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Abstract

We examine disturbed linear-quadratic games, where each player chooses his strategy ac-
cording to a modified Nash equilibrium model under open-loop information structure. We give
conditions for the existence and uniqueness of such an equilibrium. We also show how these
conditions are related to certain Riccati difference equations and a boundary value problem.
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1 Introduction.

In [1],[6] open-loop Nash equilibria have been considered for linear difference games. This paper
deals with open-loop linear difference games where an additional disturbance input is present and
the costs functionals are of quadratic type.
The considered equilibrium concept of the underlying game was introduced in [7], [8] for differential
games with disturbance input. Although a Nash game approach is used to choose the strategies of
the players, no constraints on the disturbance term are made. This means that the players have to
find an equilibrium strategy without knowing anything about the disturbance. More precisely, this
equilibrium is obtained in the following way:
First each player can calculate a ”worst-case” disturbance against any action of the players and
then under consideration of this worst-case disturbances (depending on the chosen controls of all
players), a Nash equilibrium is sought. For the notion of a Nash equilibrium we refer the reader to
[1]. We mainly follow methods developed for the undisturbed continuous time case in [10], [2].

Consider a discrete-time linear system with M decision makers (or players) and a disturbance term
of the following type:

x(k + 1) = A(k)x(k) +
M∑

j=1

Bj(k)uj(k) + C(k)w(k), x(0) = x0, (1.1)

with x(k) ∈ IRn, k = 0, . . . , N, A(k) ∈ IRn×n, Bj(k) ∈ IRn×rj , C(k) ∈ IRn×m, uj(k) ∈ IRrj , w(k) ∈
IRm, 1 ≤ j ≤ M, 0 ≤ k ≤ N − 1.

A state x is now defined as a function x : T → IRn, a control ui, i = 1, . . . , M is a function

1



ui : T → IRri and a disturbance is a function w : T → IRm, with time set T = {0, 1, . . . , N}. By
U we denote the set of all n-tuples (u1, . . . , un) of controls and with W the set of all disturbances,
while Ui denotes the set of all controls ui of player i, i = 1, . . . , M.

The solution of equation (1.1) is obtained by ( see for instance [9], p. 452):

x(k) = Φ(k, 0)x0 +
M∑

i=1




k−1∑

j=0

Φ(k, j + 1)Bi(j)ui(j)





+
k−1∑

j=0

Φ(k, j + 1)C(j)w(j), k = 0, . . . , N,

(1.2)

where
∑−1

0 = 0 and Φ(k, l), k ≥ l, is the (n, n)-matrix

Φ(k, l) =

{
A(k − 1)A(k − 2) · · ·A(l) for k ≥ l + 1
I for k = l.

Notice that Φ(k, l) is a solution of the homogeneous difference equation Φ(k+1, l) = A(k)Φ(k, l), k ≥
l, with Φ(l, l) = I, I the n-dimensional unit matrix.

Moreover, we introduce the Hilbert space X p of mappings from T to IRp, equipped with the scalar
product

〈f, g〉p :=
N∑

k=0

fT (k)g(k), (1.3)

for f, g ∈ X p. Hence, X n contains all states, Ui = X ri and W = Xm.

The cost functional of the ith player is then, for i = 1, . . . , M, defined by:

Ji(u1, . . . , uM , w) =
1
2
xT (N)KiNx(N)

+
1
2

N−1∑

k=0



xT (k)Qi(k)x(k) +
M∑

j=1

uT
j (k)Rij(k)uj(k) + wT (k)Pi(k)w(k)



 , (1.4)

where for i, j = 1, 2, . . . , M and each k = 0, . . . , N − 1 the matrices Qi(k), KiN ∈ IRn×n, Rij(k) ∈
IRrj×rj , Pi(k) ∈ IRm×m are symmetric and additionally

Rii(k) > 0.

