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Abstract
The problem of estimating the Domain of Attraction (DA) of equilibria of polyno-

mial systems is considered. Specifically, the computation of the quadratic Lyapunov
function which maximizes the volume of the estimate is addressed. In order to solve
this double non-convex optimization problem, a semi-convex approach based on Lin-
ear Matrix Inequalities (LMIs) is proposed. Moreover, for the case of odd polynomial
systems, a relaxed criterion for obtaining an effective starting candidate of the optimal
quadratic Lyapunov function is presented.

1 Introduction

In control systems engineering it is very important to know the domain of attraction (DA)

of an equilibrium point, that is the set of initial states from which the system converges

to the equilibrium point itself [9]. Indeed, such problem arises in both systems analysis

and synthesis, in order to guarantee stable behaviours in a certain region of the state space.

Unfortunately, it is well known that the DA is a very complicated set, and, in the most cases,

it does not admit an exact analytic representation [7]. On the other hand, gridding-based

techniques for approximating the set are almost always intractable from the computational

burden viewpoint. For this reason, the approximation of the DA via an estimate of a simpler

shape has become a fundamental issue since long time (see [7]). The estimate shape is

described by a Lyapunov function, generally quadratic. For a given Lyapunov function, the

computation of the optimal estimate of the DA (that is, the largest estimate of the selected

shape) amounts to solving a non-convex distance problem.

Within this context, a problem of primary importance is the selection of the quadratic

Lyapunov function. In fact, the volume of the optimal estimate strongly depends on the

Lyapunov function chosen for approximating the DA. Obviously, it would be useful to sin-

gle out the function that maximizes the volume, that is the Optimal Quadratic Lyapunov

Function (OQLF). Unfortunately, the computation of the OQLF amounts to solve a double

non-convex optimization problem [6, 10].

In this paper, a new technique for computing the OQLF for polynomial systems is pre-

sented. Specifically, we propose a Linear Matrix Inequality (LMI) approach based on con-

vexification techniques recently developed for dealing with non-convex distance problems
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[5, 2, 3]. It is shown how the optimal estimate of the DA for a fixed Lyapunov function can

be computed avoiding local minima via a one-parameter sequence of LMIs which requires a

low computational burden. This allows us to reformulate the computation of the OQLF as

a semi-convex optimization problem. Moreover, in order to obtain a good starting point for

the non-convex step, a relaxed criterion is proposed for odd polynomial systems, based on

the volume maximization of the region where the time derivative of the Lyapunov function

is negative. It is shown how its solution can be computed via a one-parameter sequence of

LMIs, that is the computational burden required by the computation of the DA for a fixed

Lyapunov function. Simulation results show that this relaxed criterion can provide quite

satisfactory candidates for the OQLF.

The notation is as follows. 0n: origin of R
n; R

n
0 : R

n \ {0n}; In: identity matrix n × n; A′:
transpose of matrix A; A > 0 (A ≥ 0): symmetric positive definite (semidefinite) matrix A;

s.t.: subject to.

2 Problem formulation

Without loss of generality, let us consider the polynomial system defined as

ẋ = Ax + f̃(x),

f̃(x) =

mf∑
i=2

fi(x)
(2.1)

where x ∈ R
n, fi(x) is a vector of homogeneous forms of degree i, and A is assumed to be a

Hurwitz matrix, which implies that the origin is a locally asymptotically stable equilibrium

point.

Let us consider the quadratic Lyapunov function V (P ; x) = x′Px, where P > 0 is such that

the time derivative

V̇ (P ; x) = 2x′P
[
Ax + f̃(x)

]
(2.2)

is locally negative definite. We refer to a such matrix P as feasible P and call P the set of

all feasible P . In particular, P can be characterized as

P =
{
P = P ′ ∈ R

n×n : PA + A′P = −Q, Q > 0
}

. (2.3)

Let us define the ellipsoidal set induced by V (P ; x),

V(P ; c) = {x ∈ R
n : x′Px ≤ c} , (2.4)

and the negative time derivative region,

D(P ) =
{

x ∈ R
n : V̇ (P ; x) < 0

}
∪ {0}. (2.5)
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Then, V(P ; c) is an estimate of the domain of attraction of the origin if V(P ; c) ⊆ D(P ).

