of matrices which are nonstrict contractions respect
to some Hilbert norm .
Other generalizations of LDI(R) , with R being a set of matrices which are nonstrict con-
tractions respect to some Hilbert norm , which I will study are discrete and continuous time
controlled switched systems :

x(n+ 1) = At(n)x(n) +Bt(n)u(n)

, where all the matrices involved act on some linear finite-dimensional space X.
Here t : N → 1, 2, .., k is a switching rule. There are two natural notions of controllability in
this framework:
1. Absolute, i.e. corresponding time-variant systems are controllable for all switching rules
(corresponds to the (AAS) property).
2. Switching controllability, i.e. there exists at least one switching rule which produces a con-
trollable time-variant system (corresponds to the (SAS) property).
Similarly one defines these notions for the continuous time case and piece-wise constant switch-
ing rules.
Notice that the discrete time case make sence for systems over finite fields.

2 General framework : monotone automatons

Let us now consider a partially ordered set X with unique maximum element 1 and unique
minimal element 0. We will call such set Nether if it does contain infinite strictly decreasing
chains and N -Nether if does not contain strictly decreasing chains of length N . For a given
finite set of maps

G = {fi : X→ X;1 ≤ i ≤ k}

we define a language in alphabet {1, ..., k} as LG = {ω : fω(0) < 1}.
Here if the word ω = ω1...ωm, ωi ∈ {1, ..., k} then fω =: fω1 ...fωm .
We will call a tuple {X,G} a monotone automaton if all maps in G are monotone (respect to
the order in X and fi(1) = 1,1 ≤ i ≤ k . An equivalent constructure corresponds to the case
when 1 and 0 are switched . Let consider a finite alphabet {1, ..., k}. For a given sequence of
words ωi : i ≥ 0 define the following recursion on words:

r(0) = ω0, r(n+ 1) = r(n)ωn+1r(n).

We will call words which can be obtained in n steps of such recursion as n-pumped words. Here
products of words is defined in a standard way as their concatenation. A word ω1 is a subword
of a word ω2 if ω2 = αω1β for some words α and β. The following result was proved in [5]
and reproved in [3]. There is really easy proof of it, based on van der Waerden result about
existence of infinite arithmetic progressions in one of ”lumps” of a finite partition of a set of
nonnegative integers .
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Lemma 2.1: 1. Any infinite word in alphabet {1, ..., k} contains infinitely-pumped subword.
2. There exists (very rapidly growing) function F (N, k) such that any word of length F (N, k)
contains N -pumped word.

In fact the second statement easily follows from the first one via a compactness argument.

The following lemma is a direct corollary of Lemma 2.1.

Lemma 2.2: Suppose that fi are monotonic for all 1 ≤ i ≤ k and the language LG is infinite
( contains infinite number of words). Then the following statements hold.
1. If X is Nether and the language LG is infinite ( contains infinite number of words) then
there exists a nontrivial x ∈ X (i.e. 0 < x < 1) and a word ω such that fω(x) = x.
2. If X is N -Nether and the language LG contains a word of length F (N, k) then there exists
a nontrivial x ∈ X (i.e. 0 < x < 1) and a word ω such that fω(x) = x.

3 Absolute asymptotic stability of quantum linear discrete in-

clusions

Let us consider a quantum linear discrete inclusion LDI(S) , where S = {T1, ..., Tk} is a finite
set of positive substochastic operators , Ti : M(N) → M(N). We want to associate with
LDI(S) a monotone automaton {X,G} with X being partially ordered N -Nether set . In this
case X is a partially ordered set of linear subspaces of CN and the corresponding monotone
maps are defined as follows :

fi(Z) = Ker(T ∗i (Pr(Z))− I); 1 ≤ i ≤ k, (8)

where Pr(Z) denotes an orthogonal projector on the linear subspace Z. The next proposition
is easy to prove.

Proposition 3.1: Define a language LS = {ω : fω(C
N ) 6= {0}}. Then LDI(S) is(AAS) iff L

is finite.

Corollary 3.2: There is an algorithm to check whether given given quantum linear discrete in-
clusion LDI(S) is(AAS), where S = {T1, ..., Tk} is a finite set of positive substochastic operators
, Ti : M(N)→M(N) .

