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Abstract

We introduce the idea of boundary extremals (3.9) in control problems for sim-
ple fluid models of queueing systems with Skorokohd dynamics, using the robust for-
mulation of [2, 4]. A simple example is presented in which these extremals play a
fundamental role in the construction of the optimal control strategy.

1 Introduction

The performance of fluid models (deterministic) of queueing systems has both theoretical

and heuristic implications for stochastic queueing systems; see [1, 3] for instance. It is

natural to explore nonlinear optimal control problems for them. The dynamics of queueing

systems are complicated by inherent nonnegativity constraints on the state queue length

vector. These are often modelled by including Skorokhod dynamics in the system equations.

This provides appropriate modifications to the dynamics when one or more state components

become zero, resulting in a state trajectory that remains in the nonnegative orthant. The

work of Dupuis and Ishii [5] allows a class of fluid queueing models with Skorokhod dynamics

to be formulated as differential equations:

ẋ(t) = π(x(t), q(t) −Gu(t)). (1.1)

Here x(t) ∈ R
n
+ is the state or queue length vector, q(t) ∈ R

n describes inflow or exogenous

load on the system, u(t) is the control, taking values in the convex hull U of some finite

set U0 = {ui} of vectors representing basic server settings, G is a matrix determined by the

network topology and maximum service rates. π(x, v) is the velocity projection map of the

associated Skorokhod problem. This takes the form π(x, v) = v +
∑

i: xi=0 βidi, where the di

are vectors determined by the network topology and the coefficients βi ≥ 0 are obtained by

solving a certain complementarity problem which depends on v and x:

w = v +
∑

i: xi=0

βidi,

where for all i with xi = 0,

wi ≥ 0, βi ≥ 0, and wiβi = 0.
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We won’t take space here to delineate the various technical hypotheses needed to justify

this and the other assertions made below. But but what we say applies at least to the

generality of feed-forward networks, for which the served output of any queue xi joins only

higher-numbered queues: xj for j > i. (This translates to (di)j = 0 for j < i, = 1 for j = i

and ≤ 0 for j > i.) This leads to a piecewise linear representation of π(x, ·):

π(x, v) = RFv,

where the reflection matrix RF is determined by the set F = {i : βi > 0} resulting from the

solution of the complementarity problem; see [4].

Recent papers including [2, 4] have considered robust control problems for simple examples

of such systems based on the formulation of Soravia [7] using a differential game with (lower)

value

V (x(0)) = inf
α

sup
T,q(·)

∫ T

0

1

2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt.

(α denotes a generic non-anticipating control policy). These papers use a semi-explicit

construction of the value function V by means of a carefully constructed family of extremals,

and an appropriate verification theorem. However the construction of the extremals for the

examples of those papers did not directly involve the Skorokhod dynamics. Only after

the construction was complete were the Skorokhod dynamics considered, showing that the

strategy and value function was optimal with respect to them as well.

In this paper we begin to consider situations in which the Skorokhod dynamics are involved

in the construction of the extremals for the value function, and have a more decisive influence

on the optimal strategy. In particular we describe the form of extremals in a face of the

nonnegative orthant which involve the Skorokhod dynamics in a nontrivial way, and in §4
present one example in which these extremals are the dominant feature.

2 The Hamilton-Jacobi-Isaacs Equation and Viscosity

Neumann Boundary Conditions

Ω will denote a relatively open subset of the nonnegative orthant R
n
+. The faces of Ω are

∂iΩ = {x ∈ Ω : xi = 0}, i = 1, . . . n,

and I(x) = {i : xi = 0} is the null-index set of x. We will use ∂∗Ω = ∪i∂iΩ to denote the

part of ∂Ω in the faces. Note that we consider ∂∗Ω ⊆ Ω. The standard basis vectors in R
n

will be denoted ei.

One naturally expects the value function V (x) to be described by some sort of Hamilton-

Jacobi-Isaacs equation. For x in the interior of R
n
+ the appropriate Hamiltonian is simply

H(x, p) = sup
q

inf
u∈U

{
p · (q −Gu) − 1

2
‖q‖2 +

1

2
‖x‖2

}
=

1

2
‖p‖2 − sup

u∈U
p ·Gu +

1

2
‖x‖2.
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However if some coordinates of x are 0, the Skorokhod dynamics in (1.1) come into play, so

that the Hamiltonian should be

Hπ(x, p) = sup
q

inf
u∈U

{
p · π(x, q −Gu) − 1

2
‖q‖2 +

1

2
‖x‖2

}
.