Moreover, the optimal estimate S(P ) for the selected Lyapunov function is given by

S(P ) = V (P ; γ(P )) ,

γ(P ) = sup {c ∈ R : V(P ; c) ⊆ D(P )} .
(2.6)

Let us observe that the computation of γ(P ) requires the solution of a non-convex distance

problem. In fact,
γ(P ) = inf

x∈R
n
0

x′Px

s.t. V̇ (P ; x) = 0.
(2.7)

Finally, let us define the OQLF as the quadratic Lyapunov function V ∗(P ∗; x) = x′P ∗x that

maximizes the volume of the DA. Therefore,

P ∗ = argmax
P∈P

δ(P ),

δ(P ) =

√
γn(P )

det(P )
,

(2.8)

where δ(P ) is the volume of S(P ) up to a scale factor depending on the state dimension n.

It turns out that the computation of the OQLF amounts to solve a double non-convex

optimization problem. In fact, the volume function δ(P ) can present local maxima in addition

to the global one δ(P ∗). Moreover, each evaluation of δ(P ) requires the computation of γ(P ),

that is the solution of the non-convex distance problem (2.7).

3 Semi-convex approach for computing OQLF

In this section we show how the optimal estimate S(P ) in (2.6) can be computed avoiding

local minima, and, hence, how the OQLF can be found via a semi-convex approach. In

particular, we exploit the convexification techniques developed in [5, 2, 3], which allow us to

obtain a lower bound of γ(P ) via a one-parameter sequence of LMIs (see also [4]). A simple

test procedure is available for assessing the tightness of such a lower bound. Moreover, in

some cases tightness can be established a priori.

3.1 Optimal estimate of the DA

Let us first observe that problem (2.7) is equivalent to the canonical distance problem

γ(P ) = inf
x∈R

n
0

x′Px

s.t. w(P ; x) = 0,
(3.9)

where w(P ; x) is a locally positive definite polynomial with only terms of even degree, that

is w(P ; x) =
∑m

i=0 w2i(P ; x) for suitable homogeneous forms w2i(P ; x) of degree 2i. In fact,
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• if (2.1) is an odd system, that is f̃(x) is composed only by terms of odd degree, then

the constraint function V̇ (P ; x) is composed only by terms of even degree, and, hence,

w(P ; x) = −V̇ (P ; x) and m = (mf + 1)/2;

• otherwise, we can define the new constraint function as w(P ; x) = V̇ (P ; x)V̇ (P ;−x).

It turns out that such polynomial has only terms of even degree. Hence, m = mf + 1.

Our strategy consists of evaluating the constraint function w(P ; x) on the sets

B(P ; c) = {x ∈ R
n : x′Px = c} . (3.10)

In fact, it turns out that

γ(P ) = sup {c̃ > 0 : w(P ; x) > 0 ∀x ∈ B(P ; c), ∀c ∈ (0, c̃]} . (3.11)

Let us define the homogeneous form of degree 2m

h(P ; c; x) =
m∑

i=0

w2i(P ; x)

(
x′Px

c

)m−i

. (3.12)

Then, for any c ∈ (0, +∞) we have that

w(P ; x) > 0 ∀x ∈ B(P ; c)

�
h(P ; c; x) > 0 ∀x ∈ R

n
0 .