Quantum linear discrete inclusions have a natural a priori norm which is so called trace
norm , i.e. ‖X‖tr =: tr((XX∗)

1
2 ) . The language LS above is a particular example of languages

introduced in [1] : for a finite set of finite square matrices S = {A1, ..., Ak} with a priori norm
‖.‖ define a language LS,‖.‖ = {ω : ‖Aω‖ = 1}. If a apriori norm ‖.‖ is polytope then LS,‖.‖

is a regular language with an upper bound on the number of states of corresponding finite
automaton depending only on a apriori norm ‖.‖ (not depending on the size of S ) [1]. One of
corollaries of this result is the following proposition .
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Proposition 3.3: Suppose that S is a compact set of finite square matrices having a polytope
a apriori norm . Then LDI(S) is(AAS) iff LDI(D) is(AAS) for all finite subsets D of S .

It was wrongly stated in [3] that the languages associated with Hilbert a apriori norms are
regular . Here is a counter example :

Example 3.4 : Consider the folowing three 2 × 2 matrices : A1 = xxT , ‖x‖l2 = 1, A2 =
U(α), A3 = U(−α) . Here U(α) is a rotation on angle α. If α is π irrational then the language
L{A1,A2,A3},l2 is not regular . To see this notice that

L{A1,A2,A3},l2 ∩ 1{2, 3}∗1 = {1ω1} =: LW,

where ω are words in alphabet {2, 3} with equal number of 2 and 3 .
If L{A1,A2,A3},l2 is regular then LW should be regular as an intersection of two regular languages
. But it is easy to show that LW is not regular .

Let A be N ×N be column-substochastic matrix , i.e. nonnegative entry wise matrix which
is a nonstrict contraction respect to l1 . Associate with this matrix A the following positive
substochastic operator :

SA(X) = Diag(yi, 1 ≤ i ≤ N), yi =
∑

1≤j≤N

A(i, j)X(j, j).

If A is a contraction respect to l2 then associate with it the following positive substochastic
operator :

UA(X) = AXA∗.

It is easy to see that SA is a separable operator and UA is separable iff Rank(A) ≤ 1 . Example
3.4 hints that nonregularity of languages associated with quantum linear discrete inclusions
might be caused by the entanglement .

Proposition 3.5: Suppose that S is a finite set of separable positive substochastic operators
. Then the language LS is regular . Moreover , there exists a polytope a apriori norm for
LDI(SH) , where SH consists of restrictions of operators from S on linear space ( over reals )
of hermitian matrices .

Example 3.6: Consider the folowing compact set of 2× 2 matrices S = {U(α)AU(−α) : 0 ≤
α ≤ 2π}. Then LDI(S) is(AAS) iff ‖A‖l2 < 1. This is because up to a trivial scale there is
only one rotationaly invariant norm on R2. But if A = xyT , where both x and y are norm
one vectors and the angle arccos(< x, y >) is π irrational, then LDI(D) is(AAS) for all finite
subsets D of S ( see the last section ). As ‖xyT ‖l2 = 1 thus LDI(S) is not(AAS). This example
shows that Proposition 3.3 does not hold even in separable case .

The next result shows that for dominant positive operators the situation is rather simple.

Lemma 3.7: Suppose that Ti : M(N)→M(N), 1 ≤ i ≤ N are dominant positive substochastic
operators and spectral radius ρ(Ti) < 1, 1 ≤ i ≤ N . Then ‖T1...TN‖tr < 1 .
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Proof: Suppose that ‖T1...TN‖tr = 1 . Then there exists X1 º 0, tr(X1) = 1 such that
tr(Xi) = 1, 1 ≤ i ≤ N + 1 where Xi+1 = TiXi. As Ti are dominant positive substochastic
operators thus Im(Xi) ⊂ Im(Xi+1). Since ρ(Ti) < 1 hence the above inclusions are strict .
Therefore , dim(Im(XN+1) ≥ N + 1. And this is a contradiction .

Corollary 3.8: Suppose that S is a compact set of dominant positive substochastic operators .
Then LDI(S) is(AAS) iff ρ(T ) < 1 for all operators T ∈ S .

