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Abstract

A positive system is a system in which the state variables are always positive in
value. In this introductory tutorial paper, basic results on positive systems are reviewed
and recent developments and open problems are addressed.

1 Introduction

The theory of positive systems is deep and elegant – and yet pleasantly consistent

with intuition. [...] It is for positive systems, therefore, that dynamic systems

theory assumes one of its most potent forms.

(David Luenberger, in Introduction to Dynamic Systems, Wiley, 1979)

As stated in the celebrated Professor Luenberger’s book on dynamic systems, a positive

system is a system in which the state variables are always positive (or at least nonnegative)

in value. It is somewhat surprising to realize how easily available is the information on

positivity of state variables and how strong can be the consequences of such information on

system’s behaviour! Again, this surprise is very well described in the just cited book:

Indeed, just the knowledge that the system is positive allows one to make some

fairly strong statements about its behaviour: these statements being true no

matter what value the parameters may happen to take.

So, going deep further into this feeling of surprise, one may find evidences in many and

diverse areas of science and technology, since the positivity property just defined, is always

nothing but the immediate consequence of the nature of the phenomenon we are dealing

with. A huge number of examples are just before our eyes: any possible type of resource

measured by a quantity: time, money, goods, buffers size, queues, data packets flowing in a

network, human, animal and plant populations, concentration of any conceivable substance

you may think of and also – if you haven’t conceived this – mRNAs, proteins, molecules,

electric charge (see [3, 8]), light intensity levels (see [5]) ... Moreover, last, but not least, one
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has to mention any stochastic model (such as the Hidden Markov Model), since, clearly, also

probabilities are positive quantities.

However, in oder to be politically correct, it is very important to well define limitations and

boundaries of this ”extended family” of systems. Other than the classical field of electro-

mechanical systems where any value is admissible, we have to point out that in many real

situations one is interested in considering the deviations of the state variables from a certain

equilibrium or operating point (set point) which may not be the origin, so that in this case

the positivity property of the original state variables can be assumed to hold provided that

the deviations are ”small enough”. But, still, as we will see very soon hereafter, also in such

situations, we are not at all at the end of the story...

In this tutorial paper, to explain the main issues and discuss some interesting new openings

in the theory of positive systems, we will concentrate on the simple case of linear time

invariant single input/single output discrete-time positive systems. Recently, many issues

regarding positive system analysis and control has been studied by a large number of authors.

We just cite a few: reachability [10, 11, 14, 17, 27, 33, 36, 38], stabilization [12, 26, 23, 39,

40, 34], 2D systems and behavioural approach [24, 27, 28, 35, 42, 44], optimal control [25],

identification [13], realization [1, 2, 4, 6, 15, 16, 19, 20, 21, 22, 29, 31, 36, 41, 42, 45, 46].

However, for the sake of brevity, in this paper we will limit ourselves to discussing a few

issues regarding positive systems.

The paper is organized as follows. The next section deals with the homogeneous case and

the celebrated fundamental result due to Frobenius and Perron will be stated with emphasis

on the dynamical aspects of system’s behaviour. In section III the nonhomogeneous case is

treated and, in particular, questions related to external (input/output) positivity, stability

and realization are briefly discussed.

The reader interested in the topic presented in this paper may find useful reference [18].

2 Homogeneous positive systems: definitions and dom-

inant modes analysis

We begin with basic definitions.

Definition 2.1. A vector x or a matrix A will be said to be positive [strictly positive], and

denoted by x > 0, A > 0, provided that its entries are nonnegative but at least one of them

is positive [provided that its entries are positive]. A vector sequence x (k) will be said to be

positive [strictly positive] provided that its entries are nonnegative for any k ≥ 0 but x (k) is

positive for some k > 0 [provided that its entries are positive for any k ≥ 0]. The set defined

by x ∈ Rn such that xi ≥ 0, will be called the nonnegative orthant and denoted by Rn
+.

Note that the above definition implies that we do not consider the trivial cases of zero
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vectors, matrices or sequences1.

