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Abstract

The noninteracting control problem with stability for (A,B,C, D) quadruples has been studied
for a long time. But, there are no numerically verifiable solvability conditions and no numerically
implementable methods for solving it in the existing literatures. Hence, indeed it is still an unsolved
problem from theoretical and numerical points of view. In this paper we develop a numerically
reliable method to solve this unsolved problem. The main tool that we use is numerical linear
algebra technique and our numerical method can be implemented in a numerically reliable way.

1 Introduction

Consider an (A,B, C, D) quadruple and its associated linear time-invariant system of the form

ẋ = Ax + Bu, y = Cx + Du, (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m, D is the direct feedthrough matrix, x ∈ Rn is
the state, u ∈ Rm is the control input and y ∈ Rm is the output. Let u = Fx + Hv, then the closed
loop system becomes

ẋ = (A + BF )x + BHv, y = (C + DF )x + DHv. (2)

The transfer matrix from output y to input v in (2) is (C + DF )(sI −A−BF )−1BH + DH. Hence,
the noninteracting control problem (i.e., row by row decoupling problem) with stability studied in this
paper can be formulated as follows:

Definition 1 The noninteracting control problem with stability for an (A,B, C, D) quadruple is solv-
able if there exist matrices F ∈ Rm×n and H ∈ Rm×m such that

(C + DF )(sI −A−BF )−1BH + DH is nonsingular and diagonal, (3)

and the matrix A + BF is stable.

The noninteracting control problem with stability for the linear time-invariant system

ẋ = Ax + Bu, y = Cx, (4)
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which has no direct feedthrough matrix, has been investigated and numerically verifiable coordinate-
free solvability conditions have been given in [4, 5, 6, 7] based on geometric approach and structural
approach in the last three decades.

The results in [4, 5, 6, 7] are very important theoretically. But, as pointed out in [9], they can not
lead to numerically reliable methods for computing a solution for the noninteracting control problem
with stability for systems of the form (4). Only very recently, a numerically reliable method has been
developed in [9] based on orthogonal transformations for solving this problem. After a hard study, we
found that it is very difficult to generalize the works in [4, 5, 6, 7] even to characterize the solvability
conditions for the noninteracting control problem with stability for (A,B, C, D) quadruples. Similarly,
the result in [9] can not be generalized easily for this purpose, too.

The only existing works that we can find on the noninteracting cotrol problem with stability
for (A,B, C, D) quadruples are [1, 2, 3]. In [2, 3] only sufficient conditions are given. While the
necessary and sufficient conditions in [1] are based on the existences of some particular but unknown
invariant subspaces of system (1) and some particular but also unknown solutions of the noninteracting
control problem without stability for system (1), hence, the conditions given in [1] are not numerically
verifiable. Furthermore, the results in [1, 2, 3] can not give any direction to establish a numerically
implementable method for solving the underlying problem in the general setting.

Based on the above observations, we can conclude that the noninteracting control problem with
stability for (A,B, C, D) quadruples is still an unsolved problem from both theoretical and numerical
points of view. The main purpose of this paper is to develop a numerically reliable method, based on
numerical linear algebra technique, to solve this unsolved problem.

2 Main Results

In this section we will establish a numerically reliable algorithm for solving the noninteracting control
problem with stability for (A,B, C, D) quadruples. Our method consists of four different stages:

(1) Stage 1 is to reduce the underlying problem for the (A,B, C, D) quadruple into a simultaneous
problem of disturbance decoupling and “unusual” noninteracting control with stability for a
reduced system with nonsingular direct feedthrough matrix and a noninteracting control problem
with stability for a reduced system without direct feedthrough matrix.

(2) In Stage 2, we only consider the simultaneous problem with stability arised in Stage 1. This
simultaneous problem with stability will be reduced into an “unusual” noninteracting control
problem with stability for a linear time-invariant system with nonsingular direct feedthrough
matrix.

(3) We will present a numerically reliable algorithm in Stage 3 to solve the “unusual” noninteracting
control problem with stability produced in Stage 2.