Proposition 3.9: If T is dominant positive stochastic operator , then the only eigenvalue of T
with magnitude one is 1 , which is equivalent to the convergence of sequence of powers T n.

Proof: There exists ε > 0 such that T (X) º εX for all X º 0. Thus T = εI + (1 − ε)((1 −
ε)−1(T − εI)) and Q =: (1− ε)−1(T − εI) is a positive stochastic operator. Thus the spectrum
Sp(T ) = {ε1+ (1− ε)z : z ∈ Sp(Q)}. But sinse Q is a positive stochastic operator hence |z| ≤ 1
. This ends the proof.

3.1 Polyquadratic Lyupunov functions

Theorem 3.10: Consider a finite set S of finite square matrices, S = {A1, . . . , Ak}. (Ai :
Cn → Cn).
If LDI(S) is (AAS) and its generalized spectrum radius ρ̄(S) = a < 1 then there exists an
integer m and positive-definite nm × nm matrix P such that ‖Ai ⊗ ... ⊗ Ai‖P < 1, 1 ≤ i ≤ k.

Here ‖.‖P is an operator norm induced by the < Px, x >
1
2 , ⊗ is a tensor product. We use

tensor products of length m. Moreover, one can choose any m > log k
−2 log a

.

Proof: First, assume that there exists a norm such the induced norms ‖Ai‖ ≤ b < 1 and
b2k < 1. Then the following matrix series converges absolutely:

P =
∑

|ω|<∞

A∗ωAω

(Recall that if ω is empty , i.e. |ω| = 0 , then Aω = I .)

The matrix P equal to this sum above is positive definite and ‖Ai‖P < 1.

Now, if we define Bi = Ai ⊗ ...⊗Ai (m times), then ρ̄({B1, ..., Bk}) = ρ̄(S)m.
(Here ρ̄(.) is a generalized spectrum radius .)
It is well known and quite easy to prove ( see, for instance [1]) that for any ε > 0 there exists
an induced norm sush that

‖Bi‖ε ≤ (ρ̄({B1, ..., Bk}) + ε).

Thus there exists an induced norm such that ‖Bi‖
2k < 1, 1 ≤ i ≤ k. This last norm gives the

proof.
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Corollary 3.11: The following class of functions provides Lyupunov function for any absolutely
stable linear discrete inclusion generated by finite sets S:
{L(x) =< Px⊗m, x⊗m >

1
2m },

here P is positive-definite matrix and x⊗m stands for an m-fold tensor power of a vector x.

Remark 3.12: The theorem above is valid also for finite sets of linear bounded operators acting
in any Hilbert space. Another , finite dimesional , way to use quadratic Lyapunov functions
is to check whether ‖Aω‖P < 1 for all words ω : |ω| > m ≥ logn

−2 log a
. Here n is a dimension of

matrices involved.

4 Absolute asymptotic stability of linear continuous time in-

clusions

Let us first define quantum continuous time linear inclusions.

Definition 4.1: A linear operator A : M(N)→M(N) called C-positive if exp(At) is a positive
operator for all t ≥ 0 .
If exp(At) is a completely positive operator for all t ≥ 0 then operator A is called Lindblad
operator .
If I +At is a dominant positive operator for some t > 0 then operator A is called CD-positive .
( It is easy to show that if A is CD-positive then exp(At) is dominant positive for all t ≥ 0 . )
C-positive operator A called C-stochastic (C-substochastic) if 0 = A∗(I)(0 º A∗(I)) .
Quantum continuous time linear inclusion is LCI(S) where S is a set of C-substochastic oper-
ators .

It is not difficult to prove using Proposition 3.9 that if A is CD-positive C-substochastic oper-
ator then spectrum of A does not contain nonzero pure imaginary eigenvalues and thus
limt→∞ exp(At) does exists .

The next Proposition follows in a rather straight way from Choi’s characterization of com-
plete positivity in terms of Choi’s matrix .

