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Abstract

In this paper, we study the group on Fq ∪ {∞} induced by rational cubic curves.
We show that the group is isomorphic to either a subgroup of order q + 1 of the
multiplicative group of Fq2 , or the additive group, or multiplicative group, of Fq.

1 Introduction

It is well known that the points on an elliptic curve form an abelian group, and such a

group structure has been used to implement the Diffie-Hellman key-passing scheme, and the

ElGamal public-key cryptosystem and signature schemes. The elliptic curve cryptosystems

have the potential to provide satisfied security with shorter key lengths [4, 5, 6].

An elliptic curve Γ is a nonsingular cubic curve in P2, and the group law is defined by the

cord-and-tangent method [1]: Choose a point O ∈ Γ as the identity of the group. For any

two points P, Q ∈ Γ, let PQ be the line through P and Q. Then by Bézout’s theorem [2],

Γ ∩ PQ contains 3 points counted with multiplicity. Let R be the third point in Γ ∩ PQ,

Then P ∗Q is defined to be the third point in Γ ∩ OR. The commutativity P ∗Q = Q ∗ P

is obvious, and the associativity follows also from Bézout’s theorem [1]. Such geometric

construction can be applied to any irreducible cubic curves, including singular irreducible

cubic curves. Note that a cubic curve is singular if and only if it is a rational curve, i.e. if

and only if there is a polynomial mapping χ : P1 → P2 onto all but possible one point of the

curve. The group law on a rational curve induces a pull-back group law on P1. In this paper,

we investigate the group laws on P1 induced by rational cubic curves and the cryptosystems

based on such group laws.

2 The Pullback Group on P1

Let Fq be a finite field of q elements, and Pn be the n dimensional projective space over

the Fq, i.e. the set of all lines through the origin in Fn+1
q . Through any nonzero point

(x0, x1, . . . , xn) ∈ Fn+1
q and the origin there is a unique line in Pn. So the elements in

Pn are represented by the equivalence classes of {(x0, x1, . . . , xn) 6= (0, 0, . . . , 0)} where

(x0, x1, . . . , xn) ∼ k(x0, x1, . . . , xn) for any nonzero k ∈ Fq, and such equivalence classes

are called the homogeneous coordinates of the elements in Pn [2].
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Let Γ be a rational cubic curve in P2. Then there is a polynomial mapping χ : P1 → P2 of

degree 3,

χ(s, t) = (f(s, t), g(s, t), h(s, t)),

where f, g, h are homogeneous polynomials of degree 3, such that Γ is the closure of χ(P1).

Write

χ(s, t) = (s3, s2t, st2, t3)A

where A is an 4× 3 full rank matrix over Fq.

The projective space P1 can be considered as

P1 = {(s, 1)} ∪ {(1, 0)} = Fq ∪ {∞}.

Therefore for simplicity we write, χ(s, 1) = χ(s), and χ(1, 0) = χ(∞), i.e.

χ(s) = (s3, s2, s, 1)A

and

χ(∞) = (1, 0, 0, 0)A

Let αβ be the line through the points α and β in P2. For any a, b ∈ Fq, let the third point

in

Γ ∩ χ(a)χ(b)

be χ(c). Then for a 6= b, c must be a solution of the equation

det

 a3 a2 a 1

b3 b2 b 1

s3 s2 s 1

A = (b− a)(s− a)(s− b) det

 a3 a2 a 1

a2 + ba + b2 a + b 1 0

s + a + b 1 0 0

A = 0,

and for a = b, a solution of

det

 a3 a2 a 1

3a2 2a 1 0

s3 s2 s 1

A = (s− a)2 det

 a3 a2 a 1

3a2 2a 1 0

s + 2a 1 0 0

A = 0.

In either case, c is the solution of

det

 a3 a2 a 1

3a2 2a 1 0

s + 2a 1 0 0

A = 0.

Therfore

c = −A1 + (a + b)A2 + abA3

A2 + (a + b)A3 + abA4

(2.1)

where Ai is the 3× 3 minor of A obtained by removing the ith rows.
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Fix a σ ∈ Fq to be the identity element of the group. Then χ(a ∗ b) is the third point in

Γ ∩ χ(c)χ(σ),

and therefore the group operation is given by

a ∗ b = −A1 + (σ + c)A2 + σcA3

A2 + (σ + c)A3 + σcA4

(2.2)

=
(a + b)α + abβ + σ(−α + abγ)

α− abγ + σ(β + (a + b)γ)
, (2.3)

where

α = A2
2 − A1A3, β = A2A3 − A1A4, γ = A2

3 − A2A4.