(4) Stage 4 consists of the backtransformations of the results in Stages 1, 2 and 3 to the desired
solution for the original noninteracting control problem. An outline of the overall algorithm is
given in this stage.

2.1 Stage 1

The noninteracting control problem with stability for systems of the form (4) and the noninteracting
control problem without stability for systems of the form (1) have been studied and the related
numerically reliable methods based on orthogonal transformations have been developed in [9] and [10]
respectively. Hence, the results in [9] and [10] will be used as a bridge to achieve the purpose of Stage
1 in this subsection.
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Lemma 2 [10] Given A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m. There exist orthogonal
matrices U, V ∈ Rn×n, W ∈ Rm×m and a permutation matrix P ∈ Rm×m such that

[
U 0
0 P

] [
sI −A B

C D

] [
V 0
0 W

]
=



n1 n2 m0 m−m0

sE11 −A11 −A12 B11 B12

−A21 sE22 −A22 B21 B22

0 sE32 −A32 0 0
C11 C12 D11 0
0 C22 D21 0


}n1

}ñ2

}ñ3

}m0

}m−m0

,

(5)
where

rank(D11) = m0, rank
[

B21 B22

]
= ñ2, max

s∈C
rank

[
sE32 −A32

C22

]
= n2, (6)

rank

[
sE11 −A11 B11 B12

−A21 B21 B22

]
= n1 + ñ2, ∀s ∈ C. (7)

The following conditions (9) and (11) follow directly from [10], and the condition (10) is a direct
consequence of the stability of A + BF .

Lemma 3 (c.f. [10]) Given A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m. Assume that
orthogonal matrices U , V , W and the permutation matrix P have been determined to satisfy the
condensed form (5). For any matrices F ∈ Rm×n and H ∈ Rm×m, denote

W T FV =

[ n1 n2

F̃11 F̃12

F̃21 F̃22

]
}m0

}m−m0
, W T HP T =

[ m0 m−m0

H̃11 H̃12

H̃21 H̃22

]
}m0

}m−m0
. (8)

If there exist F ∈ Rm×n and H ∈ Rm×m such that (3) holds and A + BF is stable, then

D21 = 0, ñ2 = m−m0, rank(B22) = ñ2, (9)
rank(sE32 −A32) = ñ3, ∀s ∈ C/C−, (10)
H̃12 = 0, A21 + B21F̃11 + B22F̃21 = 0, B21H̃11 + B22H̃21 = 0. (11)

Lemma 3 contains a very important fact, that is, the conditions (9) and (10) are necessary for the
noninteracting control problem with stability of system (1). With these two necessary conditions, we
can refine the condensed form (5) as follows.

Theorem 4 Given A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m. Assume that orthogonal
matrices U , V , W and the permutation matrix P have been determined to satisfy the condensed form
(5). If the conditions (9) and (10) hold, then there exist nonsingular matrices X, Y ∈ Rn×n and
Z ∈ Rm×m such that

[
X 0
0 I

] 
sE11 −A11 −A12 B11 B12

−A21 sE22 −A22 B21 B22

0 sE32 −A32 0 0
C11 C12 D11 0
0 C22 0 0


[

Y 0
0 Z

]
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=



n1 ñ2 ñ3 m0 ñ2

sE11 −A11 −A12 −A13 B11D11 0
−A21 sE22 −A22 sE23 −A23 0 B22

0 −A32 sE33 −A33 0 0
C11 C12 C13 D11 0
0 C22 C23 0 0


}n1

}ñ2

}ñ3

}m0

}ñ2

, (12)

where
rank(E11) = n1, rank(E22) = ñ2, rank(E33) = ñ3, rank(D11) = m0, (13)

max
s∈C

rank

[
−A32 sE33 −A33

C22 C23

]
= ñ2 + ñ3, (14)

rank(sE33 −A33) = ñ3, ∀s ∈ C/C−, (15)

and
rank

[
sE11 −A11 B11

]
= n1, ∀s ∈ C. (16)

Furthermore, matrices X, Y , Z and the condensed form (12) are computed only based on orthogonal
transformations which can be implemented via an inverse-free and numerically reliable way.

