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Abstract

It is shown that a chemostat with two organisms can be made coexistent by means of feedback
control of the dilution rate.

1 Introduction

The chemostat model is a benchmark model in mathematical biology, used to model competition
of several organisms for a single nutrient source. For exmaple, it has been used to study lakes,
waste-treatment and reactors for commercial production of genetically altered organisms. A classi-
cal result is the ’competitive exclusion principle’ [4], stating that in the long run only one organism
survives while the others die out. For the mentioned production process it may lead to a loss of
the altered organism which should of course be prevented by all means. To achieve this we propose
to consider the dilution rate as a feedback variable, although different approaches are available,
see e.g. [4, 3]. We will show that if the dilution rate depends affinely on the concentrations of the
competing organisms, coexistence may be achieved.
Unfortunately we show that coexistence is not achievable by means of feedback control for chemostats
with more than two competitors.

2 Model of the chemostat

The model of a chemostat is given by the following set of differential equations:

Ṡ = D(S0 − S) −
2∑

i=1

xi

γi
fi(S)

ẋi = xi(fi(S) − D), i = 1, 2 (2.1)

where S(t) is the concentration of nutrient and xi(t) is the concentration of organism i in the
chemostat at time t. The dilution rate of the chemostat is denoted as D and S0 is the concentration
of the input nutrient. The constants γi are yield constants. The functions fi : R+ → R+ with fi(0) =
0 are called uptake functions, are assumed to be continuously differentiable and monotonically
increasing (i.e. f ′

i > 0 for all S ∈ R+).
A minimal requirement for any model of a chemostat is that the state components S, x1 and x2

only take non-negative values for all times t ≥ 0. It can be shown that system (2.1) satisfies
this requirement. It is sometimes convenient to pass to non-dimensional variables S̄ := S/S0,
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x̄ := x/(γiS
0). After dropping the bars and writing fi(S) instead of fi(S0S) we obtain:

Ṡ = D(1 − S) −
2∑

i=1

xifi(S)

ẋi = xi(fi(S) − D), i = 1, 2 (2.2)

The equilibrium points of system (2.2) are:

E0 := (1, 0, 0), E1 := (λ1, 1 − λ1, 0) and E2 := (λ2, 0, 1 − λ2) (2.3)

where the λi - which are assumed to be different throughout the rest of this paper - are implicitly
defined as follows: fi(λi) = D, i = 1, 2.
The principal result concerning the chemostat is the so-called ’exclusion principle’, see [4]:

Theorem 2.1. If 0 < λ1 < 1 and if λ1 < λ2 then E1 is a globally asymptotically stable equilibrium
point of system (2.2) with respect to all initial conditions in the set {(S, x1, x2) ∈ R

3
+ |xi > 0, i =

1, 2}.

3 The dilution rate as a feedback variable

In view of the exclusion principle, one might wonder whether it is possible to change the long
term behavior of the chemostat and make the organisms coexist. The obvious parameters that are
manipulable are the dilution rate D and the input nutrient concentration S0. In this paper we will
assume that S0 is fixed and D is manipulable. We will assume throughout the rest of this paper
that the uptake functions satisfy the following standing hypothesis (see Figure 1):
H The graphs of the functions f1 and f2 intersect once at S̃:

f1(S̃) = f2(S̃) = D̃ (3.4)

where S̃ ∈ (0, 1). If S ∈ (0, S̃) then f1(S) > f2(S), while for all S > S̃ holds that f1(S) < f2(S).
It follows from Theorem 2.1 that for low values of the dilution rate (D < D̃), organism 1 wins the
competition while organism 2 wins if D > D̃. To achieve coexistence we propose to choose dilution
rate as a feedback variable:

D ≡ D(S, x1, x2) (3.5)

where D(S, x1, x2) is some function defined on R
3
+. Of course this function should only take non-

negative values for obvious physical reasons (dilution rates cannot be negative).
Next we define the concept of coexistence for so-called positive systems (i.e. systems for which R

n
+

is a forward invariant set). A positive system ẋ = f(x) is coexistent if there exists a compact set K,
K ⊂ int(Rn

+), which attracts all solutions starting in int(Rn
+), i.e. ∀x0 ∈ int(Rn

+),∃T (x0) : x(t, x0) ∈
K, ∀t ≥ T (x0). Coexistence might come in different forms. The simplest manifestation occurs if a
positive system possesses an equilibrium point in int(Rn

+) which is globally asymptotically stable
with respect to initial conditions in int(Rn

+).

We formulate the main problem of this paper:
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f2(S)
f1(S)D̃

S̃ 1 S

ε + k1

ε + k2

ε

0

k1(1 − S) + ε

k2(1 − S) + ε

ε + k̃
k̃(1 − S) + ε

Figure 1: Bound for k1 and k2

Coexistence Problem: Find -if possible- a feedback D : R
3
+ → R+ such that the following

system:

Ṡ = D(x)(1 − S) −
2∑

i=1

xifi(S)

ẋi = xi(fi(S) − D(x)), i = 1, 2 (3.6)

where x := (S, x1, x2)T , is coexistent.

