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Abstract

In this paper, we consider a stabilization problem for a fluid flow. For a pertur-
bation of the velocity of an incoming flow on a flat plate, the laminar-to-turbulent
transition location varies. We want to stabilize it by a suction velocity trough the
plate. The linearization of the nonlinear model around a steady state solution leads
to a linear degenerate parabolic equation. We look for a suction velocity in a feedback
form, determined by solving a LQR problem with an infinite time horizon. We derive
the associated optimality system and the optimal control. The study of the Riccati
equation is difficult because the state equation is a degenerate parabolic equation for
which the results in the literature cannot be directly applied. The existence of solution
is established by studying the asymptotic behaviour of the minimal solution to a Dif-
ferential Riccati Equation. Numerical tests show that the feedback law stabilizes the
laminar-to-turbulent transition location of the flow.

1 Introduction.

This paper deals with the stabilization of the laminar-to-turbulent transition location devel-

opped by a fluid flow on a flat plate. The control is a suction velocity through a small slot

near the leading edge. As described in [3], the instationary flow in the laminar boundary

layer can be described by the Prandtl’s equations. Using the so-called Crocco transforma-

tion, this system is reduced to a nonlinear degenerate parabolic equation (called the Crocco

equation) [8]. By linearizing the Crocco equation around a stationary solution, we obtain
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the following linear degenerate equation :






∂z

∂τ
+ a(η)

∂z

∂ξ
− b(ξ, η)

∂2z

∂η2
+ (c(ξ, η) + ka(η))z = f, (τ, ξ, η) ∈ Q,

z(0, ξ, η) = z0(ξ, η) (ξ, η) ∈ Ω,

√
a(η)z(τ, 0, η) =

√
a(η)z1(τ, η), (τ, η) ∈ (0, T ) × (0, 1),

(bz)(τ, ξ, 1) = 0,
∂z

∂η
(τ, ξ, 0) = vs(τ)χγ(ξ) + g(τ, ξ) (τ, ξ) ∈ (0, T ) × (0, L),

(1.1)

with Q = (0, T ) × Ω, Ω = (0, L) × (0, 1), (0, L) represents the length of the flat plate, (0, 1)

is the thickness of the boundary layer in Crocco variable. The final time T can be finite or

infinite, χγ is characteristic function of γ = [x0, x1] ⊂ (0, L) and vs is the suction velocity

through the slot γ. The coefficients a, b, c depend on the stationnary solution to the Crocco

equation. They have the following behaviour :






a(η) = U0
∞η, η ∈ [0, 1],

b ∈ C1(Ω), C2(1 − η)2σ ≤ b(ξ, η) ≤ C1(1 − η)2σ, ∀(ξ, η) ∈ Ω, b(ξ, η) > 0 in Ω,

c ∈ Cb(Ω), c(ξ, η) ≥ 0 ∀(ξ, η) in Ω̄,

with σ =
√
−ln(µ(1 − η)), 0 < µ < 1, C1, C2 > 0 and U0

∞ corresponds to the stationary

velocity of the incoming flow. We suppose that

• f(τ, ξ, η) = d(ξ, η)u∞(τ) + e(ξ, η)du∞
dτ

(τ) ∈ L2(Q) where u∞ represents a smooth per-

turbation of U0
∞,

• g ∈ L2((0, T ) × (0, L)), z0 ∈ L2(Ω), z1 ∈ L2((0, T ) × (0, 1)).

This paper is organized as follows. In section 2, we state an existence, uniqueness and

regularity result for the linearized Crocco equation (1.1). In section 3, we formulate a LQR

problem with an infinite time horizon. We prove the existence of a unique optimal solution.

In section 4, we study the corresponding Riccati equation. In the last section, we numerically

show that the feedback control law applied to the nonlinear model, stabilizes the transition

location.

Notations.

