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Abstract

The purpose of this paper is to propose a definition of a set of singular values and
a singular value decomposition associated with a linear operator defined on arbitrary
normed linear spaces. This generalizes the usual notion of singular values and singular
value decompositions to operators defined on spaces equipped with the p-norm, where
p is arbitrary. Basic properties of these generalized singular values are derived and
the problem of optimal rank approximation of linear operators is investigated in this
context. We give sufficient conditions for the existence of optimal rank approximants
in the p-induced norm and discuss an application of generalized singular values for the
identification of dynamical systems from data.
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1 Introduction

Singular values and singular value decompositions are among the most important tools in
linear algebra that have played a key role in systems analysis, control system design, model
reduction, data compression, perturbation theory, signal analysis and many applications in
numerical linear algebra. Unlike eigenvalues and eigenvalue decompositions, singular values
and singular value decompositions provide structural information on the spacial distribution
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of mutually orthogonal amplification directions in the domain and co-domain of a linear
map. As such, the singular value decomposition defines a numerically well conditioned basis
for both the domain and the co-domain of a linear operator and is, in fact, the core numer-
ical tool to implement basic algebraic concepts such as rank, null space, range, orthogonal
complements, etc.

A basic algebraic treatment of singular values and their applications can be found in the
standard works [2], [4]. In short, every matrix M ∈ C

m×n admits a decomposition of the
form

M = Y ΣX∗ (1.1)

where X ∈ Cn×n and Y ∈ C
m×m are orthogonal matrices and Σ ∈ R

m×n is a matrix whose
diagonal entries (Σ)ii = σi, i = 1, . . . , min(m, n), and which is zero elsewhere. Here, σi are
non-negative real numbers, ordered according to σ1 ≥ . . . ≥ σmin(m,n) ≥ 0 and called the
singular values of M . The column vectors xi of X and yi of Y are the right and left singular
vectors and equation (1.1) is referred to as a singular value decomposition of M . From (1.1)
it follows that M allows a diadic expansion M = Σr

k=1σiyix
∗
i , where r = rank M .

The decomposition (1.1) proves useful for a wide variety of problems. It is the purpose of
this paper to propose a generalization of this traditional notion of a singular value decompo-
sition and to establish a number of its properties. In addition, we consider the approximation
problem to find lower rank approximants M ′ of M which are optimal in that the error M−M ′

has minimal induced norm when viewed as an operator on arbitrary normed spaces.
The paper is organized as follows. In section 2 we introduce singular values in a general

fashion and establish some of its elementary properties. Problem formulations are collected
in section 3. The main results on optimal rank approximations are given in section 4. An
application on optimal system identification is discussed in section 5.

2 Generalized singular values

Let X and Y be two finite dimensional vector spaces over the field of scalars F. Let n = dim X
and m = dim Y and define the p-norm of elements x ∈ X as

‖x‖p :=

{
(
∑n

i=1 |xi|p)1/p if p < ∞
maxi=1,...,n |xi| if p = ∞

Here, xi denotes the ith component of x. Let (X , ‖·‖p) and (Y, ‖·‖p) be normed linear vector
spaces and let M : X → Y be a linear mapping. The induced p-norm of M is

‖M‖p-ind := sup
0�=x∈X

‖Mx‖p

‖x‖p

.

Throughout, the notation L ⊆ X is understood to mean that L is a linear subspace of X .
If L ⊆ X , then M |L denotes the restriction of M to L, i.e., M |L : L → Y is defined as
M |Lx = Mx for x ∈ L.

Definition 2.1. The p-norm induced singular values of M are the numbers

σ
(p)
k := inf

L⊆X ,
dim L≥n−k+1

sup
0�=x∈L

‖Mx‖p

‖x‖p

(2.2)
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where k runs from 1 till n. The set of these numbers is denoted by σ(p)(M).