Our main result is then the following.

Theorem 3.1. Pick any ε in the interval (0, D̃). Then the coexistence problem is solvable by
means of the following affine feedback:

D(x) = k1x1 + k2x2 + ε (3.7)

if the gains ki > 0, i = 1, 2 satisfy the following inequalities:

k1 > k̃ and k2 < k̃ (3.8)

where k̃ := D̃−ε
1−S̃

, see Figure 1.

Remark 3.1. Although it is not clear from the statement of Theorem 3.1, the coexistence of the
system (3.6) with feedback (3.7) takes the form of an equilibrium point (Se, xe

1, xe
2) in int(Rn

+) which
is globally asymptotically stable with respect to initial conditions in int(Rn

+). Since the constraints
(3.8) on the feedback gains stail entail some freedom for the feedback law (3.7), one might wonder
whether it is possible to modify a particular performance index, the ratio of the values of both
organisms at the interior equilibrium point. The proof of Theorem 3.1 will reveal that this ratio is
given by:

xe
1

xe
2

=
k̃ − k2

k1 − k̃
(3.9)
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showing that any value can be assigned to it without violating the gain constraints (3.8). This ratio
is of interest for chemostats which are used for commercial production of genetically altered organ-
isms in continuous culture, see e.g. [2].

Remark 3.2. Unfortunately the result on coexistence does not carry over to the case of more
than two competitors due to a topological obstruction. A coexistent chemostat should possess at
least one equilibrium point in the interior of the positive orthant [1]. But no matter what feedback
law is chosen, chemostats with more than two competing species (generically) cannot satisfy this
constraint. To see this, consider a chemostat with n ≥ 3 competitors:

Ṡ = D(x)(1 − S) −
n∑

i=1

xifi(S)

ẋi = xi(fi(S) − D(x)), i = 1, ..., n (3.10)

with the same assumptions for the uptake functions as in the case of a chemostat with two com-
petitors. Then the graphs of the uptake functions in general do not have a nontrivial common
intersection point, unless in cases which are no generic and thus coexistence is not achievable.

4 Proofs

We start by proving that all solutions of a chemostat controlled by an affine feedback converge to
a particular subset in R

3
+.

Proposition 4.1. If ki > 0, i = 1, 2, and ε > 0 then all solutions of system (3.6) with feedback
(3.7) starting in R

3
+ are bounded. If x(t) := (S(t), x1(t), x2(t)) is a solution starting in R

3
+, then

lim
t→+∞

S(t) + x1(t) + x2(t) = 1 (4.11)

Proof. The function V (x) := 1
2(S +x1 +x2−1)2 satisfies V̇ = −2D(x)V (x) along solutions of (3.6)

and thus V̇ ≤ 0 for all x ∈ R
3
+. Since V is radially unbounded in R

3
+, the solutions of system (3.6)

with feedback (3.7) are bounded. Lasalle’s invariance principle implies that all solutions converge
to the largest invariant set E contained in the set M := {x ∈ R

3
+| V̇ = 0}. This implies that (4.11)

holds, concluding the proof.

The proof of the previous result motivates the definition of the following invariant set:

Ω := {x ∈ R
3
+|S + x1 + x2 = 1} (4.12)

According to Proposition 4.1 the ω-limit set of every solution of system (3.6) and feedback (3.7)
belongs to the set Ω. It may be conjectured that the asymptotic behavior of solutions on the set Ω
also determines the asymptotic behavior of solutions of the original system. Although this is not
true in general, it is true in this case as will be shown later.

Therefore we study the behavior of the original system restricted to the set Ω, which is governed

4



by the following differential equation:

ẋ1 = x1(f1(1 − x1 − x2) − D(x))

ẋ2 = x2(f2(1 − x1 − x2) − D(x)) (4.13)

x1(0) ≥ 0, x2(0) ≥ 0 and x1(0) + x2(0) ≤ 1

where D(x) = k1x1 + k2x2 + ε as before. Under condition (3.8), system (4.13) possesses four
equilibrium points:

E0 = (0, 0), E1 = (1 − λ1, 0), E2 = (0, 1 − λ2) and E3 = (xe
1, xe

2) (4.14)

where λi and xe
i , i = 1, 2 are given by: fi(λi) = ki(1−λi)+ε, i = 1, 2, xe

1 = 1
k1−k2

(D̃−(k2(1−S̃)+ε))
and xe

2 = 1
k1−k2

((k1(1 − S̃) + ε) − D̃)

Proposition 4.2. If ε ∈ (0, D̃) and if the gains ki > 0, i = 1, 2 satisfy the inequalities (3.8),
then E3 is a globally asymptotically stable equilibrium point for system (4.13) with respect to initial
conditions satisfying x1(0) > 0, x2(0) > 0 and x1(0) + x2(0) ≤ 1.

