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Abstract

The aim of this paper is to provide an overview of the most significant results about positive
systems, obtained within the behavioral approach, and to present some new results concerned
with the positive realization problem for controllable behaviors.

1 Introduction

In recent years, research interests aiming at developing a general theory of positive linear systems
within the behavioral framework [8] resulted in a few contributions which laid on firm foundations
the concepts of positive behavior and of positive realizable autonomous behavior. The first original
ideas and definitions appeared in a very nice paper [7] by Nieuwenhuis, where the notion of positive
(discrete) behavior (whose trajectories are defined on the time axis Z+) and some preliminary
results were presented. These definitions and results stimulated a special interest in autonomous
behaviors, thus leading first to a complete characterization of positive autonomous behaviors [10]
and, later, to the solution of the positive realization problem for autonomous behaviors [11].

The most recent research efforts in this area are represented by the analysis of the positive
realization problem for controllable behaviors. The research on this subject is still a work in
progress, even though some significant results have already been obtained in [12].

The aim of this paper is to provide an overview of the previously mentioned results and hence
to present the state-of-the-art of the research on positive systems within the behavioral approach.
The paper is quite concise and the interested reader is referred to the aforementioned papers for
the details.

2 Basic facts from behavior theory

In this paper, by a dynamic system we mean a triple Σ = (Z+, Rq, B), where Z+ represents the
time set, R

q is the signal alphabet, namely the set where the system trajectories take values, and
B ⊆ (Rq)Z+ is the behavior, namely the set of trajectories which are compatible with the system
laws. We will restrict our attention to the class of linear left shift-invariant and complete behaviors
[8]. Such behaviors are kernels of polynomial matrices in the left shift operator σ, which amounts
to saying that the trajectories w = {w(t)}t∈Z+ of B can be identified with the set of solutions in
(Rq)Z+ of a system of difference equations

R0w(t) + R1w(t + 1) + · · · + RLw(t + L) = 0, t ∈ Z+, (2.1)
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with Ri ∈ R
p×q. A behavior B described in this way is denoted, for short, as B = ker(R(σ)), where

R(z) :=
∑L

i=0 Riz
i belongs to R[z]p×q.

A behavior B ⊆ (Rq)Z+ is said to be autonomous if there exists m ∈ Z+ such that if w1,w2 ∈ B

and w1|[0,m] = w2|[0,m], then w1 = w2, and is said to be controllable if there exists some positive
integer L such that for every t ∈ Z+ and every pair of trajectories w1,w2 ∈ B, there exists w ∈ B

such that w|[0,t) = w1|[0,t) and w|[t+L,+∞) = w2|[t,+∞).
A behavior B = ker(R(σ)), with R ∈ R[z]p×q, is autonomous if and only if R is of full column

rank q. Any autonomous behavior can be described as the kernel of a nonsingular square matrix,
which is uniquely determined up to a left unimodular factor. On the other hand, for a controllable
behavior B there exist an m ∈ N and M ∈ R[z]q×m, such that w ∈ B if and only if w = M(σ)u,
for some u ∈ (Rm)Z+ . When so, we adopt the notation B = im(M(σ)) and the behavior B is said
to be endowed with an image representation.

3 Nonnegative autonomous behaviors

Definition 3.1 [7] A behavior (in particular, an autonomous behavior) B ⊆ (Rq)Z+ is said to be
positive if there exist m ∈ N and positive trajectories w1,w2, . . . ,wm such that B ≡ B(w1,w2, . . . ,

wm), namely B is the most powerful unfalsified model [4] explaining w1,w2, . . . ,wm.

A fundamental result we will resort to, in order to provide a characterization of positivity for
autonomous behaviors, is the fact that every autonomous behavior B ⊆ (Rq)Z+ can be “realized”
by means of a state-space model [5], by this meaning that there exist n ∈ N and real matrices
A ∈ R

n×n and C ∈ R
q×n such that

B =
{
w ∈ (Rq)Z+ : ∃ x(0) s.t. x(t + 1) = Ax(t), w(t) = Cx(t), t ∈ Z+

}
.

The pair (A, C) is an n-dimensional realization of B. Those realizations of B for which n is minimal
are called minimal. Minimal realizations of an autonomous behavior B are those realizations of B

which are observable [8, 10].
We need, now, to introduce a few important sets, that will turn out to be useful in providing

a complete characterization of both positivity and, later, of positive realizability. To this end, we
need to consider a general (not necessarily autonomous) n-dimensional state space model with m

inputs and p outputs:

x(t + 1) = Ax(t) + Bu(t), (3.2)

w(t) = Cx(t), t ∈ Z+. (3.3)

Such a system is denoted, for sake of brevity, by means of the triple (A, B, C).