Let us consider the homogeneous LTI discrete-time dynamic system

x (k + 1) = Ax (k) (2.1)

where A ∈ Rn×n and the following definition of positivity of a system:

Definition 2.2. A linear system described by the state space representation (2.1) is said

to be an (homogeneous) positive linear system iff for any positive initial state vector, the

trajectory remains positive for all times.

The above definition requires the nonnegative orthant to be invariant for the dynamics,

i.e. the positivity property as just defined call for the mathematical model (2.1) to be

consistent with the a priori information on the positivity of the relevant variables involved

in the process. In fact, in order to make the model consistent, it must happen that any initial

state in the nonnegative orthant generates a state trajectory bounded to ”live” only in the

nonnegative orthant. This requirement may appear - depending on the information available

and on the modeler attitude - pretty obvious or unduly demanding. Both choices are to be

considered somehow reasonable and the actual decision strongly depends on the specific case

at hand (other than personal beliefs and tastes... as usual). Different definitions of positivity

may be adopted by referring to specific subsets of initial states of practical interest. In the

following we will assume that, even if the real values of initial conditions are bounded by

some region of the nonnegative orthant, we have no reason to believe that some (real or

fictitious) initial state may produce a nonpositive sequence.

Then, let us suppose that we are dealing with a genuine positive system, then the following

result is an immediate (and very easily proved) consequence of the above definition:

Theorem 2.1. A linear system described by the state space representation (2.1) is a positive

linear system iff A > 0, i.e. the dynamic matrix A is positive.

The above theorem enable us to determine whether a system is positive or not by simply

looking at the entries of the dynamic matrix. It is important to note, at this point, that

even if we are interested in modelling the deviations of the (positive) state variables from

an equilibrium point (set point), nevertheless the positivity still plays a key role in the

determination of the system’s dynamic behaviour! In fact, positivity of the dynamic matrix

A is independent of the specific equilibrium we are considering. This is the reason why,

positivity is a more general property than one might think. Actually, to be more precise

(but not pushing too far the question), positivity of matrix A implies also that two solutions

1Adopting this definition, one has that a sequence such that x (0) > 0 and x (k) = 0 for any k > 0 is
not positive. Clearly, this behaviour is trivial from a dynamic system’s point of view, so it is reasonable to
remove this possibility from the world of positive systems.
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x1 (k) and x2 (k) of the associated dynamic system (2.1) share the following property known

as comparative dynamics (see [30]):

x1(0) ≥ x2(0) =⇒ x1(k) ≥ x2(k) for any k > 0

which defines the so-called cooperative or order preserving flow systems. For linear systems,

positivity implies cooperativity and viceversa, but this not generally true for the nonlinear

case.

Going back to positive linear systems and before stating the famous result of Frobenius

(and Perron) on positive matrices and its consequences on the dominant dynamics of an

homogeneous positive system, we need a simple preliminary definition.

Definition 2.3. An homogeneous positive system of dimension n ≥ 2 is said to be reducible

iff the evolution of a set of n1 state variables is independent of the evolution of the remaining

n2 = n− n1 state variables. An homogeneous positive system that is not reducible is said to

be irreducible.

For example, systems composed of two positive systems connected in series or in parallel,

are reducible. As one can readily see ([18], [9]), any given homogeneous positive systems

such as (2.1), after a reordering of the state variables by means of a change of coordinates

defined by an appropriate permutation matrix P , can be written in the equivalent form

z (k + 1) = PAP T z (k) where PAP T is block triangular, that is

PAP T =




A∗
11 0 . . . 0

A∗
21 A∗

22 . . . 0
...

...
...

A∗
k1 A∗

k2 . . . A∗
kk




and the k square matrices on the main diagonal defines k positive irreducible systems. Since

the spectrum of a block triangular matrix is the union of the spectra of each submatrix on

its main diagonal, it is clear that we can study, without loss of generality, only the case

of irreducible positive systems. We are now ready to state a reformulation of the Perron-

Frobenius theorem:

Theorem 2.2. If an irreducible homogeneous discrete-time system (2.1) has h dominant

eigenvalues of modulus r, then these numbers are distinct roots of λh − rh = 0. In par-

ticular, one of them is positive real with algebraic multiplicity equal to one and called the

Frobenius eigenvalue λF . The associated eigenvector is strictly positive and called the Frobe-

nius eigenvector xF . Moreover, there are no positive eigenvectors other than the Frobenius

eigenvector.