Let H1(0, 1; d) be the closure of C∞([0, 1]) in the norm :

||z||H1(0,1;d) =

(∫ 1

0

|z|2 + |1 − η|2σ2

∣
∣
∣
∣
∂z

∂η

∣
∣
∣
∣

2

dη

)1/2

. (1.2)
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To take the Dirichlet boundary condition into account, we denote by H1
{1}(0, 1; d) the closure

of C∞
c ([0, 1))) in the norm || · ||H1(0,1;d). According to Triebel theorem 2.9.2 [9]

H1(0, 1; d) = H1
{1}(0, 1; d).

We observe that the Dirichlet boundary condition at η = 1 is lost.

We set O = ΩX × ΩΞ with ΩX = ΩΞ = (0, L) × (0, 1). A point in ΩX (resp. ΩΞ),

will be denoted by X (resp. Ξ). The space of square integrable functions on O satisfying

z(X, Ξ) = z(Ξ, X) is denoted by L2
s(O).

2 The linear degenerate equation.

In this section, we study the system (1.1). First, we define weak solutions for the system

(1.1) by the transposition method.

Definition 2.1. Let f ∈ L2 (0, T ; L2(Ω)), g ∈ L2((0, T ) × (0, L)), vs ∈ L2(0, T ; L2(x0, x1)),

z1 ∈ L2(0, T ; L2(0, 1)), and z0 ∈ L2(Ω). A function z ∈ L2 (0, T ; L2(Ω)) is a weak solution

to problem (1.1) if only if it satisfies the following identity

∫

Q

zψ dτdξdη =

∫

Q

fp dτdξdη −
∫ T

0

∫ L

0

b(ξ, 0)(vs(τ)χγ(ξ) + g(τ, ξ))p(τ, ξ, 0) dτdξ

+

∫ T

0

∫ 1

0

a(η)z1(τ, η)p(τ, 0, η) dτdη +

∫

Ω

p(0, ξ, η)z0(ξ, η) dξdη,

(2.3)

for all ψ ∈ L2 (0, T ; L2(Ω)) where p is solution to equation:






−∂p

∂τ
− a

∂p

∂ξ
− ∂2(bp)

∂η2
+ (c + ka)p = ψ in Q,

∂(bp)

∂η
(τ, ξ, 0) = 0, (bp)(τ, ξ, 1) = 0 in (0, T ) × (0, L),

√
a(η)p(τ, L, η) = 0 in (0, T ) × (0, 1),

p(T, ξ, η) = 0 in Ω.

(2.4)

The existence and uniqueness of a solution to system (1.1) is stated in the following theo-

rem.

Theorem 2.1. Let f ∈ L2(0, T ; L2(Ω)), g ∈ L2((0, T ) × (0, L)), vs ∈ L2(0, T ; L2(x0, x1)),

z1 ∈ L2(0, T ; L2(0, 1)), and z0 ∈ L2(Ω), then equation (1.1) admits a unique weak solution

z ∈ L2(0, T ; L2(Ω)). Moreover

z ∈ L2((0, T ) × (0, L); H1(0, 1; d)) ∩ L∞(0, T ; L2(Ω)),

√
az ∈ L∞(0, L; L2((0, T ) × (0, 1)),
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and the solution obeys:

||z||L∞(0,T ;L2(Ω)) + ||
√

az||L∞(0,L;L2((0,T )×(0,1))) + ||z||L2((0,T )×(0,L);H1(0,1;d))

≤ C
(
||f ||L2(Q) + ||vs||L2((0,T );L2(γ))

+||g||L2((0,T )×(0,L) + ||z1||L2((0,T )×(0,1)) + ||z0||L2(Ω)

)
,

(2.5)

where C > 0 is independent of T .

Sketch of the proof.

Step 1. First, we study the evolution equation






a
∂z

∂ξ
− b

∂2z

∂η2
+ (c + ka)z = f,

(bz)(ξ, 1) = 0, b
∂z

∂η
(ξ, 0) = 0,

√
az(0, η) = 0.

(2.6)

Due to the degeneracy of a in η = 0, the classical results for at parabolic equations cannot

be used. With a point fixed method, and the results of [2] and [6], we prove in [4] that the

system (2.6) admits a unique solution such that

√
az ∈ L∞(0, L; L2(0, 1)), z ∈ L2(0, L; H1(0, 1; d)).