Proposition 4.2: Linear operator A : M(N)→M(N) is Lindblad iff

A(X) = aX + CX +XC∗ +
∑

1≤i≤(N2−1)

BiXB∗i , (9)

where a is a real number and matrices (C;Bi, 1 ≤ i ≤ (N2 − 1)) are traceless .
If C is a linear combination of Bi, 1 ≤ i ≤ (N2 − 1)) then A is CD-positive .

We need the following simple result which was essentialy proved in [2].
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Proposition 4.3: Let consider LCI(Z), wher Z is a compact set of bounded linear operators
in some Banach Space. Then LCI(Z) is (AAS) iff there exists τ > 0 such that Linear Discrete
Inclusion LDI(I + τZ) is(AAS).
Here I + τZ =: {I + τA : A ∈ Z}.

Of course , if LDI(I + τZ) is(AAS) then also LDI(I + tZ) is(AAS) for all 0 < t ≤ τ .
Proposition(4.3) is not usefull in general : absolute asymptotic stability is hard enough in
discrete case too and we have to figure out a proper τ . Still , it is the only , known to the
author , finite discretization procedure which turns(AAS) property of linear continuous time
inclusions to the discrete case .
It turns out that for two important cases Proposition(4.3) is very constructive . First case is
when there exists a polytope a apriori norm , second one is when in Quantum continuous time
linear inclusion LCI(S) a set S consists of CD-positive C-substochastic operators .

Theorem 4.4 : Consider Quantum continuous time linear inclusion LCI(S) , where S ia
compact set consisting of CD-positive C-substochastic operators . Then LCI(S) is(AAS) if and
only if all operators in S are nonsingular.

Proof: ”Only if part” is trivial. Let us proof ”if” part . First , it is easy to show that CD-
positive C-substochastic operator A is nonsingular iff ρ(I + tA) < 1 for all sufficiently small
positive t. Using compactness of S , it follows that there exists τ > 0 such operators I+ τA are
dominant positive for all A ∈ S. As 0 º A∗(I) , thus I+τA are dominant positive substochastic
operators for all A ∈ S and ρ(I + τA) < 1, A ∈ S. Now we just apply Proposition(4.3) and
Corollary 3.8 .

The next theorem is proved on the same lines as Theorem(4.4) with some extra efforts in
spirits of Proposition 3.3 .

Theorem 4.5: Consider continuous time linear inclusion LCI(S) , where S ia compact set
consisting of finite square matrices which are non-strict contractions respect to some polytope
norm ‖.‖ . Then LCI(S) is(AAS) if and only if all matrices in S are nonsingular.

Proof: (Sketch) Our proof consists of the following steps .
Step 1. Show , using Hahn-Banach theorem , that there exists τ > 0 such that ‖I + τA‖ ≤ 1 :
A ∈ S .
Step 2. Show that under conditions of Theorem (4.5) all matrices in the convex hull CO(S)
are Hurwitz .
Step 3. Results from [1] imply that LDI(I + tS)(0 < t ≤ τ) is not (AAS) iff there exists
Ai,t ∈ S(1 ≤ i ≤M) such that ρ((I + tA1,t)...(I + tAM,t)) = 1 and M is universal finite integer
depending only on the polytope norm ‖.‖ .
Step 4. ρ((I + tA1,t)...(I + tAM,t)) = ρ(I + t(A1,t + ... + AM,t) + O(t2)) < 1 based on Step 2
and compactness of S .
Step 5 . Use Proposition 4.3 to finish the proof .
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Remark 4.6: One of the main points of Theorem (4.5) is that when there exists polytope a
apriori norm then there is a (trivial) polynomial time algorithm to check whether given LCI(S)
is(AAS) for finite S . In a discrete time case the analogous problem even for l1 a apriori norm
is at least NP-HARD [2] and most likely is P-SPASE complete.

In both Theorem(4.4) and Theorem(4.5) , we took advantage of the following property :
if for some (good ) norm ‖exp(At)‖ ≤ 1 : t ≥ 0, A ∈ S then there exists τ > 0 such that
‖I + τA‖ ≤ 1 : A ∈ S .
But even for Hilbert norms and S consisting of two elements this property does not hold in
general .
The next theorem gives only sufficient condition for(AAS) property for general Quantum con-
tinuous time linear inclusion .