The Perron-Frobenius theorem provides information of the long term behaviour of an ho-

mogeneous positive irreducible system, so that we may well agree with Professor Luenberger:
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Fig.1: The behaviour of a second order discrete-time irreducible positive linear system for

the cases h = 1 and h = 2

Just the knowledge that the system is positive allows one to make some fairly

strong statements about its behaviour; these statements being true no matter

what values the parameters may happen to take.

In fact, we know that for a linear system like (2.1), the state vector tends to align itself

with the dominant eigenvector, and consequently the behaviour of any irreducible positive

system is just like one of those depicted in Figure 1 for the case of a second order system.

3 Nonhomogeneous positive systems: External posi-

tivity, stability, and realization

In this section we will focus on the more general case in which, other than state variables,

also inputs and outputs have to be modelled. Let us then consider for the sake of simplicity
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the homogeneous SISO LTI discrete-time dynamic system:

x (k + 1) = Ax (k) + bu (k)

y (k) = cT x (k)
(3.2)

where A ∈ Rn×n and b, c ∈ Rn and the following definition of positivity of a system:

Definition 3.1. A linear system described by the input/state/output representation (3.2) is

said to be a (nonhomogeneous) positive linear system iff for any positive initial state vector

and positive input, the output and the state trajectory are positive.

The following theorem enables one to recognize whether a given system in state space form

is positive or not.

Theorem 3.1. A linear system described by the input/state/output representation (3.2) is

a positive linear system iff A, b, c > 0.

3.1 External positivity and stability

When considering, as in this case, also input and outputs, it is natural to define properties

regarding them. By doing so, we arrive at the following ”natural” definition of input/output

positivity (that can be called external positivity):

Definition 3.2. A linear system is said to be externally positive iff for any positive input,

the output is positive.

The above definition leads to the following theorem, whose proof is straightforward:

Theorem 3.2. A linear system is an externally positive system iff its impulse response is

positive.

Also in the case of input/output representation, the condition of positivity can be simply

checked by inspection on the impulse response. Clearly, a systematic (and minimal in some

sense) way to check positivity, given the transfer function would be preferable. However,

external positivity is an a priori information which is easily available and stems directly

from the specific problem at hand. It is plain that, for example, when modelling the kinetics

of a drug in the human body, typically the input is the drug input rate and the output is

some concentration measure in a specific organ of the body. If this is the case, the system

under study is certainly an externally positive system (and internally as well).

An interesting problem is that of estimating model parameters (identification) while im-

posing external positivity. A first step of this hard task is described in [13, 7].

What about specific properties of the poles? Well, a basic result is a direct consequence

of Theorem 2.2:
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Theorem 3.3. The poles of the transfer function of a positive system are a subset of those

which are admissible eigenvalues of some positive matrix. One of the dominant poles is

positive real (and called the Frobenius pole).

The above theorem admits the possibility that some of the eigenvalues (possibly dominant)

may be hidden, i.e. they do not appear as poles of the transfer function. It is important

to point out that one cannot consider only coprime transfer functions, since it might be

well the case that positivity ”forces” the presence of hidden modes, as we will see soon

in the subsequent section. For this reason, the concept of ”minimality” of a state space

representation (realization) of a positive system is inherently different from that of ordinary

linear systems.

For externally positive systems, the following result hold:

Theorem 3.4. One of the dominant poles of an externally positive system is positive real

(and called the Frobenius pole).

The proof is found immediately by considering that the long term behaviour of the impulse

response must remain positive for all times.

We end this section with a remarkable result on stability of externally positive systems

(whose proof can be found in [18]):

Theorem 3.5. An externally positive system is asymptotically stable iff the denominator

d (z) of the transfer function of the given system is such that the coefficients of d (z − 1) are

all positive.