Note that the induced p-norm singular values are non-negative real numbers. For k =
1, . . . , n we will also be interested in the arguments of the infimum in (2.2). For this purpose,
define

L
(p)
k := {L ⊆ X | dim L ≥ n − k + 1 and sup

0�=x∈L

‖Mx‖p

‖x‖p

= σ
(p)
k }. (2.3)

Note that L
(p)
k is non-empty for all k and all p and that L

(p)
1 = X for all p. Whenever p is

understood from the context we omit the superscript (p) and write σk, σ(M) and Lk. It is
easy to see that

σ
(p)
1 = ‖M‖p-ind

σ
(p)
k = ‖M |Lk

‖p-ind

σ(p)
n = inf

0�=x∈X

‖Mx‖p

‖x‖p

where Lk ∈ L
(p)
k and k = 1, . . . , n. Some elementary results pertaining to the p-norm induced

singular values are summarized in the following Proposition.

Proposition 2.1. For all p ∈ [1,∞] there holds

1. σ
(p)
1 ≥ σ

(p)
2 ≥ . . . ≥ σ

(p)
n ≥ 0.

2. rank(M) = r < n if and only if σ
(p)
r+1 = · · · = σ

(p)
n = 0.

3. rank(M) = n if and only if σ
(p)
n > 0.

4. σ
(∞)
1 ≥ σ

(p)
1 .

Proof. Fix p ∈ [1,∞] and let Sk := {L ⊆ X | dim L ≥ n − k + 1}.

1. Obviously σk ≥ 0 for all k = 1, . . . , n. Since Sk ⊆ Sk+1 it is immediate that

σk = inf
L∈Sk

sup
0�=x∈L

‖Mx‖p

‖x‖p

≥ inf
L∈Sk+1

sup
0�=x∈L

‖Mx‖p

‖x‖p

= σk+1.

2. Suppose rank(M) = r < n and define K := ker M . Then dim K = n−r so that K ∈ Sk

for k = r + 1, . . . , n. But then

σk = inf
L∈Sk

sup
0 �=x∈L

‖Mx‖p

‖x‖p

≤ sup
0 �=x∈K

‖Mx‖p

‖x‖p

= 0

for k = r + 1, . . . , n. Since, σk ≥ 0 (statement 1), it follows that σr+1 = · · · = σn = 0.
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3. Since M is linear and since Sn consists of one dimensional subspaces of X we have that
σn = inf0�=x∈X

|Mx‖p

‖x‖p
is strictly larger than zero if M has rank n.

4. It is shown in the Appendix C.2.16 of [1] that ‖M‖∞-ind ≥ ‖M‖p-ind. This is equivalent
to σ

(∞)
1 ≥ σ

(p)
1 .

3 Problem formulations

In this section we consider a number of problems where the p-norm induced singular values
play a natural role.

3.1 Rank deficiency

An important application of singular values stems from the numerical difficulty to determine
the rank of a matrix M . In particular, for situations where M is near rank deficient, a numer-
ically reliable calculation of rank(M) is sensitive to errors. Most numerical implementations
to determine rank(M) calculate the numerical rank, defined as

r′ = rank(M,ε) := min
‖M−M ′‖p-ind≤ε

rank(M ′)

where ε > 0 is an accuracy level. In fact, this problem is a special case of the optimal rank
approximation problem, which we formulate next.

3.2 Optimal rank approximation

Let (X , ‖ · ‖p) and (Y , ‖ · ‖p) be finite dimensional normed linear vector spaces of dimension
n and m, respectively, and let M : X → Y be a linear mapping of rank r. Consider the
problem of approximating M by a linear map M ′ : X → Y of rank at most k (k < r), such
that the p-induced norm

‖M − M ′‖p-ind

is minimal. We refer to this problem as the optimal rank approximation problem and to
solutions M ′ as optimal rank k approximants.