Theorem 4.7: Quantum continuous time linear finite inclusion
LCI(A1, .., Ak) is(AAS) if the following conditions hold :
A. For all i < j the intersections Ker(A∗i (I) ∩Ker(A∗i (I) = {0}.
B. Eigenvalues of all operators Ai have negative real parts.

Proof: Let us consider the following family of operator “differential equations”:

Ẋ =

(

k
∑

i=1

Ui(t)Ai

)

X, X(0) ≡ I.

Here (U1(t), ..., Uk(t)) is a measurable vector-function, all its components are nonnegative and

their sum
K
∑

i=1
Ui(t) ≡ 1. We will denote this class of vector-functions as SM. The proper way to

define the corresponding solution X(t) is as an unique continuous solution of the corresponding
integral equation:

X(t) = I +

∫ t

0

(

k
∑

i=1

Ui(τ)Ai

)

X(τ)dτ.

Let us denote asXU the solution corresponding to (weighted switching function) (U1(t), ..., Uk(t)).
As it was remarked in [2], if

U
(n)
i (ω)→ Ui in L2[0, T ] (converges weakly) then max

t∈[0,T ]
‖XU(n)(t)−X(t)U‖ → 0.

It is almost obvious that the set SM is a weak compact in L2[0, T ] for any finite T > 0. Thus the
set D(1) = {XU (1) : U ∈ SM} is a compact set of invertible positive substochastic operators.
In fact, D(1) is an exact discretization of our problem: continuous absolute asymptotic stability
is equivalent to absolute asymptotic stability of linear discrete inclusion LDI(D).
Anyway, we are to prove that ‖B‖ < 1 for all B ∈ D(1), where ‖.‖ is an operator
norm in induced by the traces norm in M(N).
If x ∈M(N) is a complex N ×N matrix and

X(t) = I +

∫ t

0

(

k
∑

i=1

Ui(τ)Ai

)

X(τ)dτ,
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then x(t) =: X(t)x satisfies the following integral equation:

x(t) = x(0) +

∫ t

0

(

k
∑

i=1

Ui(τ)Ai

)

x(τ)dτ.

And y(t) =: tr(x(t)) satisfies the following integral equation:

y(t) = y(0) +

∫ t

0
tr(x(τ)C(τ))dτ,

C(τ) =:
k
∑

i=1

Ui(τ)A
∗
i (I).

Notice that 0 º C(τ) .
After all those preparations ( compactness of D(1) most of all ) we need to prove that for all
U ∈ SM and ‖x(0)‖tr = 1 one has that ‖x(1)‖tr < 1. Using positivity , it is enough to consider
only positive semidefinite x(0) º 0.
We consider two cases. In the first case we assume that the measure of the following subset ZU

of [0, 1] is positive :

ZU =: {t ∈ [0, 1] : there exists i such that 0 < Ui(t) < 1}.

It follows from the positivity that tr(C(τ)x(τ)) ≤ 0, and from the Condition (A) that 0 Â C(t)
if t ∈ ZU .
Therefore tr(C(t)x) < 0 for all t ∈ ZU and nonzero positive semidefinite matrices x.
Thus tr(x(1)) ≤ tr(x(0)) +

∫

ZU
< tr(C(τ)x(τ))dτ.

As Lebeques integral of a strictly positive measurable function is srictly positive, we conclude
that tr(x(1)) < tr(x(0)) = 1.
In the second case we assume that the measure of ZU is zero. Let us define the following convex
(connected ) compact subsets of M(N) :

T (1) = {x ∈M(N) : x º 0, tr(X) = 1};Li = {x ∈ T (1) : Im(x) ⊂ Ker(A∗i (I)}, 1 ≤ i ≤ k.

It is clear that Li ∩ Lj if 1 ≤ i < j ≤ k because of the Condition (A).
Suppose that there exists x(0) º 0 such that tr(x(1)) = 1 . Since operators Ai(1 ≤ i ≤ k) are
C-substochastic hence the following identity holds :

tr(x(τ)) ≡ 1(x(τ) º 0).