(3.13)

From (3.11) and (3.13) it follows that γ(P ) can be computed via a sequence of positivity

tests on homogeneous forms, that is

γ(P ) = sup {c̃ > 0 : h(P ; c; x) > 0 ∀x ∈ R
n
0 , ∀c ∈ (0, c̃]} . (3.14)

In order to perform the positivity tests in (3.14), let us introduce the Square Matricial

Representation (SMR) of homogeneous forms of even degree (see [5, 2, 3] for details). Let

x{m} ∈ R
d be a base of the homogeneous forms of degree m, being

d = σ(n,m) =

(
n + m − 1

n − 1

)
. (3.15)

Then, the SMR of the homogeneous form h(P ; c; x) is defined as:

h(P ; c; x) = x{m}′H(P ; c)x{m} ∀x ∈ R
n, (3.16)

where H(P ; c) ∈ R
d×d is a suitable matrix. It is straightforward to verify that any homoge-

neous form of even degree can be represented by SMR. Let us observe that, for a fixed base

x{m}, the matrix H(P ; c) is not unique. Indeed, all matrices H(P ; c) satisfying (3.16) can be

parameterized as

H(P ; c; α) = H(P ; c) + L(α), (3.17)
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where L(α) ∈ R
d×d is a linear parameterization of the linear space

L =
{

L = L′ ∈ R
d×d : x{m}′Lx{m} = 0 ∀x ∈ R

n
}

(3.18)

and α ∈ R
dL is a free parameter vector. The dimension dL of set L is given by

dL =
1

2
d(d + 1) − σ(n, 2m). (3.19)

Then, the complete SMR of h(P ; c; x) is given by

h(P ; c; x) = x{m}′H(P ; c; α)x{m} ∀α ∈ R
dL ∀x ∈ R

n. (3.20)

For any selected base x{m}, the matrices H(P ; c) and L(α) can be easily computed using the

algorithms reported in [2].

Let us introduce the quantity

cη(P ) = sup
{
c̃ : H(P ; c; α) > 0 for some α ∈ R

dL , ∀c ∈ (0, c̃]
}

. (3.21)

It turns out that

cη(P ) ≤ γ(P ). (3.22)

The lower bound cη(P ) can be computed via a one-parameter sequence of convex LMI

optimizations. In fact,

H(P ; c; α) > 0 for some α ∈ R
dL

�
η(P ; c) > 0

(3.23)

where
η(P ; c) = max

t∈R,α∈R
dL

t

s.t. H(P ; c; α) − tId > 0.
(3.24)

We point out that tightness of cη(P ) is strictly related to the property of positive homoge-

neous forms to be represented as the sum of squares of homogeneous forms [8]. Indeed, it has

been proved that cη(P ) is tight if and only if the homogeneous form h(P ; c; x) satisfies this

property for all c ∈ (0, γ(P )) [2]. For the cases n = 2,∀m and n = 3,m = 2 such property

is guaranteed a priori. For the other cases, extensive numerical simulations have shown that

the lower bound is almost always tight, except for ad hoc examples [3]. Moreover, tightness

of cη(P ) can be checked as follows:

cη(P ) = γ(P )

�
∃x ∈ R

n : x{m} ∈ ker [H(P ; cη; αη)] ,

(3.25)
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where αη is the optimizing vector of (3.24). Such test can be performed solving a simple

equation system of degree equal to the dimension of the found null space minus one. This

means that for regular cases, in which the null space has dimension one, the test has an

immediate solution. Obviously, if the lower bound should be discovered to be not tight, a

standard optimization can be performed starting from the found point. This largely helps

to find the global minimum avoiding local ones [3].

Remark 1 If system (2.1) is described by two homogeneous forms, i.e.

ẋ = Ax + fmf
(x) (3.26)

where fmf
(x) is a homogeneous form of degree mf , then the computation of the lower bound

cη(P ) can be simplified, requiring just one only LMI convex optimization in the dη = dL + 1

variables of (3.24).