Lemmas 2 and 3 and Theorem 4 offer a springboard to leap forward to the objective of this
subsection.

Theorem 5 The noninteracting control problem with stability for (A,B, C, D) quadruple is solvable
if and only if the condition (9) holds and furthermore the following (a) and (b) are satisfied:

(a) The state feedback decoupling problem with stability for strictly proper system[
E22 E23

0 E33

]
ẋ =

[
A22 A23

A32 A33

]
x +

[
B22

0

]
u, y =

[
C22 C23

]
x, (17)

is solvable, i.e., there exist F22 ∈ Rñ2×ñ2, F23 ∈ Rñ2×ñ3 and H22 ∈ Rñ2×ñ2 such that

the pencil (

[
E22 E23

0 E33

]
,

[
A22 + B22F22 A23 + B22F23

A32 A33

]
) is stable, (18)


[
C22 C23

] [
sE22 −A22 −B22F22 sE23 −A23 −B22F23

−A32 sE33 −A33

]−1 [
B22

0

]
H22

is nonsingular and diagonal.
(19)

(b) The simultaneous problem of disturbance decoupling and “unusual” noninteracting control for
the linear time-invariant system[

E11 0
0 E33

]
ẋ =

[
A11 − B11C11 A13 − B11C13

0 A33

]
x+

[
B11

0

]
u+

[
A12 − B11C12

A32

]
d, y = u

(20)
with feedback u = Fx + v is solvable, i.e., there exists F ∈ Rm0×(n1+ñ3) such that

the pencil (

[
E11 0
0 E33

]
,

[
A11 − B11C11 A13 − B11C13

0 A33

]
+

[
B11

0

]
F) is stable, (21)

F(

[
sE11 −A11 + B11C11 −A13 + B11C13

0 sE33 −A33

]
−

[
B11

0

]
F)−1

[
B11

0

]
is diagonal, (22)

F(

[
sE11 −A11 + B11C11 −A13 + B11C13

0 sE33 −A33

]
−

[
B11

0

]
F)−1

[
A12 − B11C12

A32

]
= 0, (23)

4



2.2 Stage 2

In this subsection we will reject the disturbance and thus transform the simultaneous problem of (21),
(22) and (23) into a single problem like that of (21) and (22).

Lemma 6 Let

[
E11 0
0 E33

]
,

[
A11 A13

0 A33

]
,

[
A12

A32

]
,

[
B11

0

]
,
[

C11 C12 C13

]
come from the con-

densed form (12). There exist orthogonal matrices U ,V ∈ R(n1+ñ3)×(n1+ñ3) such that

(U
[

sE11 −A11 + B11C11 −A13 + B11C13

0 sE33 −A33

]
V,U

[
A12 − B11C12 B11

A32 0

]
)

is in its controllability staircase form, i.e., the following properties hold:

U
[

sE11 −A11 + B11C11 −A13 + B11C13 A12 − B11C12 B11

0 sE33 −A33 A32 0

] [
V 0
0 I

]

=


n1 + ñ3 − τ − ν τ ν ñ2 m0

sΘ̃11 − Φ̃11 sΘ̃12 − Φ̃12 sΘ̃13 − Φ̃13 ∆ Ψ̃
0 sΘ− Φ sΘ̃23 − Φ̃23 0 Ψ
0 0 sΘ̃33 − Φ̃33 0 0

 }n1 + ñ3 − τ − ν
}τ
}ν

, (24)

rank
[

sΘ̃11 − Φ̃11 ∆
]

= n1 + ñ3 − τ − ν, ∀s ∈ C, (25)

rank
[

sΘ− Φ Ψ
]

= τ, ∀s ∈ C. (26)