It is assumed here that the information structure of all players is of open-loop type, i.e. no state
measurements are available during the optimization period and each player computes its optimal
policy at the beginning of the game and is committed to follow that policy during the whole period.
We define a Nash/worst-case equilibrium in the same way as it was done in [8]. The strategy of
each player is defined the following way:

Definition 1.1. We define the Nash/worst-case equilibrium in two steps:
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1. Given the controls (u1, u2, . . . , uM ) ∈ U . A disturbance function ŵi(u1, u2, . . . , uM ) ∈ W is
called worst-case disturbance from the point of view of the ith player according to
these controls if

Ji

(
u1, u2, . . . , uM , ŵi(u1, u2, . . . , uM )

)
≥ Ji

(
u1, u2, . . . , uM , w

)

holds for each w ∈ W.

2. We say that the controls (ũ1, . . . , ũM ) ∈ U form a Nash/worst-case equilibrium if for all
i = 1, . . . , M

(i) there exists a worst-case disturbance from the point of view of the ith player according
to all controls (ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũM ) ∈ U and

(ii)

Ji

(
ũ1, . . . , ũM , ŵi(ũ1, . . . , ũM )

)
≤

Ji

(
ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũM , ŵi(ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũM )

)

holds for each worst-case disturbance ŵi(ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũM ) ∈ W and control func-
tion ui ∈ Ui.

In order to simplify (1.2) and (1.4) we introduce the following linear operators:

Φ : IRn → X n, x0 �→ Φ(., 0)x0,

Bi : Ui → X n, ui(.) �→



k �→
k−1∑

j=0

Φ(k, j + 1)Bi(j)ui(j), k = 0, . . . , N



 , i = 1, . . . , M,

and

C : W → X n, w �→



k �→
k−1∑

j=0

Φ(k, j + 1)C(j)w(j), k = 0, . . . , N



 ,

as well as for i, j = 1, . . . M the operators

Q̄i : X n → X n, x(.) �→
(

k �→
{

Qi(k)x(k) k = 0, . . . , N − 1
KiNx(N) k = N

)
,

R̄ij : X rj → X rj , x(.) �→
(

k �→
{

Rij(k)x(k) k = 0, . . . , N − 1
0 k = N

)
,

P̄i : Xm → Xm, x(.) �→
(

k �→
{

Pi(k)x(k) k = 0, . . . , N − 1
0 k = N

)
.

With the scalar product (1.3) and the operators from above, equation (1.2) can now be written as

x = Φx0 +
M∑

i=1

Biui + Cw, (1.5)

and the cost functionals in (1.4), for i = 1, . . . , M, as

Ji(u1, . . . , uM , w) =
1
2



〈
x, Q̄ix

〉
n

+
M∑

j=1

〈
uj , R̄ijuj

〉
rj

+
〈
w, P̄w

〉
m



 . (1.6)
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2 Sufficient existence conditions for open-loop equilibrium con-

trols.

In this section, we derive a sufficient condition for the existence of Nash/worst-case equilibrium
controls of discrete-time game under open-loop information structure and show that these controls
are related to solutions of Riccati difference equations, similarly as in undisturbed games with
open-loop Nash equilibrium. The results obtained are similar to those in [7], [8]. We begin the
investigation of a Nash/worst-case equilibrium with the following result.

Theorem 2.1. For i = 1, . . . , M, let us define the operators Fi : Ui �→ Ui, Gi : W �→ W, Hi : W �→
Ui by Fi := B∗

i Q̄iBi + R̄ii, Gi := C∗Q̄iC + P̄i, Hi := B∗
i Q̄iC.

1. There exists a unique worst-case disturbance ŵi ∈ W from the point of view of the ith

player if and only if Gi < 0. This disturbance then is given by

ŵi(u1, . . . , uM ) = ŵi = −G−1
i (H∗

i ui + C∗Q̄i(Φx0 +
M∑

j=1
j �=i

Bjuj)), (2.7)

for all (u1, . . . , uM ) ∈ U .

2. Moreover, for i = 1, . . . , M, let Gi < 0 and let furthermore Fi > 0. Then (ũ1, . . . , ũM ) ∈ U
form an open-loop Nash/worst-case equilibrium if and only if for each i = 1, . . . , M

ũi =
(
Fi − HiG

−1
i H∗

i

)−1 (
HiG

−1
i C∗ − B∗

i

)
Q̄i(Φx0 +

M∑

j=1
j �=i

Bj ũj) (2.8)

holds.