3.3 Optimal system identification

Consider the problem to model the (real scalar valued) observed time series w̃(t), t = 0, . . . N ,
by an auto-regressive linear model of the form

n∑
i=0

xiw(t + i) = 0
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where xi ∈ R are the model coefficients and n ≥ 0 is the model order. Let x = (x0, . . . , xn)�

denote the model coefficient vector and define the misfit between model x and the data w̃
by

µ(x, w̃) :=
‖e‖p

‖x‖p

where e is the vector of residuals e(t) =
∑n

i=0 xiw̃(t+i), t = 0, . . . N −n. Given w̃, n ≥ 0 and
ε ≥ 0, the identification problem amounts to finding all model coefficient vectors x ∈ R

n+1

which have a guaranteed misfit in that µ(x, w̃) ≤ ε, i.e., we wish to characterize all models
that can not be distinguished if one tolerates a misfit level ε. Note that this set may be
empty. A model x∗ ∈ R

n+1 is said to be optimal if it minimizes the misfit µ(·, w̃).
Note the importance and interpretation of this problem for different values of p. The usual

phrasing of this problem is in a stochastic context where the variance of e is to be minimized.
This is equivalent of setting p = 2. Less conventional is the case where p = ∞. Solutions
of the identification problem then have guaranteed upperbounds on the amplitude of their
residuals, which seems of considerable interest for many applications in modeling.

We remark that the assumption that w̃(t) and xi are scalar valued has been made to
simplify exposition only. Multivariable generalizations of this identification problem can be
incorporated in a straightforward way. See Section 5 below.

4 Optimal rank approximation

If p = 2, the optimal rank optimization problem is well understood and has a simple solution.
Indeed, let (1.1) be a singular value decomposition of M and, in the notation of Section 1,
set Mk :=

∑k
i=1 σixiy

∗
i . Then rankMk ≤ k and

min
rank(M ′)≤k

‖M − M ′‖2-ind = ‖M − Mk‖2-ind = σ
(2)
k+1

which shows that Mk is an optimal rank k approximant of M . In particular, any truncation
of the diadic expansion of M defines an optimal lower rank approximant of M . Optimal
rank k approximants are by no means unique. Indeed, if δi, i = 1, . . . , k, satisfy |δi| ≤ σk+1

then

M ′
k :=

k∑
i=1

(σi + δi)yix
∗
i (4.4)

satisfies ‖M − M ′
k‖2-ind = σ

(2)
k+1 and is therefore also an optimal rank k approximant of M .

4.1 A lower bound on the error

If p �= 2, the problem is more difficult. We first establish a lower bound on the mismatch
between a matrix M and its lower rank approximations in the p-induced norm. We then
derive a sufficient condition for which this lower bound becomes sharp. Finally, we show that
optimal rank n − 1 approximants always attain this lower bound. Throughout this section,
X and Y will be finite dimensional vector spaces of dimension n and m, respectively.
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Proposition 4.1. Let M : X → Y have rank r and let Mk : X → Y have rank at most k
with k < r. Then

‖M − Mk‖p-ind ≥ σ
(p)
k+1.

Proof. Let Kk = ker Mk. Then dim Kk ≥ n − k and we note that

‖M − Mk‖p-ind = sup
0�=x∈X

‖(M − Mk)x‖p

‖x‖p

≥ sup
0�=x∈Kk

‖(M − Mk)x‖p

‖x‖p

= sup
0�=x∈Kk

‖Mx‖p

‖x‖p

Since dim Kk ≥ n − k, it follows that

sup
0�=x∈Kk

‖Mx‖p

‖x‖p

≥ inf
L∈X

dim L≥n−k

sup
0 �=x∈L

‖Mx‖p

‖x‖p

which shows that ‖M − Mk‖p-ind ≥ σ
(p)
k+1.

A natural question is whether the lower bound in Proposition 4.1 can actually be attained
for a rank k matrix Mk. To answer this question, recall that two subspaces L′ and L′′

of X are said to be complementary if L′ ∩ L′′ = {0} and L′ + L′′ = X . If (L′,L′′) is a
complementary pair, every x ∈ X admits a unique decomposition x = x′ + x′′ with x′ ∈ L′

and x′′ ∈ L′′. In that case, we write x′ = ΠL′|L′′x and x′′ = ΠL′′|L′x where ΠL′|L′′ : X → L′

and ΠL′′|L′ : X → L′′ define the natural projections on L′ along L′′ and on L′′ along L′,
respectively.