Definition 3.2 Given an n-dimensional state space model (A, B, C), with m inputs and p outputs,
the reachable cone of the system (or, equivalently, of the pair (A, B)) is the cone

R(A, B) := Cone{B, AB, A2B, . . .},
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where the “upper bar” over the word “Cone” denotes the closure operation, while the observable
cone of the system (of the pair (A, C)) is the cone

S(C, A) := {x ∈ R
n : CAtx ≥ 0, ∀ t ≥ 0} =

(
Cone{CT , AT CT , (AT )2CT , . . .}

)∗
,

where the symbol ∗ denotes the “dual” of the indicated cone.

Definition 3.3 Given a behavior B ⊆ (Rq)Z+, we call the positive part of B, and denote it by
B+, the set of all positive trajectories in B, namely B+ := B ∩ (Rq

+)Z+ .

Theorem 3.1 [10] Let B ⊆ (Rq)Z+ be an autonomous behavior, let B+ be its positive part and
let (A, C) be an n-dimensional and minimal realization of B. The following facts are equivalent:

1) B is a positive behavior;

2) there exists a positive integer m and some matrix B ∈ R
n×m such that

2a) (A, B, C) is a minimal realization of its transfer matrix W (z) := C(zIn −A)−1B, and

2b) the Markov coefficients of W (z), i.e. the coefficients Wt of the power series expansion∑
t≥0 Wt z−t of W (z), are all positive matrices;

3) there exists a positive integer m and some matrix B ∈ R
n×m such that the reachable cone

R(A, B) is proper and included in the observable cone S(C, A);

4) there exists a proper A-invariant cone K ⊂ R
n included in S(C, A);

5) the observable cone S(C, A) is a proper cone;

6) B is the smallest (linear, left shift-invariant and complete) behavior having B+ as its positive
part;

7) B+ generates an n-dimensional real vector space in (Rq)Z+ (equivalently, B+ is a proper left
shift-invariant cone in (Rq)Z+).

Remarks For a more exhaustive discussion on the previous set of characterizations, we refer
the interested reader to [10, 11]. We here aim to introduce only a few specific comments.

i) It is well-known that an autonomous behavior B ⊆ (Rq)Z+ is a finite-dimensional vector
subspace of (Rq)Z+ , whose dimension coincides with the dimension of a minimal realization of B.
In fact, it is easily seen that, under the minimality (namely observability) assumption on the pair
(A, C), there exists a bijective correspondence between the set of behavior trajectories and the
(vector) space R

n of initial conditions x(0). In particular, there exists a bijective correspondence
between the positive part of a behavior B, B+, and the observable cone S(C, A), which is just the
set of initial conditions corresponding (by means of (A, C)) to the trajectories of B+. Thus the
above theorem states that the positivity of B corresponds to the fact that such a cone S(C, A) is a
solid one, or, in a sense, is “dense” in R

n, just as the positivity of B means that the set B+ is rich
enough to carry on all the information about B.

ii) By Theorem 3.1, an autonomous behavior B, having (A, C) as an n-dimensional and minimal
realization, is positive if and only if there exists a proper A-invariant cone K included in the
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observable cone S(C, A). As is well-known, an n×n matrix A leaves a proper cone invariant if and
only if it satisfies the following two conditions (known as Perron-Schaefer conditions) [2]:

a) the spectral radius of A, ρ(A), is an eigenvalue of A;

b) any other eigenvalue λ of A whose modulus |λ| is equal to ρ(A) satisfies the inequality deg λ ≤
deg ρ(A) (and hence the size of the largest Jordan block corresponding to λ in the Jordan
form of A is not bigger than the largest Jordan block corresponding to ρ(A)).

This amounts to saying that ρ(A) is the greatest positive real zero of ψA(z), the minimal polynomial
of A, and is dominant as a zero of ψA (if A is cyclic, then ψA(z) = det(zIn − A) and hence the
same properties hold true in terms of characteristic polynomial of A).

4 Nonnegative realizability of autonomous behaviors

Definition 4.1 [7, 11] An autonomous behavior B ⊆ (Rq)Z+ is said to be positive realizable if
there exists a realization of B, say (A+, C+), with A+ and C+ positive matrices.

Nonnegative realizability admits a wide set of equivalent characterizations, that strictly remind
of those obtained for positivity and make use of the same distinguished sets: the reachable cone,
the observable cone and the positive part of the behavior.