It is known that the above condition is only necessary for ordinary linear systems, but for

positive systems is also sufficient! This fact greatly simplifies the calculations and the only

information needed is externally positivity...

So, it’s worth recalling hereafter Professor Luenberger statement: ...just the knowledge that

the system is positive allows one to make some fairly strong statements about its behaviour...

3.2 Positive realization

Given a strictly proper rational transfer function G(z), the triple {A, b, cT} is said to be a

positive realization if

G(z) =
∑

k≥1

cT Ak−1bz−k

with A, b, cT positive. The positive realization problem consists of providing answers to the

questions:

• (The existence problem) Is there a positive realization {A, b, cT} of some finite dimen-

sion N and how it may be found?
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• (The minimality problem) What is a minimal value for N?

• (The generation problem) How can we generate all possible positive realizations?

In references [1, 15], the existence problem has been completely solved and a means of

constructing such realizations is there also given. In this section we shall not consider the

interesting question of characterizing the relationship between equivalent realizations, and

we shall concentrate on what we have termed the minimality problem.

3.2.1 Minimality in the positive setting

It is known that, for transfer functions of degree 1 or 2, positivity of the impulse response

is a necessary and sufficient condition for the existence of a positive realization. Moreover,

in those two cases, the minimal dimension of a positive realization coincides with the degree

of the transfer function. On the other hand, the situation for the case of transfer functions

of degree n > 2 is totally different. To show that the minimality problem for positive linear

systems is inherently different from that of ordinary linear systems we shall make use of the

following two examples.

Example 1 Consider the following positive realization

A =

2q+1︷ ︸︸ ︷


0 0 . . . 0 0 1

1 0 . . . 0 0 0

0 1 0 0

0 0
. . .

...
...

...
... 1 0 0

0 0 . . . 0 1 0




b =




1

0

0
...

0

0




(3.3)

cT =

(
0 . . . 0︸ ︷︷ ︸

2q

1 . . . 1
)

︸ ︷︷ ︸
2q

where the parameter q is an integer greater than or equal to 1. The dimension of the

realization is N(q) = 2q+1 while the corresponding transfer function

G (z, q) =
1

(z − 1) (z2q + 1)
, q ≥ 1

is of McMillan degree n(q) = 2q +1. By exploiting the rotational symmetry of the dominant

poles of G(z, q) as required by the Frobenius theorem, it can be easily proved that for any

integer q ≥ 1, the realization (3.3) is minimal as a positive linear system. The poles pattern

of G(z, q) for q = 1 and q = 2 is depicted in Figure 2.
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Fig.2: Poles pattern of G(z, q) for q = 1 and q = 2

Note that the difference between the dimension N(q) of the minimal positive realization

of the system and the corresponding transfer function McMillan degree n(q)

N(q)− n(q) = 2q − 1

goes exponentially to ∞ as q increases.

As it will appear in the sequel, this rotational symmetry of the spectrum of a positive

matrix, due to the specific dominant poles pattern, is not the only reason for non minimal-

ity (i.e. not jointly reachable and observable systems) in the positive realization problem.

Roughly speaking, we show next that the dimension of a positive realization may be “large”

although the dominant eigenvalue is unique, so that no symmetry of the spectrum is required

by the Frobenius theorem. In fact, since a positive matrix cannot have arbitrary eigenvalues,

then the non dominant poles also have limitations. For this consider the sets Θρ
n denoting

the set of points in the complex plane that are eigenvalues of positive n × n matrices with

Frobenius eigenvalue ρ. A full characterization of these sets has been given by Karpelevic

(see [32]). For example, the set Θρ
2 consists of points on the segment [−ρ, ρ] and the set Θρ

3

consists of points in the interior and on the boundary of the triangle with vertices ρ, ρe2πi/3,

ρe4πi/3 and on the segment [−ρ, ρ]. The sets Θρ
3 and Θρ

4 are depicted in Figure 3.