The following theorem provides a sufficient condition under which the lower bound in
Proposition 4.1 will be sharp.

Theorem 4.1. Given M , define the sets L
(p)
k by (2.3). If there exist L′ ∈ L

(p)
k+1 and L′′ ⊆ X

such that

1. (L′,L′′) are complementary and

2. ‖ΠL′|L′′‖p-ind ≤ 1

then there exists Mk : X → Y of rank at most k such that

‖M − Mk‖p-ind = σ
(p)
k+1.

In particular, Mk given by Mk|L′ = 0 and Mk|L′′ = M |L′′ is an optimal rank k approximant
of M .
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Proof. In view of Proposition 4.1, it suffices to show that Mk, as specified, has rank ≤ k and
satisfies ‖M − Mk‖p-ind ≤ σ

(p)
k+1. To see this, first note that dim L′ ≥ n − k which means that

dim L′′ ≤ k so that rankMk ≤ k. Second, observe that

‖M − Mk‖p-ind = sup
0�=x∈X

‖Mx − Mkx‖p

‖x‖p

= sup
x′∈L′;x′′∈L′′

x′+x′′ �=0

‖Mx′‖p

‖x′ + x′′‖p

≤ sup
0�=x′∈L′

‖Mx′‖p

‖x′‖p

= sup
0�=x′∈L′

‖Mx′‖p

‖x′‖p

= σ
(p)
k+1.

Here, we used in the third inequality that ΠL′|L′′ is a contraction, i.e., ‖x′‖p = ‖ΠL′|L′′x‖p ≤
‖x‖p. The last equality follows from the definition of L

(p)
k+1. It follows that Mk is an optimal

rank k approximant of M .

The main issue of the above result is the existence of a subspace L′′, complementary to
L′ ∈ L

(p)
k+1 such that the projection ΠL′|L′′ defines a contraction on X . We will investigate

these conditions for a number of special cases.

4.2 Nonexistence of contractive projection

Theorem 4.1 provides sufficient conditions for which the lower bound in Proposition 4.1 will
be attained. These conditions will not always be satisfied. In fact, to see how strict these
conditions are, consider the case where n = 3, p is even, p �= 2, and L′ is a two dimensional
subspace of X = R

3, spanned by the non-zero vectors x and y, i.e. L′ = span(x, y). A
subspace L′′ of X will satisfy the conditions 1 and 2 of Theorem 4.1 if and only if L′′ = span(z)
with z �= 0 such that

1. det (x, y, z) �= 0 and

2.
∑3

i=1(αxi + βyi + γzi)p − (αxi + βyi)p ≥ 0 for all α, β, γ ∈ R.

In particular, the latter condition implies that

3∑
i=1

xp−1
i zi = 0

3∑
i=1

yp−1
i zi = 0

3∑
i=1

(x1 + yi)p−1zi = 0

which yields (generically) that z1 = z2 = z3 = 0; i.e. z = 0. Hence there does not exist a
complementary subspace L′′ such that the projection ΠL′|L′′ is contractive.
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Figure 1: Nonexistence of contractive projection for the case p = ∞

Alternatively, we can give a geometric argument to show that the conditions in Theorem 4.1
do not need to be satisfied. Indeed, let n = 3, p = ∞ and let L′ be given by the two-
dimensional subspace indicated in Figure 1. Then it is easily seen that the projection of the
unit-ball in (R3, ‖ · ‖∞) on L′ along any complementary subspace L′′ of L′ is not contractive.

4.3 The case p = 2 and arbitrary k

If p = 2, X becomes a Hilbert space with the natural inner product 〈·, ·〉. For every subspace
L ⊆ X , its orthogonal complement L⊥ := {x ∈ X | 〈x, y〉 = 0 for all y ∈ L} is complemen-
tary to L and the orthogonal projection ΠL|L⊥ is obviously a contraction. Hence, optimal
rank k approximants always exist in this case and are given by the expression (4.4). This
case is well understood and can be found in many text books (e.g. [2, 4]).