3.2 Computation of the OQLF

Exploiting the convexification technique previously described, γ(P ), and hence δ(P ), can

be computed avoiding local optimal solutions. This leads us to formulate a semi-convex

approach for computing the OQLF. In fact, let us introduce a parameterization of set P in

(2.3) through the function

F (Q) = F (Q)′ : F (Q)A + A′F (Q) = −Q (3.27)

where Q is any symmetric positive definite matrix. Moreover, since δ(P ) is not affected by

a positive scale factor on P , that is

δ(P ) = δ(aP ) ∀a ∈ R, a > 0, (3.28)

and P depends linearly on Q (see (2.3)), the feasible set of matrices Q can be reduced by

imposing a scale constraint, for example Q1,1 = 1. Therefore, let us define the set

Q =
{
Q ∈ R

n×n : Q > 0, Q1,1 = 1
}

(3.29)

of dimension (n2 + n − 2)/2. Then, problem (2.8) can be equivalently rewritten as

P ∗ = F (Q∗),

Q∗ = argmax
Q∈Q

δ (F (Q)) ,

δ (F (Q)) =

√
γn (F (Q))

det (F (Q))

(3.30)

where, for each Q ∈ Q, γ (F (Q)) is computed using the technique presented in Section 3.1.

We point out that the complete SMR (3.20) can be systematically computed as shown in [2].

Moreover, the function L(α) has to be computed once only, lightening the computational

burden of problem (3.30).
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4 Relaxed solution via LMIs for odd systems

In this section a relaxed criterion for computing an initial candidate of the OQLF for odd

polynomial systems is proposed. Our aim is to find, along with a moderate computational

burden, an effective starting point for initializing the optimization procedure in (3.30).

Our criterion consists of finding the matrix P which maximizes the volume of an ellipsoid

of fixed shape whose boundary is included in the negative time derivative region D(P ) in

(2.5). This criterion is based on the idea that, for obtaining a large optimal estimate of the

DA, a good strategy is to enlarge D(P ), which clearly bounds the optimal estimate itself.

Obviously, this criterion is relaxed with respect to (3.30), since the volume is measured via

an a priori selected ellipsoidal shape, instead of the unknown one defined by the OQLF, and

since we are requiring that only the boundary of the ellipsoid is included in D(P ).

Let us select the ellipsoidal shape for measuring the volume of the region where the time

derivative is negative as V(U ; c), where U ∈ R
n×n is a given symmetric positive definite

matrix. Then, the relaxed criterion above described can be formulated as

max
P∈P

β(P ),

β(P ) = sup {c : B(U ; c) ⊆ D(P )} ,
(4.31)

where B(U ; c) is the boundary of the ellipsoid V(U ; c), whose volume is given by√
β(P )n

det(U)
.

In order to check the inclusion of B(U ; c) in D(P ), let us introduce the homogeneous form

of degree 2m

g(U ; P ; c; x) =
m∑

i=0

w2i(P ; x)

(
x′Ux

c

)m−i

. (4.32)

Then, for any P > 0 and c ∈ (0, +∞) we have that

B(U ; c) ⊆ D(P )

�
w(P ; x) > 0 ∀x ∈ B(U ; c)

�
g(U ; P ; c; x) > 0 ∀x ∈ R

n
0 .

(4.33)

Therefore, our criterion amounts to maximizing c subject to the following condition:

∃P ∈ P : g(U ; P ; c; x) > 0 ∀x ∈ R
n
0 . (4.34)

Let us introduce the complete SMR of g(U ; P ; c; x),

g(U ; P ; c; x) = x{m}′G(U ; P ; c; α)x{m} ∀α ∈ R
dL ∀x ∈ R

n. (4.35)
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Following the strategy described in Section 3.1 for the computation of γ(P ), we relax condi-

tion (4.34) substituting it with

∃P ∈ P, α ∈ R
dL : G(U ; P ; c; α) > 0. (4.36)

Let us observe that condition (4.36) can be checked with one convex LMI optimization.

Indeed, let us introduce the function

µ(U ; c) = max
Q∈Rn×n,t∈R,α∈R

dL
t

s.t.