We have a continuous curve x(τ) sitting in a connected compact T (1) .
As Li ∩ Lj if 1 ≤ i < j ≤ k thus either for some t ∈ [0, 1] x(t) belongs to none of Li(1 ≤ i ≤ k)
(then tr(C(τ)x(τ)) < 0 in some interval around t and tr(x(1)) < 1 ) ,
or the entire curve belongs to exactly one Li. The only possibility for the last ”branch” is that
C(τ) = A∗i (I) for some 1 ≤ i ≤ k and almost all τ (up to measure zero set). This possibility
contradicts to the Condition (B).

This result is really quite powerful, it provides many important counter examples.
Example(4.8) was first suggested by David Angeli for a different aim and was the main moti-
vation for Theorem 4.7 .
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Example 4.8: Consider the folowing compact set of real 2× 2 matrices S = {U(α)AU(−α) :
0 ≤ α ≤ 2π}. Similarly to Example 3.6 , LCI(S) is(AAS) iff 0 Â A+AT .
Take any Hurwitz matrix A with 0 º A+AT but not 0 Â A+AT . . It follows from Theorem(4.7)
that LCI(D) is(AAS) for all finite subsets D of S .
(Here we deal with the following C-substochastic operators : Ā(X) = AX +XAT .)
Thus we consrtrusted a compact set S such that LCI(D) is(AAS) for all finite subsets D of S
, but LCI(S) is not(AAS) .

Example 4.9: Another counter example , based on Theorem(4.7) , is LCI(A1, A2) which
is(AAS) , but LDI(C(A1), C(A2)) is not(AAS) . Here the Cayley transform C(A) = (I+A)(I−
A)−1 . I.e. , Cayley transform can transform absolutely asymptoticaly stable continuous time
systems into not absolutely asymptoticaly stable discrete systems . Of course , this also give
an example of LCI(A1, A2) which is(AAS) but does not have quadratic Lyupunov function :

A1 =

(

−1 2
0 −1

)

, A2 =

(

−1 0
−2 −1

)

.

It is easy to see that LCI(A1, A2) satisfies conditions of Theorem(4.7) , but ρ(C(A1)C(A2)) =
1 therefore LDI(C(A1), C(A2)) is not(AAS) .

Remark 4.10: If LCI(S) is (AAS) then all matrices in the convex hull CO(S) are Hurwitz
. But this condition (COH) is not sufficient even for two 2× 2 matrices . Theorem 4.5 proves
that the condition (COH) is sufficient provided there exists a apriori polytope norm and S is
compact . Example 4.8 shows that the condition (COH) is not sufficient for compact S and
Hilbert a apriori norms even in 2-dimensional case .
From the other hand , a slight modification of Theorem (4.7) gives that the condition (COH)
is sufficient for finite S and Hilbert a apriori norms in 2-dimensional case .
All this said indicates a number of possible conjectures .

5 Controllabilities of Switching Systems

Let us consider controlled switched systems : x(n+ 1) = At(n)x(n) +Bt(n)u(n) , where all the
matrices involved act on some linear finite-dimensional space X.
Here t : N → 1, 2, .., k is a switching rule. Let us associate with pairs (A,B) the following map
which maps linear subspaces of X to linear subspaces of X:

D(A,B)(Y ) =: A(Y ) + Im(B) ( discrete case ) ,

For a given finite set of pairs {(A1, B1), ..., (Ak, Bk)} we will use the following notations :

Di =: D(Ai,Bi).

Similarly , we define Dω for a word ω in the alphabet {1, ..., k}.
Using these notations the switching controllability in discrete case means that there exists a
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word ω such that

Dω(0) = X (full space ) .

The absolute controllability means that for any infinite word ω = ω1ω2..ωm... there exists N

such that

Dω1ω2..ωN
(0) = X.

Let us first make obvious observations:
1. Linear feedbacks don’t change the problem , i.e. D(A,B) = D(A+BG,B) .
2. Absolute controllability implies standard controllability of each pair (Ai, Bi) , but not vice
versa.
3. Switching controllability implies that there exists 1 ≤ j ≤ k such that Dj(X) = X.
4. A feedback G exists such that A+BG is nonsingular iff D(A,B)(X) = X, and this is true for
any commutative field of scalars.
5. It is necessary for the switching controllability in both continuous and discrete time case that

L(A1, ..., Ak; Im(B1 + ...+ Im(Bk)) = X.