Proof. The proof is completely analogue to the proof presented in [8] since the representations (1.5),
(1.6) are formally identical with the representation formulae in the differential game situation. Only
the Hilbert spaces considered here are different. Therefore we omit the proof.

Also the next theorem, which allows to describe Nash/worst-case controls in a ”feedback” form for
a ”virtual” worst-case state trajectory, is completely analogue to Theorem 2 in [8].

Theorem 2.2. Suppose that the matrices Pi(k) and Rii(k), k = 0, . . . , N − 1, i = 1, . . . , N, are
negative definite and positive definite, respectively. Suppose furthermore that also the operators Gi,

and Fi, i = 1, . . . , M, are negative definite and positive definite, respectively. Then, ũ1, . . . , ũM

form an open-loop Nash/worst-case equilibrium if and only if the following equations are fulfilled:

ũi(k) = −R−1
ii (k)

(
B∗

i Q̄ix̂i

)
(k), k = 0, . . . , N − 1 (2.9)

ŵi(k) = −P−1
i (k)

(
C∗Q̄ix̂i

)
(k), k = 0, . . . , N − 1 (2.10)
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where

x̂i = Φx0 +
M∑

j=1

Bj ũj + Cŵi, (2.11)

i = 1, . . . , M. x̂i can be seen as a ”worst-case” state trajectory from the point of view of the ith

player.

Proof. The proof is omitted here (see [8]).

We want to remark that the conditions on the positivity of the Rii(·) and the negativity of Pi(·)
can be relaxed by exploiting the structure of the operators Fi and Gi. This will be discussed in
detail in a forthcoming paper, which will contain also aspects from infinite horizon case.
Note that in general each player gets associated a different worst-case trajectory x̂i. Therefore, it
is not possible to treat this problem as a standard Nash game.
Our aim now is to describe the relation for equilibrium controls (2.9) more explicitly, i.e. by
solutions of certain difference equations. For this we first need to construct the adjoint operators
B∗

i and C∗.

Lemma 2.1. For p, n ∈ IN, let L : T → IRn×p. Supposing that L denotes the linear operator

L : X p → X n, u �→



k �→
k−1∑

j=0

Φ(k, j + 1)L(j)u(j), k = 0, . . . , N



 ,

the adjoint operator is obtained by

L∗ : X n → X p, y �→



k �→ LT (k)
N∑

j=k+1

ΦT (j, k + 1)y(j), k = 0, . . . , N



 . (2.12)

Proof. The proof is straightforward, verifying the identity < u,L∗y >=< y,Lu > .

Furthermore, for i = 1, . . . , M, we will need the following set of terminal value problems:

Ei(k) = Qi(k) + AT (k)Ei(k + 1)
[
I + (Si(k) + Ti(k))Ei(k + 1)

]−1

︸ ︷︷ ︸
=: Ω−1

i (k)

A(k)
(2.13)

for k = N − 1, . . . , 0 and Ei(N) = KiN , where Ei(k) ∈ IRn×n, k = 0, . . . , N, is a symmetric matrix.

Theorem 2.3. Suppose that the assumptions on the matrices Rii and Pi and on the operators
Fi, Gi in Theorem 2.2 are fulfilled. Further assume that there exist the solutions of equations (2.13)
for i = 1, . . . , M.
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i) The boundary value problem

ei(k) = AT (k)Ω−T
i (k)ei(k + 1)

− AT (k)Ei(k + 1)Ω−1
i (k)

M∑

j=1
j �=i

Sj(k)[Ej(k + 1)x̂j(k + 1) + ej(k + 1)], (2.14)

with terminal condition ei(N) = 0 and where ei(k) ∈ IRn, k ∈ T , and

x̂i(k + 1) = Ω−1
i (k)A(k)x̂i(k) − Ω−1

i (k)(Si(k) + Ti(k))ei(k + 1)

− Ω−1
i (k)

M∑

j=1
j �=i

Sj(k)[Ej(k + 1)x̂j(k + 1) + ej(k + 1)], (2.15)

with initial condition x̂i(0) = x0, is equivalent to equations (2.9),(2.10),(2.11). Here, for
each k ∈ T the matrices Si(k) := Bi(k)R−1

ii (k)BT
i (k), Ti(k) := C(k)P−1

i (k)CT (k), for i =
1, . . . , M.