{
G(U ; F (Q); c; α) − tId > 0

Q ∈ Q
(4.37)

where G(U ; F (Q); c; α) depends linearly on the unknowns Q and α. Then,

∃P ∈ P, α ∈ R
dL : G(U ; P ; c; α) > 0

�
µ(U ; c) > 0.

(4.38)

Hence, let us introduce the quantity

cµ(U) = sup {c : µ(U ; c) > 0} (4.39)

and let Q̂ be the optimizing matrix Q of problem (4.37) for c = cµ(U). We define the solution

of our relaxed criterion as

P̂ = F (Q̂). (4.40)

Let us observe that P̂ can be computed via a one-parameter sequence of convex LMI

optimizations, that is about the same computational burden required by each evaluation

of the volume function δ(P ). More specifically, P̂ requires the optimizations (4.37) in

dµ = dL + n(n + 1)/2 parameters, and δ(P ) requires the optimizations (3.24) in dη = dL + 1

parameters.

Remark 2 As for the computation of the optimal estimate of the DA (see Remark 1), the

computation of P̂ can be simplified if system (2.1) is described by two homogeneous forms

as in (3.26) with odd mf , requiring just the solution of a Generalized Eigenvalue Problem

(GEVP) which turns out to be a quasi-convex optimization and whose solution can be always

computed (see [1]). The number of variables involved in this GEVP is dµ as for (4.37).

5 Examples

In this section we present some examples of the proposed technique. Matrix P ∗ is calculated

solving (3.30) with the function FMINSEARCH of Matlab which evaluates δ (F (Q)) using

the convexification approach described in Section 3.1. The starting candidate of Q∗ used
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to initialize FMINSEARCH has been chosen as In for non-odd polynomial systems and as

−P̂A − A′P̂ for odd ones, where P̂ is computed as in (4.37)-(4.40) with U = F (In).

Moreover, we have iterated the computation of P̂ setting U , at each step, equal to the matrix

P̂ obtained at the previous step. The matrix so obtained after i iterations has been denoted

by P̂ (i).

The following systems have been considered:

(S1)

{
ẋ1 = x2,

ẋ2 = −2x1 − 3x2 + x2
1x2

(S2)

{
ẋ1 = −x1 − 2x2 + x2

1x2,

ẋ2 = x1 − x2 − x3
2

(S3)

{
ẋ1 = x2,

ẋ2 = −2x1 − x2 − x3
1 + x1x

4
2 + x5

2

(S4)

{
ẋ1 = −2x1 + x2 + x3

1 + x5
2,

ẋ2 = −x1 − x2 + x2
1x

3
2

(S5)




ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −4x1 − 3x2 − 2x3 + x2
1x2 + x2

1x3

(S6)




ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −3x1 − 3x2 − 2x3 + x3
1 + x3

2 + x3
3

(S7)

{
ẋ1 = x2,

ẋ2 = −2x1 − 3x2 + x2
1 + x1x2 − x2

2

(non-odd)

Table 1 and Figure 1 show the results obtained for these systems. From these results, we

can deduce the following facts:

1. the convex method described in Section 3.1 allows us to evaluate the function δ (F (Q))

(that is, to compute the optimal estimate of the DA for a fixed Lyapunov function) with

a low computational burden. Let us consider system S1 for example. The evaluation

of δ (F (Q)) requires just the solution of an LMI problem with dη = 2 parameters

(see Remark 1). To make a comparison, let us observe that the same evaluation

would require the solution of a GEVP with 18 parameters using the recently proposed

technique in [11].

Moreover, we evaluate the function δ (F (Q)) avoiding local minima that problem (2.7)

can present, especially if the Lyapunov function is close to the OQLF, as shown in figure

1 where the optimal estimate of the DA provided by P ∗ is illustrated. It is obvious

that, if a local minimum is found in (2.7) instead of the global one, the computation

of P ∗ totally fails.