Theorem 4.1 [11] Let B ⊆ (Rq)Z+ be an autonomous behavior, let B+ be its positive part and
let (A, C) be an n-dimensional and minimal realization of B. The following facts are equivalent:

1) B is a positive realizable behavior;

2) there exists a positive integer m and some matrix B ∈ R
n×m such that

2a) (A, B, C) is a minimal realization of its transfer matrix W (z) := C(zIn −A)−1B,

2b) the Markov coefficients of W (z), i.e. the coefficients Wt of the power series expansion∑
t≥0 Wt z−t of W (z), are all positive matrices, and

2c) the reachable cone of the pair (A, B) is proper polyhedral;

3) there exists a positive integer m and some matrix B ∈ R
n×m such that the reachable cone of

the pair, R(A, B) is proper polyhedral and included in S(C, A);

4) there exists an A-invariant proper polyhedral cone K ⊂ R
n included in S(C, A);

5) the set B+ includes a proper polyhedral left shift-invariant cone.

Remarks i) It is immediately seen, from the above theorem, that every positive realizable
behavior is positive. Simple examples can be given showing that the converse is not true [11].

ii) Conditions 3) and 4) strictly remind of analogous characterizations obtained for the positive
realizability of a strictly proper rational transfer function [1, 3, 6]. In fact, if w(z) is a strictly proper
rational transfer function and (A, B, C) is an n-dimensional and minimal realization of w(z), then

4



w(z) admits a positive realization if and only if there exists an A-invariant proper polyhedral cone
K satisfying R(A, B) ⊆ K ⊆ S(C, A).

iii) If B is positive realizable, then, by point 4) of the previous theorem, the matrix A appearing
in a minimal realization of B leaves a proper polyhedral cone K invariant. As a consequence [9],
A satisfies the following three conditions: 1) the spectral radius of A, ρ(A), is an eigenvalue of A,
and, when ρ(A) �= 0, 2) λ ∈ σ(A) with |λ| = ρ(A) implies deg λ ≤ deg ρ(A) =: m, namely the
size of the largest Jordan block corresponding to λ in the Jordan form of A is not bigger than the
largest Jordan block corresponding to ρ(A); 3) λ ∈ σ(A) with |λ| = ρ(A) implies λ/ρ(A) is a root
of unity.

5 Controllable behaviors and their positive state-space realiza-

tions

Definition 5.1 The state-space model ΣDV = (F, G, H, J) described by

x(t + 1) = Fx(t) + Gv(t) (5.4)

w(t) = Hx(t) + Jv(t), t ≥ 0, (5.5)

with x(t) the state vector, v(t) the driving input and w(t) the output vector, n = dim x, m = dim v
and q = dim w, is said to be a driving variable state-space representation (for short, a (DV)
representation) of the behavior B if

B ≡ {w ∈ (Rq)Z+ : ∃ x ∈ (Rn)Z+ ,v ∈ (Rm)Z+ , such that (w,x,v)satisfies (5.4) ÷ (5.5)}.

Definition 5.2 A controllable behavior B ⊆ (Rq)Z+ is said to be positive realizable if there exists
a (DV) realization of B, ΣDV = (F+, G+, H+, J+), with F+, G+, H+ and J+ positive matrices.

The following proposition provides a complete characterization of positive realizability for a con-
trollable behavior. The proof, which is here omitted for the sake of brevity, is based on some results
about the positive realization problem in its more traditional setting, namely that of input/output
models or, equivalently, rational transfer matrices, that can be found in [1, 3, 6].

Theorem 5.1 [12] Let B = im(M(σ)) be a controllable behavior, and suppose that M(z) ∈
R[z]q×(q−p) is a right prime column reduced polynomial matrix, with column degrees ν1 ≥ ν2 ≥
. . . ≥ νq−p. Set

W (z) := M(z)




z−ν1

z−ν2

. . .
z−νq−p




and let ΣDV be a minimal realization of (the proper rational matrix) W (z). The following facts are
equivalent:

i) B is positive realizable;
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ii) there exists a nonsingular square rational transfer matrix Q̄(z) such that W̄ (z) := M(z)Q̄(z)
is a proper rational transfer matrix with positive Markov coefficients;

iii) there exist q − p positive trajectories wi, i = 1, 2, . . . , q − p, generated by ΣDV in forced
evolution, such that the corresponding power series ŵi(z−1) are rational and

rank[ ŵ1(z−1) ŵ2(z−1) . . . ŵq−p(z−1) ] = q − p;

iv) there exists some nonsingular square polynomial matrix N(z) such that the leading coefficients
of each nonzero (i, j)th entry of M(z)N(z) is positive, i.e.

[M(z)N(z)]i,j �= 0 ⇒ lc[M(z)N(z)]i,j > 0. (5.6)
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