Step 2. We define the unbounded operator A in L2(Ω) by :

• Az = −a(η)
∂z

∂ξ
+ b(ξ, η)

∂2z

∂η2
− (c + ka)(ξ, η)z,

• D(A) =
{
z ∈ L2(0, L; H1(0, 1; d)),

√
az ∈ L∞(0, L; L2(0, 1)),

√
az(0, ·) = 0,

N(az,−b
∂z

∂η
) = 0 ; Az ∈ L2(Ω)

}

,

where the operator N denotes the normal trace operator on (0, L) × {0} ∪ {0} × (0, 1).

For k > 0 enough large, we can prove that the operator (A, D(A)) is the generator of a

contraction semigroup on L2(Ω). We can obtain the same results for the adjoint system of

(2.6).

Step 3. With the semigroup theory, we easily show that the system (2.4) admits a unique

weak solution p ∈ C([0, T ]; L2(Ω)) ∩ L2(0, T ; L2(0, L; H1(0, 1; d))).

Step 4. The uniqueness of a solution to system (1.1) can be immediately deduced from

the definition by transposition. By approximation and a passage to the limit, we can prove

the existence of a solution for the system (1.1). �

In [5], the system (1.1) has been studied with a, b, c independent of the ξ variable.
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3 The LQR problem in infinite time horizon.

Set Z = L2(Ω) the state space, Y = R the observation space and U = R the control space.

We study the following LQR problem

(P ) Inf
{
J(z, u) | (z, u) ∈ L2(0,∞; Z) × L2(0,∞; U), (z, u) satisfies (1.1)

}
,

with

J(z, u) =
1

2

∫ ∞

0

|y(τ) − yd| dτ +
1

2

∫ ∞

0

|u(τ)| dτ, (3.7)

where y(τ) =
∫

Ω
φz(τ) dξdη + c2u∞ with φ ∈ L2(Ω) and c2 ∈ R. The function yd ∈ L2(Q)

represents a desired transition location.

By classical arguments, we can prove that the above control problem admits a unique

solution (z̄, v̄s). The optimal control for (P ) is characterized by

v̄s(τ) =
1

R

∫

γ

b(ξ, 0)p̄(τ, ξ, 0)dξ, (3.8)

where p̄ is the solution to system (2.4) with

ψ(τ, ξ, η) = φ(ξ, η)

(∫

Ω

φ(x, y)z̄(τ, x, y) dxdy + c2u∞(τ) − yd(τ)

)

.

4 Feedback control law and Riccati equation.

In this section, we denote by A∗
X (resp. A∗

Ξ) the operator A∗ written in variable X (resp.

Ξ). We prove that the optimal control v̄s is characterized by the feedback law

v̄s(τ) =
1

R

∫

γ

b(s, 0)

(∫

Ω

π(s, 0, Ξ)z̄(τ, Ξ) dΞ + r(τ, s, 0)

)

ds, (4.9)

where π is solution to the Riccati equation





A∗
Xπ + A∗

Ξπ − 1

R

∫

γ

b(s, 0)π(s, 0, Ξ) ds

∫

γ

b(s, 0)π(X, s, 0) ds

+φ(X)φ(Ξ) = 0 ∀(X, Ξ) ∈ O,

∂(bπ)

∂η
(x, 0, Ξ) = 0, (bπ)(x, 1, Ξ) = 0 ∀(x, Ξ) ∈ (0, L) × Ω,

∂(bπ)

∂η
(X, ξ, 0) = 0, (bπ)(X, ξ, 1) = 0 ∀(X, ξ) ∈ Ω × (0, L),

√
aπ(X, L, η) = 0 ∀(X, η) ∈ Ω × (0, 1),

√
aπ(L, η, Ξ) = 0 ∀(η, Ξ) ∈ (0, 1) × Ω,

π(X, Ξ) = π(Ξ, X) ≥ 0 ∀(X, Ξ) ∈ O,

(4.10)