Proof. The proof is based on the Poincaré-Bendixson Theorem. Denote the Jacobian matrices of
the equilibrium points Ek, k = 0, ..., 3 of system (4.13) by Jk and the spectrum of these matrices
by σ(Jk). Simple calculations leads to the following conclusions: σ(J0) = {r1

0, r2
0} with rj

0 >

0, j = 1, 2, σ(J1) = {r1
1, r2

1} with r1
1 > 0 and r2

1 < 0, σ(J2) = {r1
2, r2

2} with r1
2 > 0 and r2

2 < 0
and σ(J3) = {r1

3, r2
3} with rj

3 < 0, j = 1, 2. This means that E0 is a repellor, E3 is locally
asymptotically stable and E1 and E2 are saddle points.
Consider a solution (x1(t), x2(t)) with xi(0) > 0, i = 1, 2. If E3 belongs to the ω-limit set of
this solution, then it the ω-limit set because E3 is asymptotically stable. A simple application
of the Butler-McGehee theorem, see e.g. [4], shows that E1 and E2 cannot belong to the ω-limit
set of this solution. The same is true for E0 since it is a repellor. Notice that system (4.13) is a
competitive system, i.e. the off-diagonal entries of the Jacobian matrix in all points are negative or
zero, implying that the system does not exhibit periodic orbits, see [4]. Therefore the ω-limit set
of (x1(t), x2(t)) must be the equilibrium point E3, which concludes the proof.

Proof of Theorem (3.1)
First introduce the variable Σ := S + x1 + x2 − 1 and consider system (3.6) with feedback (3.7):

ẋi = xi(fi(1 − Σ − x1 − x2) − D(x)), i = 1, 2

Σ̇ = −D(x)Σ (4.15)

where Σ(0) ≥ −1 and xi(0) ≥ 0. From Proposition (4.1) we obtain that limt→+∞ Σ(t) = 0 and
that system (4.15) is uniformly bounded. On the set Ω := {(x, Σ) ∈ R

n
+ × [−1, +∞)|Σ = 0} the

dynamics of system (4.15) is given by system (4.13).
Notice that system (4.15) takes the form of system (5.16) and system (4.13) the form of system
(5.17) in the Appendix. Relying on Proposition 4.2 it can be checked that hypotheses H1-H3 are
true for system (4.13). Hypothesis H4 holds since if system (4.13) would possess a cycle in Ω, only
E1 and/or E2 could possibly belong to it. Indeed, it as been shown in the proof of Proposition 4.2
that E0 is a repellor and E3 is locally asymptotically stable and clearly these equilibrium points
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cannot belong to a cycle. But since the stable manifolds of E1 and E2 are portions of the x1-,
respectively x2-axis (and both axes are invariant sets for system (4.13)), they cannot be part of a
cycle of equilibrium points either. Consequently Theorem 5.1 can be applied to system (4.15). In
particular it follows that almost all solutions of this system converge to the equilibrium point (E3, 0)
where E3 is the asymptotically stable equilibrium point of system (4.13). The solutions which do not
converge to this equilibrium point belong to the stable manifolds of the equilibrium points (E1, 0)
and (E2, 0) (where E2 and E3 are the saddle points of system (4.13)), but these stable manifolds are
subsets of the boundary faces {(x1, x2, Σ) ∈ R

3|x2 = 0}, respectively {(x1, x2, Σ) ∈ R
3|x1 = 0},

while we are only interested in solutions with initial condition satisfying xi(0) > 0, i = 1, 2. These
facts are easily rephrased for the original system (3.6), which concludes the proof.

5 Appendix

In this section we state a convergence theorem.
Consider the following system:

{
ẋ = f(x, y), x ∈ R

n

ẏ = −γ(x)y, y ∈ R

(5.16)

where f : R
n+1 → R

n and γ : R
n → R+ \ {0} are sufficiently smooth (say at least of class C1). We

assume that D is a forward invariant set for system (5.16) and henceforth restrict initial conditions
to D. Moreover it is assumed that solutions of system (5.16) are uniformly bounded, i.e. there
exists a compact subset of D into which all solutions enter at some time and remain.
Next consider the following system:

ẋ = f(x, 0) (5.17)

where x ∈ Ω := {x ∈ R
n| (x, 0) ∈ D} ⊂ R

n for which we introduce the following set of hypotheses:
H1 There are only a finite number, say p, equilibrium points in Ω, denoted as x1, ..., xp.
H2 The dimension of the stable manifold of xj (which is denoted as W s(xj)) satisfies: dim(W s(xj)) =
n, ∀j = 1, ..., r and dim(W s(xj)) < n, ∀j = r + 1, ..., p for some r ∈ {1, 2, ..., p}.
H3 ∪p

j=1W
s(xj) = Ω.

H4 There are no cycles of equilibrium points in Ω.
The following result is then only a slight modification of Theorem F.1 in [4].

Theorem 5.1. If H1-H4 are true, then for some i ∈ {1, ..., p}:

lim
t→+∞

(x(t), y(t)) = (xi, 0)

where (x(t), y(t)) is a solution of system (5.16) in D. Moreover, ∪p
j=r+1W̃

s(xj , 0) has Lebesgue
measure zero, where W̃ s(xj , 0) is the stable manifold of (xj , 0) with respect to system (5.16).
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