P. L. Lions [6] considered a class of differential games quite similar to ours, including

Skorokhod dynamics, but for a domain Ω with smooth boundary (so that there is only one

di to consider). He showed in particular that the Hamilton-Jacobi-Isaacs equation can be

formulated in terms of H instead of Hπ, with the Skorokhod dynamics entering only in

the form of viscosity-sense Neumann boundary conditions. For us, the presence of corners

and edges in ∂Ω makes the Skorokhod problem more involved. We will say V (x) (assumed

continuous) is a viscosity solution of −H(x,DV (x)) = 0 with Neumann boundary conditions

−di ·DV (x) = 0, i ∈ I(x) when

min
i∈I(x)

(−H(x, ξ),−di · ξ) ≤ 0 for all ξ ∈ D+
ΩV (x) (2.2)

max
i∈I(x)

(−H(x, ξ),−di · ξ) ≥ 0 for all ξ ∈ D−
ΩV (x). (2.3)

The connection between this and the dynamic programming formulation directly in terms

of Hπ is not simple, but some easy implications are collected in the following theorem.

Theorem 2.1.

a) Suppose V ∈ C1(Ω). Then V is a classical solution of Hπ(x,DV (x)) = 0 in Ω if and

only if it is a viscosity solution of −Hπ(x,DV (x)) = 0 in Ω.

b) If V is a continuous viscosity solution of −Hπ(x,DV (x)) = 0 in Ω, then V is a viscosity

solution of −H(x,DV (x)) = 0 with Neumann boundary conditions −di · DV (x) = 0

for all i ∈ I(x) in Ω.

c) If V ∈ C1(Ω) satisfies H(x,DV (x)) = 0 for all x ∈ Ω and di · DV (x) = 0 for all

x ∈ ∂iΩ, then Hπ(x,DV (x)) = 0 for all x ∈ Ω.

Proof. Part a) is elementary if x in the interior of Ω. For x ∈ ∂∗Ω the key is to recognize

that, for any v ∈ R
n and ξ ∈ D+

ΩV (x), ξ ·π(x, v) ≥ DV (x)·π(x, v). This implies −Hπ(x, ξ) ≤
−Hπ(x,DV (x)). So if V is a classical solution of Hπ(x,DV (x)) = 0 then it is a viscosity

subsolution of −Hπ(x,DV (x)) = 0. Analogous reasoning implies the supersolution property.

The converse follows as usual from the fact that V ∈ C1(Ω) implies that DV (x) belongs to

both D±V (x).

In b), for x in the interior of Ω the two notions of solution coincide, so we consider an

x ∈ ∂∗Ω and ξ ∈ D+
ΩV (x). By hypothesis −Hπ(x, ξ) ≤ 0. We want to show (2.2). We may

suppose that di · ξ ≤ 0 for all i ∈ I(x), else (2.2) is trivial. But then π(x, v) = v +
∑

I(x) βidi

with βi ≥ 0 implies that ξ · π(x, v) ≤ ξ · v. Thus −H(x, ξ) ≤ −Hπ(x, ξ) ≤ 0, which confirms

(2.2). The argument for (2.3) is analogous.

For c), simply notice that di ·DV (x) = 0 implies that DV (x) · π(x, v) = DV (x) · v for all

v ∈ R
n. This implies Hπ(x,DV (x)) = H(x,DV (x)) which is =0 by hypothesis.
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3 Extremals and Boundary Extremals

Suppose now that V is a viscosity solution of −H(x,DV (x) = 0 with Neumann conditions,

as in (2.2) and (2.3) above. For this exposition we assume V ∈ C1(Ω), although there is

no reason to expect that much regularity in general. The constructions of V in previous

work [2, 4] employ a family of extremals x(t), p(t) = DV (x(t)) for which the x(t) cover an

appropriate region Ω, and provide the structure needed to prove a verification theorem for

V (x). In brief, each extremal x(t) should be a system trajectory

ẋ(t) = π(x(t), q∗(t) −Gu∗(t))

for a load, control pair q∗(t), u∗(t) which is a saddle-point in the construction of Hπ(x(t), p(t)):

p · π(x, q∗ −Gu∗) ≤ p · π(x, q∗ −Gu) all u ∈ U (3.4)

p · π(x, q∗ −Gu∗) − 1

2
‖q∗‖2 ≥ p · π(x, q −Gu∗) − 1

2
‖q‖2 all q. (3.5)

Moreover, along x(t), p(t) we require the Hamiltonian equation, Hπ(x, p) = 0, and a positiv-

ity condition, ‖p‖ < ‖x‖ for x �= 0. Finally, all extremals must reach the origin in finite time:

x(T ) = p(T ) = 0, at which time they terminate. By stipulating that T = 0 we consider the

extremals defined on some interval T0 < t ≤ 0. The construction procedure is to solve the

equations which describe extremals backwards in time, starting from x(0) = p(0) = 0, to

identify a family that has all the desired properties.