5



and r satisfies the system





−∂r

∂τ
(τ, Ξ) = A∗r(τ, Ξ) − 1

R

∫

γ

b(ζ, 0)r(τ, ζ, 0) dζ

∫

γ

b(s, 0)π(s, 0, Ξ) ds

+

∫

Ω

π(X, Ξ)f(τ, X) dX + φ(τ, Ξ)(c2u∞(τ) − yd(τ))

−
∫ L

0

π(x, 0, Ξ)b(ξ, 0)g(τ, x) dx +

∫ 1

0

π(0, s, Ξ)a(s)z1(τ, s) ds,

∂(br)

∂η
(τ, ξ, 0) = 0, (br)(τ, ξ, 1) = 0,

√
ar(τ, L, η) = 0,

r(∞, ξ, η) = 0.

(4.11)

To study the system (4.10), we firstly etablish the well posedness of a local solution in

time to the following Differential Riccati Equation associated to (4.10) :





∂π

∂τ
= A∗

Xπ + A∗
Ξπ − 1

R

∫

γ

b(s, 0)π(s, 0) ds

∫

γ

b(s, 0)π(s, 0) ds

+φ(X)φ(Ξ) in (0, T ) ×O,

∂(bπ)

∂η
(τ, x, 0, Ξ) = 0, (bπ)(τ, x, 1, Ξ) = 0,

∂(bπ)

∂η
(τ, X, ξ, 0) = 0, (bπ)(τ, X, ξ, 1) = 0,

√
aπ(τ, X, L, η) = 0,

√
aπ(τ, L, η, Ξ) = 0,

π(0, X, Ξ) = π0(X, Ξ) ≥ 0

π(τ, X, Ξ) = π(τ, Ξ, X) ≥ 0.,

(4.12)

where π0 ∈ L2
s(O). To prove the existence of a solution for the system (4.12), we must study

the following Differential Lyapunov Equation :





∂π

∂τ
= A∗

Xπ + A∗
Ξπ + ψ(τ, X)ψ(τ, Ξ) in (0, T ) ×O,

∂(bπ)

∂η
(τ, x, 0, Ξ) = 0, (bπ)(τ, x, 1, Ξ) = 0 for (τ, x, Ξ) ∈ (0, T ) × (0, L) × Ω,

∂(bπ)

∂η
(τ, X, ξ, 0) = 0, (bπ)(τ, X, ξ, 1) = 0 for (τ, X, ξ) ∈ (0, T ) × Ω × (0, L),

√
aπ(τ, X, L, η) = 0 for (τ, X, η) ∈ (0, T ) × Ω × (0, 1),

√
aπ(τ, L, η, Ξ) = 0 for (τ, X, η) ∈ (0, T ) × Ω × (0, 1),

π(0, X, Ξ) = π0(X, Ξ) ≥ 0 for (X, Ξ) ∈ O,

π(τ, X, Ξ) = π(τ, Ξ, X) ≥ 0 for (τ, X, Ξ) ∈ (0, T ) ×O,

(4.13)
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with ψ ∈ L2(0, T ; L2(Ω)) and π0 ∈ L2
s(O).

Definition 4.1. Let ψ ∈ L2(0, T ; L2(Ω)). A function π̂ ∈ L2(0, T ; L2
s(O)) is a weak solution

to the system (4.13) if for all z ∈ D(AΞ) and all ζ ∈ D(AX), ((π̂(·), z), z) ≥ 0, the function

((π̂(·), z), ζ) belongs to H1(0, T ) and satisfies

d

dτ

∫

ΩX×ΩΞ

π̂(τ, X, Ξ)z(Ξ)ζ(X) dXdΞ =

∫

ΩX

(π̂(τ, X), z)AXζ dX +

∫

ΩΞ

(π̂(τ, Ξ), ζ)AΞz dΞ

+

∫

ΩΞ

ψ(τ, Ξ)z(Ξ) dΞ

∫

ΩX

ψ(τ, X)ζ(X) dX.
(4.14)

The term ((π(·), z), ζ) stands for
∫

ΩX

∫

ΩΞ
π(·, X, Ξ)z(Ξ)ζ(X) dXdΞ. To prove the unique-

ness of a solution for (4.13), we introduce an other equivalent definition.