Here L(A1, ..., Ak;Z) is a minimal linear subspace invariant respect to all Ai, 1 ≤ i ≤ k and
containing Z.

Theorem 5.1: Assume that there exist feedbacks Gi such that Ai +BiGi is nonsingular for all
i ∈ 1, 2, .., k. Then the discrete time controlled switching system is Switching controllable iff

L(A1, ..., Ak; Im(B1 + ...+ Im(Bk)) = X.

Proof: Using the first observation above we can assume WLOG that Ai is nonsingular for all
1 ≤ i ≤ k.
Suppose that discrete time controlled switching system is not Switching controllable , or
Dω(0) 6= X for all
finite words ω. As the state space X is finite-dimensional thus there exists a word ω∗ such that

dim(Dω(0)) ≤ dim(Dω∗(0)) < dim(X) <∞ for all finite words ω.

Let us denote Y =: Dω∗(0). Then for all 1 ≤ i ≤ k we have that dim(Ai(Y ) + Im(Bi)) ≤
dim(Y ).
As Ai is nonsingular , we conclude that Im(Bi) ⊂ Ai(Y ), 1 ≤ i ≤ k.
Via standard induction argument we get that Im(Bi) ⊂ Ai(AωY ), 1 ≤ i ≤ k

for all finite words ω , including empty word. Thus , it follows that

Im(Bi) ⊂
⋂

ω

Ai((Aω(Y )), 1 ≤ i ≤ k;Z =:
⋂

ω

Aω(Y ).

As Ai is a nonsingular matrix ( and a injective map from X on to X ) , therefore

Ai(Z) = Ai(
⋂

ω

Aω(Y )) =
⋂

ω

Ai((Aω(Y )) ⊃ Z.
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So, we have that Z ⊂ Ai(Z). It follows from finite dimensionality that Z = Ai(Z))

From the conditions of the theorem , it follows that there exists at least one nonzero Bi.
Thus the subspace Z is nonzero subspace, invariant respect to all Ai and containing Im(Bi), 1 ≤
i ≤ k.
From the other hand, dim(Z) ≤ dim(Y ) < dim(X). We got a contradiction, therefore Dω∗(0) =
X.

Corollary 5.2: The condition L(A1, ..., Ak; Im(B1 + ...+ Im(Bk))) = X is necessary and suf-
ficient for switching controllability in continuous time case without any assumptions.

It is clear that Theorem 5.1 provides polynomial in (dim(X), k) algorithm .

Example 5.3: Let us show that the nonsingularity is essential. We need the following example
of controlled switched system
{(A1, B1), ..., (Ak, Bk)} which is not switching controllable:
there exists j such that Aj(X) + Im(Bj) = X and
L(A1, ..., Ak; Im(B1 + ...+ Im(Bk)) = X .
Consider the following three pairs of 3 by 3 matrices :

A1 = I, A2 = 0, A3 = 0;B1 = Diag(1, 0, 0), B2 = Diag(0, 1, 0),

B3 = Diag(0, 0, 1).

It is easy to see that in this case dim(Dω(0)) ≤ 2 for all finite words ω (the system is not
switching controllable ) , A1(X) + Im(B1) = X , and L(A1, ..., Ak; Im(B1 + ...+ Im(Bk)) = X

.
From the other hand Conditions(3,5) are sufficient for the switching controllability in the case
when Ai ≡ A, rank(Bi) ≡ 1 and the field is sufficiently large . This not very difficult result is
based on elementary matroidal considerations .

It is not clear (to the author) if it is decidable to check whether given controlled switching
system is switching controllable , say for the field of rational numbers.
For finite fields it is certainly decidable. In this case we have a (very) particular case of the
following graph decision problem (GDP):
given a finite set of matrices Ci with nonnegative entries ( directed graphs ) to check whether
there exists some product of them having all positive entries. This (GDP) problem is known
to be ”hard” in general , i.e. it is P-SPACE Complete [4] .
The matrices Ci corresponding to the controlled switching system
{(A1, B1), ..., (Ak, Bk)} are boolean card(X)× card(X) matrices with :

Ci(x, y) = 1 iff there exists u such that y = Aix+Biu.