Theorem 7 Assume that the form (24) has been determined. The simultaneous problem of (21), (22)
and (23) is solvable if and only if

the pencils (Θ̃11, Φ̃11) and (Θ̃33, Φ̃33) are stable, (27)

and the “unusual” noninteracting control problem with stability for system

Θẋ = Φx + Ψu, y = u (28)

with state feedback
u = Kx

is solvable, i.e., there exists a K ∈ Rm0×τ such that

the pencil (Θ,Φ + ΨK) is stable, K(sΘ− Φ−ΨK)−1Ψ is diagonal. (29)

Moreover, if (27) and (29) hold true with K ∈ Rm0×τ , then (21), (22) and (23) hold with

F =
[

0 K K̂
]
VT ,

where K̂ ∈ Rm0×ν is arbitrary.
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2.3 Stage 3

To our knowledge, the problem (29) has not been studied yet. In this subsection we will develop a
numerically reliable algorithm for solving the problem (29).

The following result is trivial.

Corollary 8 Let (Θ,Φ,Ψ) be from the condensed form (24). If m0 = 1, then the problem (29) is
always solvable and all its solutions are given by all matrices K satisfying that the pencil (Θ,Φ + ΨK)
is stable.

In the following we consider the case that m0 > 1.

Theorem 9 Assume that (Θ,Φ,Ψ) is from the condensed form (24) with m0 > 1. There exist non-
singular matrices X ,Y ∈ Rτ×τ and a permutation matrix P ∈ Rm0×m0 such that

X
[

sΘ− Φ Ψ
] [

Y 0
0 P

]
= (30)



τ1 τ2 τ3 τ4 τ5 m1 τ5 m0 −m1 − τ5

sΘ11 − Φ11 0 0 0 0 Ψ11 0 0
sΘ21 − Φ21 sΘ22 − Φ22 0 0 0 Ψ21 0 Ψ23

sΘ31 − Φ31 sΘ32 − Φ32 sΘ33 − Φ33 0 −Φ35 Ψ31 0 Ψ33

0 0 0 sΘ44 − Φ44 sΘ45 − Φ45 0 Ψ42 Ψ43

0 0 0 sΘ54 − Φ54 sΘ55 − Φ55 0 0 0


}τ1

}τ2

}τ3

}τ5

}τ4

,

where

0 < m1 < m0, 0 ≤ τ5 ≤ 1, (31)
if τ5 = 0, then τ3 = τ4 = 0, (32)

rank

 sΘ11 − Φ11 0 0 Ψ11

sΘ21 − Φ21 sΘ22 − Φ22 0 Ψ21

sΘ31 − Φ31 sΘ32 − Φ32 sΘ33 − Φ33 Ψ31

 = τ1 + τ2 + τ3, ∀s ∈ C, (33)

rank
[

sΘ22 − Φ22 Ψ23

]
= τ2, ∀s ∈ C, (34)

and furthermore, if τ5 = 1, we also have

Ψ42 6= 0, (35)

rank
[

sΘ33 − Φ33 Φ35

]
= τ3, rank(sΘ54 − Φ54) = τ4, ∀s ∈ C. (36)

Moreover, matrices X , Y and the condensed form (30) are computed only based on orthogonal trans-
formations which can be implemented via an inverse-free and numerically reliable way.

We are now ready to derive a very useful reduction property of the problem (29) based on the
condensed form (30).

Theorem 10 Let that (Θ,Φ,Ψ) be from the condensed form (24). Assume that nonsingular matrices
X , Y and the permutation matrix P have been determined satisfying the condensed form (30). Then
the problem (29) is solvable if and only if

pencils (Θ22,Φ22) and (Θ33,Φ33) are stable, (37)
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the pencil (

[
Θ44 Θ45

Θ54 Θ55

]
,

[
Φ44 Φ45

Φ54 Φ44

]
) is stable if Ψ43 6= 0, (38)

and there exists a matrix K11 ∈ Rm1×τ1 such that

pencil (Θ11,Φ11 + Ψ11K11) is stable, K11(sΘ11 − Φ11 −Ψ11K11)−1Ψ11 is diagonal. (39)