9



2. the relaxed criterion can provide quite good approximation P̂ (i) of P ∗ in few iterations,

and, at the same time, requires a very lower computational burden than the one needed

by the computation of P ∗. Let us consider system S3 for example, and observe that the

computation of each P̂ (i) requires the solution of a GEVP with dµ = 6 parameters (see

Remark 2), while the computation of P ∗ requires the solution of 289 LMI problems

with dη = 4 parameters.

This suggests that P̂ (i) can be used like initialization of problem (3.30) for computing

P ∗, since it is expected that a better starting solution avoids local maxima. Indeed,

in system S5, the computation of P ∗ using the default stopping tolerance of FMIN-

SEARCH terminates at 7.699. Looking at the volume provided by P̂ (7), 7.714, we

immediately deduce that this is not the global maximum which has been found in-

creasing the stopping tolerance.

6 Conclusion

A semi-convex approach for computing the quadratic Lyapunov function which maximizes

the volume of the domain of attraction estimate for polynomial systems, has been presented.

For a fixed Lyapunov function, the proposed technique allows one to compute, via a sequence

of convex LMI optimizations with few parameters, the optimal estimate avoiding local min-

ima. This is a necessary step of any procedure for computing optimal quadratic Lyapunov

functions (OQLFs). Moreover, a relaxed criterion has been presented for odd polynomial

systems, which provides candidates for the OQLF via a one-parameter sequence of convex

LMI optimizations. Simulation results have shown that these candidates are very effective

starting points for the computation of the OQLF.
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system volumes computational burden

S1 δ(P̂ ) = 8.350 computation of P̂ : one GEVP with dµ = 4 parameters

δ(P ∗) = 10.21 computation of P ∗: 103 evaluations of δ(P ) by FMINSEARCH

δ(P̂ (11)) = 10.21 evaluation of δ(P ): one LMI with dη = 2 parameters

S2 δ(P̂ ) = 3.308 computation of P̂ : one GEVP with dµ = 4 parameters

δ(P ∗) = 7.001 computation of P ∗: 176 evaluations of δ(P ) by FMINSEARCH

δ(P̂ (2)) = 6.993 evaluation of δ(P ): one LMI with dη = 2 parameters

S3 δ(P̂ ) = 0.6530 computation of P̂ : one GEVP with dµ = 6 parameters

δ(P ∗) = 0.7853 computation of P ∗: 289 evaluations of δ(P ) by FMINSEARCH

δ(P̂ (3)) = 0.7110 evaluation of δ(P ): one LMI with dη = 4 parameters

S4 δ(P̂ ) = 1.243 computation of P̂ : sweep on c for (4.37) with dµ = 6 parameters

δ(P ∗) = 1.965 computation of P ∗: 95 evaluations of δ(P ) by FMINSEARCH

δ(P̂ (19)) = 1.933 evaluation of δ(P ): sweep on c for (3.24) with dη = 4 parameters

S5 δ(P̂ ) = 6.070 computation of P̂ : one GEVP with dµ = 12 parameters

δ(P ∗) = 7.787 computation of P ∗: 1271 evaluations of δ(P ) by FMINSEARCH

δ(P̂ (14)) = 7.737 evaluation of δ(P ): one LMI with dη = 7 parameters

S6 δ(P̂ ) = 0.1110 computation of P̂ : one GEVP with dµ = 12 parameters

δ(P ∗) = 0.5413 computation of P ∗: 967 evaluations of δ(P ) by FMINSEARCH

δ(P̂ (3)) = 0.4952 evaluation of δ(P ): one LMI with dη = 7 parameters

S7 δ(P ∗) = 1.445 computation of P ∗: 167 evaluations of δ(P ) by FMINSEARCH

evaluation of δ(P ): one LMI with dη = 4 parameters

Table 1: Volumes provided by P̂ , P ∗ and the best P̂ (i) for systems S1–S7, and corresponding

computational burden.
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(d) S4
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Figure 1: Systems S1–S4 and S7. Optimal estimates of the domain of attraction given by

P ∗ (dotted line) and constraint set V̇ (P ∗; x) = 0 (solid line).
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