A polynomial-time (but not ”combinatorial”) algorithm to solve (GDP) has been described in
[2] in one special case :
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all the directed graphs associated in a standard way with the products of matrices Ci have
symmetric transitive closure. For linear controlled switching systems over finite fields it is
exactly the nonsingularity assumption.
The case of absolute controllability fits nicely to the general framework of monotone automatons
and the next result is very similar to Corollary 3.2. Moreover if ‖Ai‖l2 ≤ 1, 1 ≤ i ≤ k then
LDI(A1, ..., Ak) is(AAS) iff the controlled switched system with pairs {(A∗i , I −AiA

∗
i ), 1 ≤ i ≤

k} is absolutely controllable .

Theorem 5.4: It is decidable to check absolute controllability in discrete case. Moreover there
exists (very rapidly growing) function F (dim(X), k) such that a controlled switching system is
absolutely controllable iff Dω(0) = X for all finite words ω of length F (dim(X), k) .

6 Rank one matrices

Let us consider a bounded set of n × n rank one matrices Z = {xαy
∗
α, α ∈ S}, here S is some

, possibly infinite ,“index” set. We associate with this set the following matrix or function of
two variables:

MZ(α, β) =:< xα, yβ > .

We also define for any square , possibly infinite , matrix B the following quantity:

γ(B) =: supi1,i2,...,ik |B(i1, i2)B(i1, i2)...B(ik, i1)|
1
k .

As spectral radius ρ(xy∗) =< x, y > , we the following identity :

ρ̄(Z) = γ(MZ).

If Z is a finite set then γ(MZ) can be computed in poly-time. Also in this finite case it is
obvious that a norm ‖.‖ exists such that induced operator norms ‖xαy

∗
α‖ ≤ 1 iff γ(MZ) ≤ 1.

Next result showes that the last statement holds for infinite sets also.

Proposition 6.1: Let us consider a bounded set of n×n rank one matrices Z = {xαy
∗
α, α ∈ S}.

Then norm ‖.‖ exists such that induced operator norms ‖xαy
∗
α‖ ≤ 1 iff γ(MZ) ≤ 1.

Corollary 6.2: Consider (an infinite ) finite rank matrix (function of two variables ) F =
f(α, β);α, β ∈ S . If γ(F ) ≤ 1 and (|f(α, β)|) <∞ then there exist a function d(α) such that

0 < a ≤ d(α) ≤ b <∞ and |d(α)−1f(α, β)d(β)| ≤ 1(α, β ∈ S).

Proof: First we factorize F = LR where L is a “S×n” and R is “n×S matrices with uniformly
bounded elements, n is a rank of F . We associate with this factorization a natural set of rank
one n × n matrices : Z = {xαy

∗
α, where xα is “α”raw of L and yα is “α” column of R. It

follows from Proposition 6.1 that there exists a norm ‖.‖ such that induced operator norms
‖xαy

∗
α‖ ≤ 1(α ∈ S).
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But ‖xαy
∗
α‖ = ‖xα‖‖yα‖∗, where ‖.‖∗ is a dual norm.

Recall that L,R have uniformly bounded elements , thus for some positive constant D we get
that

‖xα‖ ≤ D, ‖yα‖∗ ≤ D.

Define d(α) = ‖xα‖ if ‖xα‖ ≥ D−1 and d(α) = D−1 otherwise.
It follows that d(α)−1‖xα‖ ≤ 1 and d(α)‖yα‖∗ ≤ 1 for all α ∈ S.
Therefore we get that

|d(α)−1f(α, β)d(β)| = |d(α)−1 < xα, yβ > d(β)| ≤ d(α)−1‖xα‖d(β)‖yβ‖∗ ≤ 1.

The last Corollary generalizes (“finite”) Theorem 7.2 from [7]. Of course, it would be inter-
esting to say something similar about continuous functions f(x, y) defined on the unit square.
Our proof works for polynomials.
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