Moreover, if (37), (38) and (39) hold, then one solution K of the problem (29) is given by

KY = P


τ1 τ2 τ3 τ4 τ5

K11 0 0 0 0
0 0 0 K24 K25

0 0 0 0 0

 }m1

}τ5

}m0 −m1 − τ5

, (40)

where [
K24 K25

]
= 0 if Ψ43 6= 0, (41)

the pencil (

[
Θ44 Θ45

Θ54 Θ55

]
,

[
Φ44 Φ45

Φ54 Φ55

]
+

[
Ψ42

0

] [
K24 K25

]
) is stable if Ψ43 = 0. (42)

Theorem 10 leads to the following numerically reliable algorithm, which is only based on orthogonal
transformations and solutions of some linear systems of equations, for solving the problem (29).

Algorithm 1
Input: Θ,Φ ∈ Rτ×τ , Ψ ∈ Rτ×m0 satisfying (26).
Output: K ∈ Rm0×τ (if possible) solving the problem (29).
Step 0. Set K := ∅, M := Im0 , N := Iτ , l := 0.

Step 1. If m0 = 1, compute K such that the pencil (Θ,Φ+ΨK) is stable, and then set K :=

[
K 0
0 K

]
.

Go to Step 3. Otherwise, if m0 > 1, go to Step 2.
Step 2. Compute the condensed form (30). If (37) or (38) fails, print “The Problem (29) Is Unsolv-
able” and stop. Otherwise, compute

[
K24 K25

]
based on (41) and (42). Set

K :=


τ2 τ3 τ4 τ5

0 0 K24 K25 0
0 0 0 0 0
0 0 0 0 K

 }τ5

}m0 −m1 − τ5

l
, M := M

[
P 0
0 I

]
, N = N

[
Y 0
0 I

]
,

and Θ := Θ11, Φ := Φ11, Ψ := Ψ11, l = l + m0 −m1, τ = τ1, m0 := m1. Go to Step 1.
Step 3. Compute K by solving the linear system KN = MK. Output K.

2.4 Stage 4

The results in Subsections 2.1, 2.2 and 2.3 can be combined to provide an overall numerically reliable
algorithm for solving the noninteracting control problem with stability for (A,B, C, D) quadruples as
follows.

Algorithm 2
Input: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m.
Output: Matrices F ∈ Rm×n and H ∈ Rm×m (if possible) such that the matrix A + BF is stable
and (3) holds.
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Step 1. Compute the condensed form (5) using the algorithm given in [10]. If the conditions (9)
and (10) are not true, print “The Studied Problem Is Unsolvable” and stop. Otherwise, compute the
condensed form (12).
Step 2. Solve the noninteracting control problem with stability for system (17) using the algorithm in
[9]. If it is unsolvable, then print “The Studied Problem Is Unsolvable” and stop. Otherwise, compute
one of its solutions (

[
F22 F23

]
,H22) such that (18) and (19) hold.

Step 3. Compute the staircase form (24). If the condition (27) does not hold, print “The Studied
Problem Is Unsolvable” and stop. Otherwise, compute a solution K of the problem (29), if it exists.

Step 4. Set F =
[ n1 + ñ3 − τ − ν τ ν

0 K 0
]
VT , and compute F and H by

B22F21 = −A21, D11F12 = −C12, D11

[
F11 F13

]
= F −

[
C11 C13

]
,

FV Y = WZ

[
F11 F12 F13

F21 F22 F23

]
, H = WZ

[
H11 0
0 H22

]
P

with D11H11 being nonsingular and diagonal.

Output F and H.

3 Conclusions and Remarks

We have developed a numerical algorithm–Algorithm 2 to verify the solvability conditions and compute
a solution for the noninteracting control problem with stability for (A,B, C, D) quadruples. Algorithm
2 involves only orthogonal transformations and the solutions of several linear systems of equations and
thus it can be implemented in a numerically reliable way.
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