4.4 The case k = n − 1 and arbitrary p

Let p be arbitrary, suppose that n = rank M and consider the optimal rank approximation
problem with k = n − 1. The set L

(p)
n then consists of subspaces of dimension ≥ 1 only.

Let L′ ∈ L
(p)
n be a one dimensional subspace and let x′ ∈ L′ be a nonzero element. Then

L′ = span(x′). The following lemma is easily seen.

Lemma 4.1. If L′ = span(x′) for a nonzero x′ ∈ X then L′′ ⊆ X will be complimentary to
L′ if and only if

L′′ = {x′′ ∈ X | 〈w, x′′〉 = 0} (4.5)

where w ∈ X is a nonzero vector such that 〈w, x′〉 �= 0.

Hence, Lemma 4.1 provides a parametrization of all complements of a given one-dimensional
subspace spanned by a nonzero vector x′ ∈ X . In order to characterize complementary sus-
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paces (L′, L′′) for which the projection ΠL′|L′′ is contractive, we resort to some terminology
from convex analysis [3].

Definition 4.1. Let f : X → R be a convex function. A vector w ∈ X is said to be a
subgradient of f at x ∈ X if

f(z) ≥ f(x) + 〈w, z − x〉 (4.6)

for all z ∈ X . The set of all subgradients of f at x ∈ X is called the subdifferential of f at
x and denoted by ∇f(x), i.e.,

∇f(x) := {w ∈ X | f(z) ≥ f(x) + 〈w, z − x〉
for all z ∈ X} .

Inequality (4.6) is usually referred to as the subgradient inequality and has the simple
geometric interpretation that the graph of f lies on or above the affine function g(z) :=
f(x)+〈w, z−x〉 which is the tangent hyperplane of f at x. We remark that the subdifferential
of f at x is a closed convex set. If ∇f(x) is non-empty, f is said to be subdifferentiable at x.

The next proposition shows that subdifferentials of the mapping f : x 
→ ‖x‖p precisely
parametrize the complements of L′ for which ΠL′|L′′ is contractive. The following lemma
shall be used to prove the proposition.

Lemma 4.2. Consider f : x 
→ ‖x‖p. Then w ∈ ∇f(x) if and only if 〈w, x〉 = ‖x‖p and
〈w, z〉 ≤ ‖z‖p for all z ∈ X .

Proof. (if). Obvious.
(only if). Substitute z = αx (0 ≤ α ≤ 1) into (4.6) then we have 〈w, x〉 ≥ ‖x‖p. Take

z = αx where α > 1 then we have 〈w, x〉 ≤ ‖x‖p. Thus we have 〈w, x〉 = ‖x‖p and
〈w, z〉 ≤ ‖z‖p for all z ∈ X .

Proposition 4.2. Let x′ ∈ X be nonzero and L′ = span(x′). Then the pair (L′, L′′) is
complementary and ‖ΠL′|L′′‖p-ind ≤ 1 if and only if L′′ is given by (4.5) with 0 �= w ∈ ∇‖x′‖p.

Proof. (if). From Lemma 4.2 we have 〈w, x′〉 = ‖x′‖p �= 0 which yields that the pair (L′,L′′)
is complimentary. Now the subgradient inequality (4.6) yields

‖z‖p ≥ ‖x′‖p + 〈w, z − x′〉

For any given nonzero λ ∈ R we have

‖λz‖p ≥ ‖λx′‖p +
|λ|
λ

〈w, λz − λx′〉

=⇒ ‖z̄‖p ≥ ‖λx′‖p + 〈v, z̄ − λx′〉 (4.7)

where we set z̄ = λz and v = |λ|w/λ. Since z is arbitrary and λ �= 0, (4.7) yields the
subgradient inequality for all z̄ ∈ X with z̄ �∈ L′′. By the fact that the pair (L′, L′′) is
complimentary any z̄ ∈ X has a unique decomposition z̄ = z̄′ + z̄′′ with z̄′ = ΠL′|L′′ z̄ and
z̄′′ = z̄ − z̄′ ∈ L′′. Since z̄′ ∈ L′ it follows that there exists λ ∈ R such that z̄′ = λx′. Now,
from (4.7) we then have ‖z̄‖p ≥ ‖z̄′‖p. Since z̄ is arbitrary, it follows that ‖ΠL′|L′′‖p-ind ≤ 1.
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(only if). By Lemma 4.1, there exists w ∈ X , with 〈w, x′〉 �= 0 such that L′′ is given by
(4.5). Since 〈w, x′〉 is nonzero, we may as well assume that