Definition 4.2. Let ψ ∈ L2(0, T ; L2(Ω)). A function π̂ ∈ L2(0, T ; L2
s(O)) is a weak solution

to the Differential Lyapunov Equation (4.13) if for all symmetrical function w such that

w ∈ L2(ΩX ; D(AΞ)) ∩ L2(ΩΞ; D(AX)) ∩ L2
s(O),

the function (π̂(·), w) belongs to H1(0, T ) and satisfies

d

dτ

∫

ΩX×ΩΞ

π̂(τ, X, Ξ)w(X, Ξ) dXdΞ =

∫

ΩX×ΩΞ

π̂(AXw + AΞw) dXdΞ

+

∫

ΩX×ΩΞ

ψ(τ, X)ψ(τ, Ξ)w(X, Ξ) dXdΞ.
(4.15)

In the following theorem, we prove the uniqueness and the existence of a solution for the

linear system (4.13).

Theorem 4.1. Let ψ ∈ L2(0, T ; L2(Ω)). The system (4.13) admits a unique weak solution

π̂. It obeys :

π̂ ∈ L2(0, T ; L2(ΩX ; L2(0, L; H1(0, 1; d))) ∩ Cs([0, T ]; L2
s(O))

Moreover, π̂ satisfies the estimation

||π̂||L2(0,T ;L2(Ω;L2(0,L;H1(0,1;d)))) ≤ C
(
||π0||L2(O) + ||ψ ⊗ ψ||L1(0,T ;L2(O))

)
, (4.16)

where the constant C is independent of T .

Proof. The uniqueness of the solution to (4.13) immediatly follows from the definition

4.2.

Existence. We can verify that the solution to (4.13) is defined by :

(π̂(t)z, ζ) =

∫

O
et(A∗

X+A∗
Ξ)π0zζ dXdΞ

+

∫ t

0

(∫

ΩX

(
e(t−τ)A∗

Xψ
)
ζ dX

) (∫

ΩΞ

(
e(t−τ)A∗

Ξψ
)
z dΞ

)

dτ,
(4.17)
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for all z, ζ ∈ D(A).

With the Cauchy-Schwarz inegality and (4.17), we prove that π̂ ∈ L∞(0, T ; L2
s(O)). �

To show the existence of a solution for (4.12), we use a point fixed method in the space

EM =
{

π ∈ Cs([0, t̄]; L
2
s(O)) ∩ L2(0, t̄; L2(ΩX ; L2(0, L; H1(0, 1; d)))),

||π||L∞(0,t̄;L2
s(O)) + ||π||L2(0,t̄;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ 3M2

}
,

with t̄ > 0 a small enough, ||φ||L2(Ω) ≤ M and ||π0||L2(Ω) ≤ M2. We have the following

theorem

Theorem 4.2. Let φ ∈ L2(Ω), π0 ∈ L2
s(O) such that ||φ||L2(Ω) ≤ M and ||π0||L2(O) ≤ M2

for some M > 0. We denote by t̄ a small constant. The system (4.12) with admits a

symmetrical solution π(·, X, Ξ) = π(·, Ξ, X) ≥ 0 that satisfies :

π ∈ L2(0, t̄; L2(ΩX ; L2(0, L; H1(0, 1; d))) ∩ Cs([0, t̄]; L
2
s(O))

Moreover, we have :

||π||L2(0,t̄;L2(Ω;L2(0,L;H1(0,1;d)))) + ||π||L∞(0,t̄;L2(O)) ≤ C
(
||φ ⊗ φ||L2(O) + ||π0||L2(O)

)
, (4.18)

where C is a constant not depending on T and t̄.

To prove the existence of solution for the system (4.12) on each interval [T, t̄ + T ], we use

the same point fixed method with π0 now corresponding to the solution of the system (4.12)

at time T . Therefore, the system (4.12) admits a unique solution on [0,∞).

By studying the asymptotic behaviour of the solution to the DRE, we prove the existence

of a solution for the Algebraic Riccati Equation.

Theorem 4.3. The Riccati equation (4.10) admits a unique symmetrical solution π ≥ 0

such that

π ∈ L2(ΩX ; L2(0, L; H1(0, 1; d))) ∩ L2
s(O).