The formula (2.3) can be simplified further. Note that any linear transformation on the

homogeneous coordinates of P1 results in a new form of χ, which induces an isomorphic

pull-back group on P1. Therefore we can assume

1. σ = ∞,

2. The inverse element of a is −a.

Applying these conditions to (2.3), we then have

β = 0

and corresponding group operation becomes

a ∗ b =
ab− κ

a + b
(2.4)

where κ = α/γ.

Theorem 2.1. If κ = 0, then the group operation is not defined for 0 ∗ 0, and the group

((Fq − {0}) ∪ {∞}, ∗) is isomorphic to the additive group of Fq.

If
√
−κ ∈ Fq, then the group operation is not defined for

√
−κ ∗ (−

√
−κ), and the group

((Fq − {±
√
−κ}) ∪ {∞}, ∗) is isomorphic to the multiplicative group of Fq.

If
√
−κ 6∈ Fq, then the group operation is defined for every points in Fq ∪ {∞}, and the

group (Fq ∪{∞}, ∗) is isomorphic to a subgroup of the multiplicative group of Fq2. Therefore

it is a cyclic group.

Proof. The operation is not defined if the homogeneous coordinates of a ∗ b becomes (0, 0),

or equivalently, the numerator and denominator of a ∗ b are both zero. So the operation is

not defined for
√
−κ ∗ (−

√
−κ).

If κ = 0, then the operation can be written as

1

a ∗ b
=

1

a
+

1

b
.

3



Therefore the mapping a 7→ 1/a (∞ 7→ 0) defines an isomorphism of ((Fq − {0}) ∪ {∞}, ∗)
and (Fq, +).

If κ 6= 0, then(
a2 − κ

a2 + κ
− 2a

a2 + κ

√
−κ

) (
b2 − κ

b2 + κ
− 2b

b2 + κ

√
−κ

)
=

(
ab−κ
a+b

)2 − κ(
ab−κ
a+b

)2
+ κ

− 2
ab−κ
a+b(

ab−κ
a+b

)2
+ κ

√
−κ

for a, b 6= ±
√
−κ. Therefore if

√
−κ ∈ Fq, the map

a 7→ a2 − κ

a2 + κ
− 2a

a2 + κ

√
−κ, ∞ 7→ 1

defines an isomorphism of ((Fq − {±
√
−κ}) ∪ {∞}, ∗) and (Fq − {0}, ·).

If
√
−κ 6∈ Fq, then the map defines an imbedding of Fq ∪ {∞} into the multiplicative

group of Fq(
√
−κ) = Fq2 , and therefore (Fq ∪ {∞}, ∗) is a cyclic group of order q + 1 (see [3,

Theorem 5.3]).

Remark 2.2. There is a very simple geometric interpretation of the group when
√
−κ 6∈ Fq,

but
√

κ ∈ Fq. Consider the line defined by y =
√

κ in Fq × Fq. For any two non-horizontal

lines through the origin (i.e. two points in P1), let α, β be the angles inclination of the lines,

and (a,
√

κ), (b,
√

κ) be the points of intersections of the lines with the line y =
√

κ. Then

cot α = a/
√

κ, cot β = b/
√

κ

and

cot(α + β) =
cot α cot β − 1

cot α + cot β
=

ab−κ
a+b√

κ
,

i.e. if we consider (a,
√

κ) as homogeneous coordinates of lines through origin in F2
q. Then

the angle of inclination of (a ∗ b,
√

κ) is the sum of the angles of inclinations of (a,
√

κ) and

(b,
√

κ).

3 Examples and Final Remark

Example 3.1. Consider Z11 and let κ = 1. We have

30 = ∞ 31 = 3 32 = 5 33 = 10 34 = 9 35 = 4

36 = 0 37 = 7 38 = 2 39 = 1 310 = 6 311 = 8.

Example 3.2. Consider Z3(x)/(x2 + 1) = F9 and let κ = 1 + x. We have

20 = ∞ 21 = 2 22 = 2x 23 = 2 + x 24 = 2 + 2x

25 = 0 26 = 1 + x 27 = 1 + 2x 28 = x 29 = 1.
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It seems that when κ 6∈ Fq, the discrete log problem over (Fq ∪ {∞}, ∗) is harder to solve

than the problem over Fq, and therefore the cryptosystem defined over (Fq ∪ {∞}, ∗) might

be more secure than the cryptosystem defined over the multiplicative group of Fq. The

drawback is that more calculations are involved. The group operation can also be written

in terms of homogeneous coordinates:

(a1, a2) ∗ (b1, b2) = (a1b1 − κa2b2, a1b2 + b1a2). (3.1)

So the division in the calculation of an can be avoided until the last step.
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