ii) The control functions

ũi(k) = −R−1
ii (k)BT

i (k)[Ei(k + 1)x̂i(k + 1) + ei(k + 1)], (2.16)

k = 0, . . . , N − 1, form an open-loop Nash/worst-case equilibrium if and only if x̂i and ei

are solutions of (2.14),(2.15). Moreover, the corresponding worst-case disturbance of the ith

player (i = 1, . . . , M) is then given by

ŵi(k) = −P−1
i (k)CT (k)[Ei(k + 1)x̂i(k + 1) + ei(k + 1)], (2.17)

k = 0, . . . , N − 1.

iii) The Nash/worst-case equilibrium represented by (2.16) is unique if and only if the boundary
value problem (2.14),(2.15) has a unique solution.

Proof. Given x̂i and ei solutions of (2.14)–(2.15) then the functions as defined in (2.16)–(2.17) fulfill
the formulae (2.9),(2.10) and (2.11). That means nothing else, in view of Lemma 2.1, that

Λi(k) :=
N∑

j=k

ΦT (j, k)Qi(j)x̂i(j) = Ei(k)x̂i(k) + ei(k)

for any k ∈ {0, . . . , N}. To prove this we show that the auxiliary sequence Ψi(k) := Λi(k) −
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Ei(k)x̂i(k) − ei(k) is zero. For that we deduce a difference equation for Ψi in the following way:

AT (k)Ψi(k + 1) = AT (k)




N∑

j=k+1

ΦT (j, k + 1)Qi(j)x̂i(j) − Ei(k + 1)x̂i(k + 1) − ei(k + 1)





=
N∑

j=k+1

AT (k)ΦT (j, k + 1)Qi(j)x̂i(j) − AT (k)ei(k + 1)

− AT (k)Ei(k + 1)
[
Ω−1

i (k)A(k)x̂i(k) − Ω−1
i (k)(Si(k) + Ti(k))ei(k + 1)

− Ω−1
i (k)

M∑

p=1
p �=i

Sp(k)(Ep(k + 1)x̂p(k + 1) + ep(k + 1))
]

=
N∑

j=k+1

ΦT (j, k)Qi(j)x̂i(j) − AT (k)Ei(k + 1)Ω−1
i (k)A(k)x̂i(k)

− AT (k)
[
I − Ei(k + 1)Ω−1

i (k)(Si(k) + Ti(k))
]
ei(k + 1)

+ AT (k)Ei(k + 1)Ω−1
i (k)

M∑

p=1
p �=i

Sp(k)[Ep(k + 1)x̂p(k + 1) + ep(k + 1)]

=
N∑

j=k+1

ΦT (j, k)Qi(j)x̂i(j) − AT (k)Ei(k + 1)Ω−1
i (k)A(k)x̂i(k)

− AT (k)Ω−T
i (k)ei(k + 1)

+ AT (k)Ei(k + 1)Ω−1
i (k)

M∑

p=1
p �=i

Sp(k)(Ep(k + 1)x̂p(k + 1) + ep(k + 1))

=
N∑

j=k+1

ΦT (j, k)Qi(j)x̂i(j) + [Qi(k) − Ei(k)]x̂i(k) − ei(k)

=
N∑

j=k+1

ΦT (j, k)Qi(j)x̂i(j) + [Qi(k) − Ei(k)]x̂i(k) − ei(k)

=
N∑

j=k

ΦT (j, k)Qi(j)x̂i(j) − Ei(k)x̂i(k) − ei(k)

= Ψi(k).

As terminal condition we have Ψi(N) = KiN x̂i(N) − KiN x̂i(N) = 0 and therefore the unique
solution of that difference equation is Ψi ≡ 0.
If there is on the other hand a solution ũi and ŵi and x̂i to equation (2.9),(2.10) and (2.11) then
the sequence (ei(k))k∈T is well defined by

ei(k) = AT (k)Ω−T
i (k)ei(k + 1) − AT (k)Ei(k + 1)Ω−1

i (k)
M∑

j=1
j �=i

Bj(k)ũj(k)
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with terminal condition ei(N) = 0. Using the representation of the adjoints in Lemma 2.1 it is
evident that

ũi(k) = −R−1
ii (k)BT

i (k)Λi(k + 1), ŵi(k) = −P−1
i (k)CT (k)Λi(k + 1).