‖x′‖p = 〈w, x′〉

By complimentary of (L′, L′′) we can decompose uniquely any z ∈ X in terms of z = z′ + z′′

where z′ = λx′ for λ ∈ R and z′′ ∈ L. Since ‖ΠL′|L′′‖p-ind ≤ 1 we have ‖z‖p ≥ ‖z′‖p. Then

‖z‖p ≥ ‖λx′‖p ≥ λ‖x′‖p = λ〈w, x′〉 = 〈w, λx′〉 = 〈w, z〉

From this point we have obtained 〈w, x′〉 = ‖x′‖p and 〈w, z〉 ≤ ‖z‖p for all z ∈ X . Conse-
quently, by Lemma 4.2, w ∈ ∇‖x′‖p as desired.

The following theorem is an immediate consequence of Theorem 4.1 and Proposition 4.2.

Theorem 4.2. Let M : X → Y have rank n. For every p there exists M ∗ : X → Y with
rank M ∗ < n such that

‖M − M ∗‖p-ind = min
rank M ′≤n−1

‖M − M ′‖p-ind = σ(p)
n .

Moreover, any M ∗ given by M ∗|L′ = 0 with L′ = span(x′) ∈ Ln and M ∗|L′′ = M |L′′ with L′′

given by (4.5) with w ∈ ∇‖x′‖p is an optimal approximant of rank < n.

At this stage it is unclear whether for arbitrary p, the p-induced singular values σ(p)(M)
precisely characterize the minimal achievable approximation errors in that

min
rank(M ′)≤k

‖M − M ′‖p-ind = σ
(p)
k+1

holds for all k. This question is currently under investigation.

5 Optimal system identification

Consider the optimal system identification formulated in Section 3. Let w̃(t), t = 0, . . . N be
a real valued observed time series of dimension q, i.e., w̃(t) ∈ Rq, and suppose that we wish
to find an optimal autoregressive model

n∑
i=0

xiw(t + i) = 0

where the model coefficients xi are row vectors of dimension q, and n is the model order.
Let x = (x0, . . . , xn)� ∈ R

q(n + 1) denote the model coefficient vector and set

M =




w̃�(0) · · · w̃�(n)
...

...
w̃�(N − n) · · · w̃�(N)


 .
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It is immediate that the misfit
µ(x, w̃) =

‖Mx‖p

‖x‖p

.

Consequently, L ⊆ R
q(n+1) satisfies µ(·, w̃)|L ≤ ε if and only if ‖M |L‖p-ind ≤ ε. Hence, by

definition, all subsets L ⊆ R
q(n+1) with this property are characterized by L ∈ L

(p)
j , j ≥ k

where k is such that
σ

(p)
k−1(M) > ε ≥ σ

(p)
k (M). (5.9)

This proves the following result:

Theorem 5.1. If k satisfies (5.9), then all x ∈ L with L ∈ L
(p)
j , j ≥ k, solve the identifica-

tion problem in that the misfit
µ(x, w̃) ≤ ε.

The identification problem has no solution if no such k exists. Furthermore, every x∗ ∈ L
with L ∈ L

(p)
q(n+1) defines an optimal model of (minimal) misfit µ(x∗, w̃) = σ

(p)
n+1.

Note that this result provides a complete solution to the system identification problem for
any p.

6 Conclusions

In this paper we introduced the notion of induced p-norm singular values and showed their
relevance for a number of problems. In particular, we addressed the optimal rank approxi-
mation problem and derived sufficient conditions for the existence of optimal approximants
which minimize the induced p-norm of the error.
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