Moreover, π satisfies :

||π||L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ C||φ ⊗ φ||L2(O). (4.19)

Proof. It based on the proposition 2.1 p. 309 of [1].

Step . We show that the solution to (4.12) admits a limit when τ tends to ∞. Let π the

solution to (4.12) with π0 = 0 and π̃ the solution to (4.12) with π̃(0) = π(ε), ε > 0. With

proposition 2.2 p. 147 [1], we have

((π(t + ε), z), z) = ((π̃(t), z), z) ≥ ((π(t), z), z).
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So, the map t → ((π(t)z), z)) is increasing. We denote by Π ∈ L(L2(Ω), L2(Ω)) the operator :

Π(t)z(X) =

∫

Ω

π(t, X, Ξ)z(Ξ) dΞ.

Since ||π||L∞(0,∞;L2(O)) < ∞, we have

Sup
t≥0

|(Π(t)z, z)| < ∞,

for all t ≥ 0 and all z ∈ L2(Ω). Consequently, for all z ∈ L2(Ω), the limit lim
t→∞

(Π(t)z, z)

exists and is finite. Let Πmin defined by :

lim
t→∞

(Π(t)z, z) = (Πminz, z). (4.20)

We have

(Π(t)z, ζ) =
1

4
(Π(t)(z + ζ), (z + ζ)) − 1

4
(Π(t)(z − ζ), (z − ζ)). (4.21)

With (4.20) and (4.21), we obtain

lim
t→∞

(Π(t)z, ζ) = (Πminz, ζ),

for all z, ζ ∈ L2(Ω). By applying two times the Banach Steinhaus theorem, we find that

Sup
t≥0

||(Π(t)·, ·)||L(L2(Ω),L2(Ω)) < ∞.

Thus, Πmin ∈ L(L2(Ω)) and Πmin = Π∗
min. By the uniqueness of the limit of (Π(t)z, z) when

t tends to ∞, Πmin can be represented by a function πmin ∈ L2
s(O) such that

lim
t→∞

∫

O
π(t, X, Ξ)z(Ξ)ζ(X) dXdΞ =

∫

O
πmin(X, Ξ)z(Ξ)ζ(X) dXdΞ,

for all z, ζ ∈ L2(Ω).

Step 2. We show that πmin is solution to the ARE. Let π̃ be the solution to (4.12) with

π0 = πmin and π̃n the solution to (4.12) with π0 = π̄(n) where π̄ is the solution to (4.12)

with π0 = 0. By using the dynamic programming principle, we have

π̃n(t) = π̃(t + n), t > 0.

Due to the first step, we have

((π̃n(0), z), z) →
n→∞

((π̃(0), z), z) = ((πmin, z), z),

for all z ∈ L2(Ω). Therefore

((π̃(t), z), z) = lim
n→∞

((π̃n(t), z), z)

= lim
n→∞

((π̄(t + n), z), z)

= ((πmin, z), z),
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for all t > 0 and all z ∈ L2(Ω). Finally, π̃ is constant and equal to πmin. As π̃ is the solution

to (4.12) with π0 = 0, we have

0 =
d

dτ
((π̃, z), z)

= (AXz, (πmin, z)) + ((πmin, z), AΞz) − 1

R

(∫

γ

b(s, 0)(πmin(s, 0), z) ds

)2

+ (φz, φz).

Consequently, πmin is the solution to the ARE (4.10). �.

Now, we can prove the existence of solution r for the system (4.11).

Theorem 4.4. Let g ∈ L2((0,∞)×(0, L)), z0 ∈ L2(Ω), f ∈ L2((0,∞)×Ω), u∞ ∈ L2(0,∞),

z1 ∈ L2((0,∞) × (0, 1)). The system (4.11) admits a unique weak solution r such that

r ∈ L2(0,∞; L2(0, L; H1(0, 1; d))) ∩ L∞(0,∞; L2(Ω)),

√
ar ∈ L∞(0, L; L2((0,∞) × (0, 1))).