Example 2 Consider the following positive realization

A =




0 0.95 0 0.05

0.05 0 0.95 0

0 0.05 0 0.95

0.95 0 0.05 0


 b =




1

0

0

0


 c =




0

0

1

1


 (3.4)
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Fig.3: The sets Θρ
3 and Θρ

4

of dimension 4. The corresponding transfer function

G (z) =
∗

(z − 1)(z2 + 0.81)

is of McMillan degree 3. Since the poles of G (z) are 1, ±0.9 i and they lie inside Θ1
4 and not

in Θ1
3, then the dynamic matrix of any minimal positive realization must be of dimension

greater than 3. Therefore the fourth order positive realization (3.4) is minimal as a positive

system.

This last mechanism, related to a specific poles pattern, is – again – not the only reason

for non minimality in the positive realization problem even when the dominant eigenvalue is

unique. In fact, the dimension of a positive realization may be “large” although the dominant

eigenvalue is unique and no complex eigenvalues are present. This should be not surprising

since positivity of the system implies restrictions not only on the dynamic matrix but on the

input and output vectors also. In fact, it has been shown in reference [4] that the transfer

function

G (z, N) =
1

z − 1
− 25 · 0.44−N

z − 0.4
+ 75 · 0.24−N

z − 0.2
admits a minimal positive realization of state space dimension not smaller than N , where

the parameter N is an integer greater than or equal to 4. This is quite surprising since, in

spite of the fact that we are dealing with the seemingly simple case of a third order transfer

function with distinct positive real poles, the minimal positive realization may possibly have

a “large” state space dimension.

In what follows we present a partial insight into the positive minimality problem dealing

with the case of third order transfer functions with distinct positive real poles. In this case,

in reference [2], the following result is proved:
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Theorem 3.6. Let

G(z) =
r1

z − λ1

+
r2

z − λ2

+
r3

z − λ3

be a third order transfer function (i.e. r1, r2, r3 6= 0) with distinct positive real poles

λ1 > λ2 > λ3 > 0. Then, G(z) has a third order positive realization if and only if the

following conditions hold:

1. r1 > 0

2. r1 + r2 + r3 ≥ 0

3. (λ1 − η) r1 + (λ2 − η) r2 + (λ3 − η) r3 ≥ 0

4. (λ1 − η)2 r1 + (λ2 − η)2 r2 + (λ3 − η)2 r3 ≥ 0 for all η such that η ≤ η ≤ λ3

where η = max



0,

λ1 + λ2 + λ3 − 2
√

(λ2 − λ3)
2 + (λ1 − λ2) (λ1 − λ3)

3





It is worth noting that the proof of the previous result, as presented in [2], is mainly

geometric and heavily relies on the third–order assumption. For this reason, it appears

very difficult to us to extend that kind of proof to the higher order case. Nevertheless, this

geometric approach may be fruitfully applied to the case in which either the assumption on

the poles location is removed or the order of the minimal positive realization is not limited

to equal the McMillan degree.

4 Open problems

As it is clear from the issues so far discussed, there are a considerable number of open prob-

lems related to positive systems. We just name a few of them. First of all, it is not clear what

kind of mathematical “instruments” should be used to effectively tackle the minimality prob-

lem. In fact, the geometric approach (i.e. that of working with invariant cones) has proved

to be the right choice for determining the existence of a positive realization. By contrast,

such approach, has lead to the determination of necessary and sufficient conditions for the

third order case only. A different formulation, such as the factorization approach proposed

by Picci and van Schuppen in reference [37], can be a viable and promising possibility.

Another important issue related to minimality of positive systems is the study of “hidden

modes”, i.e. of the eigenvalues which possibly one has to add in order to obtain a minimal

positive realization. A full characterization of this property may lead to a deeper and valuable

insight into the problem. Lastly, we mention the MIMO case, which is not a straightforward

extension of the SISO case, as for the existence problem.

Some other open problems related to minimality of positive systems are listed below:
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• how are all positive minimal realizations connected?

• how can one simply figure, directly from the system’s parameters (say, residues and

eigenvalues), the minimum number of samples of the impulse response to be checked in

order to infer positivity of the whole impulse response and how is this number related

to minimality?

• how can one approximate a positive realization by a lower dimension one?

• find “tight” lower and upper bounds to minimal order of a positive realization2.
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