We show that x̂i is a solution of (2.15). Again we use the well-defined auxiliary sequence (Ψi(k))k∈T
from above and compute

AT (k)Ω−T
i (k)Ψi(k + 1) =AT (k)Ω−T

i (k)Λi(k + 1) − AT (k)Ω−T
i (k)Ei(k + 1)x̂i(k + 1)

− AT (k)Ω−T
i (k)ei(k + 1)

=AT (k)Ω−T
i (k)Λi(k + 1) − AT (k)Ω−T

i (k)Ei(k + 1) ×

×
[
Ax̂i(k) − [Si(k) + Ti(k)]Λi(k + 1) −

M∑

j=1
j �=i

Sj(k)Λj(k + 1)
]

− [ei(k) + AT (k)Ei(k + 1)Ω−1
i (k)

M∑

j=1
j �=i

Sj(k)Λj(k + 1)]

=AT (k)Ω−T
i (k)(I + Ei(k + 1)[Si(k) + Ti(k))]Λi(k + 1)

− AT (k)Ω−T
i (k)Ei(k + 1)[A(k)x̂i(k) −

M∑

j=1
j �=i

Sj(k)Λj(k + 1)]

− ei(k) − AT (k)Ei(k + 1)Ω−1
i (k)

M∑

j=1
j �=i

Sj(k)Λj(k + 1)

=AT (k)Λi(k + 1) − ei(k) − AT (k)Ω−T
i (k)Ei(k + 1)A(k)x̂i(k)

=AT (k)Λi(k + 1) − ei(k) − AT (k)Ω−T
i (k)Ei(k + 1)A(k)x̂i(k)

=AT (k)Λi(k + 1) + [Qi(k) − Ei(k)]x̂i(k) − ei(k)

=Λi(k) − Ei(k)x̂i(k) − ei(k)

=Ψi(k).

According to that relation and the terminal condition Ψi(N) = 0 it is clear that Ψi(k) = 0 for any
k ∈ T and hence Λi(k + 1) = Ei(k + 1)x̂i(k + 1) + ei(k + 1). The latter relation shows that x̂i

satisfies also (2.15). This proves part i) of the Theorem.
The remaining statements are now obvious from the first part and Theorem 2.2.
Remark 2.1. In the single player case (M = 1) equation (2.14) becomes homogenous and hence
e1 ≡ 0 is the solution. Suppose further that all conditions in Theorem 2.3 are fulfilled, which
means in particular that the Riccati equation E1(k) = Q1(k) + AT (k)E1(k + 1)

[
I + (S1(k) +

T1(k))E1(k + 1)
]−1

A(k), admits a solution. Then, there exists a unique solution to each of the
following variational problems:

(i) (worst-case disturbance) For any u ∈ U find a ŵ(u) ∈ W such that J(u, ŵ(u)) ≥ J(u, w) for
all w ∈ W.
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(ii) (worst-case control) Find a control ũ ∈ U such that J(ũ, ŵ(ũ)) ≤ J(u, ŵ(u)) for all u ∈ U .

The equilibrium control ũ can be written in the form ũ(k) = −R−1
11 (k)BT

1 (k)E1(k+1)x̂(k+1), with x̂

denoting the worst-case trajectory x̂(k+1) = [I+(S1(k)+T1(k))E1(k+1)]−1A(k)x̂(k), x̂(0) = x0.

In other words, the above remark yields the unique solvability of the variational problem

inf
u∈U

sup
w∈W

J(u, w)

under the constraint that x(k) fulfills the difference equation

x(k + 1) = A(k)x(k) + B1(k)u1(k) + C(k)w(k).

Thus we have obtained a solution of a min-max-problem which is well known in H∞-optimization
problems as they appear in disturbance attenuation control problems (see [1], [4], [5]).
For conditions on global solvability of the system of (coupled) matrix Riccati difference equations
(2.13) see for instance [3].
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