Moerover r obeys :

||r||L∞(0,∞;L2(Ω)) + ||
√

ar||L∞(0,L;L2((0,∞)×(0,1))) + ||r||L2(0,∞;L2(0,L;H1(0,1;d)))

≤ C
(
||f ||L2((0,∞)×Ω) + ||z1||L2(0,∞)×(0,1)) + ||g||L2(0,∞,L2(0,L))

)
.

(4.22)

The proof can be found in [4].

5 Numerical results.

In this section, we solve numerically the LQR problem. Following the numerical scheme

given in [3], the system (1.1) is semi-discretized in space. We obtain a finite dimensional

system of the form :





dzn

dτ
= Azn + Bvs + fn(τ),

zn(0) = zn
0 .

(5.23)

where fn(τ) = E1u∞(τ) + E2
du∞
dτ

(τ) + E3 gn(τ) + E4 zn
1 (τ) and zn(τ) represents a vector of

R
n. The operator A now belongs to L(Rn). The feedback control law is

vs(τ) = −Kzn(τ) − R−1BT rn(τ), (5.24)

where

• K = R−1BT Π and Π is the unique symmetrical non negative solution to the ARE

AT Π + ΠA − ΠBR−1BT Π + CT C = 0. (5.25)
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• The vector rn is the solution of





−drn

dτ
= (A − BK)T rn + CT (C2u∞ − yd) + Πfn,

rn(∞) = 0.

(5.26)

• The state zn is the solution of





dzn

dτ
= (A − BK)zn − BR−1BT rn + fn,

zn(0) = zn
0 .

(5.27)

Notice that numerically, all eigenvalues of A have a negative real part. Therefore, A is

exponentially stable and the ARE (5.25) admits a unique solution Π.

Algorithm of control. Before the beginning of the time loop, we build the matrixes

A, B, C, E1, E2, E3, E4. We solve the Riccati equation (4.10) to determine Π and build K.

Since the perturbation u∞ is known on [0,∞], we calculate the solution to (5.26). During

the time loop, we solve the system (5.27) and we apply the control law given by (5.24) to

the nonlinear model.

The nonlinear model (Prandtl’s system) is solved on a fine grid with 20000 points [4]. The

compensator (5.27) is calculated on a coarse grid of n = 63 points. The constant R defined

in (3.7) is taken equal to 0.001 and yd = 0.

For the first example, we consider a sinusoidal perturbation u∞ = 0.5∗sin(4πt)∗cos(24πt).

The figure (1) represents the variation of the controlled and uncontrolled transition location

determined with the nonlinear model and the values of the suction velocity (the control).

The maximum amplitude of the transition location is reduced of 65%.
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Figure 1: At the top, controlled (blue) and uncontrolled (red) variations of the transition

location in response to a perturbation u∞ = 0.5 ∗ sin(4πt) ∗ cos(24πt). At the bottom,

variation of the control in response to the same perturbation.
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In the next test, we consider a perturbation with a greater amplitude but with a smaller

frequency

u∞ = 1.5 ∗ sin(4πt) ∗ cos(8πt).

The figure (2) shows that the maximal amplitude of the variation of the transition location

is reduced by 66%.
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Figure 2: At the top, controlled (blue) and uncontrolled (red) variations of the transition

location in response to a perturbation u∞ = 1.5∗sin(4πt)∗cos(8πt). At the bottom, variation

of the control in response to the same perturbation.

6 Conclusions and further works.

In this paper, we have considered the numerical and theoretical stabilization of the transition

location obtained with the Prandtl’s system. The proof of the existence of a solution for the

ARE differs from [7] and permits to deal with problems where the semigroup generated by

the operator A is exponentially stable.

We have supposed that the perturbation u∞ is known. Therefore, the action of the per-

turbation on the transition location is taken into account in the feedback law with an extra

term r solution of a backward equation.
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Similar numerical results for the LQG problem have been obtained in [4]. In this case, the

longitudinal and vertical velocities in the boundary layer can be estimated.

In a future paper, a H∞-approach will be used to determine a feedback law robust with

respect to perturbations of the velocity of the incoming flow U∞
0 .
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