For x(t) in the interior Ω\∂∗Ω, (3.5) implies q∗(t) = p(t) = DV (x(t)) and one may deduce

the equations of an interior extremal: ẋ = p − Gu∗, ṗ = −x, subject to the optimality

condition of (3.4). We are particularly interested, however, in extremals which move from

the interior to contact a face at a point x0 = x(t0) = ∂iΩ with negative normal velocity

(ei · (p(t0)−Gu∗) < 0) as illustrated, followed by a section (t0 < t) on which the Skorokhod

dynamics become active:

π(x(t), q∗(t) −Gu∗) = R{i}(q∗(t) −Gu∗)

with

ei · (q∗(t) −Gu∗) < 0.

Extremals with active Skorokhod dynamics are what we call boundary

extremals. To explore how this might happen, we make the simplifying

assumption that only a single state coordinate is 0 at the contact point,

I(x0) = {i}, and that u∗ ∈ U is the unique maximizer of p(t0) ·Gu. We

claim that under these assumptions it is necessary that di ·DV (x0) = 0.
Let p0 = DV (x0). The assumption on u∗ implies that it is one of the extreme points of U ,

u∗ ∈ U0, so that for all ‖ξ − p0‖ sufficiently small,

H(x0, ξ) =
1

2
‖ξ‖2 − ξ ·Gu∗ +

1

2
‖x‖2. (3.6)
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Moreover by letting x → x0 through the interior in H(x,DV (x)) = 0 we know that

H(x0, p0) = 0. At the contact point we are assuming ei · (p0 − Gu∗) < 0. Now D±
ΩV (x0) =

{p0 ± cei : c ≥ 0}. Suppose di · p0 < 0. Then for all 0 ≤ c < −di · p0 we will have

ξ = p0 + cei ∈ D+
ΩV (x0) and di · ξ < 0. Thus (2.2) requires that H(x, p0 + cei) ≥ 0 for all

0 ≤ c < −di · p0. Moreover, for c > 0 sufficiently small

H(x, p0 + cei) ≥ 0. (3.7)

Using (3.6) and differentiating with respect to c, it follows that

0 ≤ ei · ∂

∂p
H(x0, p0) = ei · (p0 −Gu∗),

contrary to our hypothesis. Supposing di · p0 > 0 leads to a contradiction with the superso-

lution property (2.3) in a similar way. Thus if 0 > ei · (p0 −Gu∗) we are forced to conclude

that di · p0 = di ·DV (x0) = 0.

Next consider what di · DV (x) = 0 on a face ∂iΩ would mean for the equations which

describe boundary extremals. For F = {i} the reflection matrix is simply R{i} = I− 1
ei·di

die
T
i

(di and ei viewed as columns). It follows from this that

DV (x) = RT
{i}DV (x), x ∈ ∂iΩ. (3.8)

In particular along a boundary extremal in this face, p(t) = RT
{i}p(t). As in Theorem 2.1 c),

this implies that p(t) · π(x(t), v) = p(t) · v for all v, from which it follows that Hπ(x, p) =

H(x, p) and q∗(t) = DV (x(t)) = p(t). The x-equation for a boundary extremal is therefore

ẋ = R{i}(p−Gu∗).
To derive the p-equation, differentiate H(x,RT

{i}DV (x)) = 0 with respect to xj, j �= i

(which are tangential to the face ∂iΩ). After a little algebra, this leads to the conclusion

that ṗj agress with the j-component of −RT
{i}x, for all j �= i. On the other hand we know

ṗ = RT
{i}ṗ, and the right side does not depend on ṗi, because RT

{i}ei = 0. Thus we find the

following equations characterizing boundary extremals on ∂iΩ:

ẋ = R{i}(p−Gu∗), ṗ = −RT
{i}x, (3.9)

with the additional side condition ei · (p − Gu∗) ≤ 0 to insure validity of the Skorokhod

projection (i.e. that F = {i} is correct in the complementarity problem).

We should emphasize that we made some strong assumptions in the above discussion,

namely that V ∈ C1(Ω) and that there was a unique maximizer of DV (x) ·Gu over u ∈ U .

However what we have derived at least gives us an idea of what to look for in simple examples,

such as that of the next section. Also, while our discussion is far from exhaustive, what we

have found under these hypotheses is that an extremal which (in forward time) contacts a face

∂iΩ from the interior and then follows a boundary extremal is associated with V satisfying

the Neumann boundary condition di · DV (x) = 0 in the classical sense. In contrast, the

examples of [4] and [2, §4] exhibit extremals which move in the opposite direction, from ∂iΩ

into the interior, and there Neumann condition was only satisfied in the viscosity sense, not

classically.
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4 An Example in 2 Dimensions

Consider the following elementary example:

G =

[
2 1/2

1 2

]
, d1 =

[
1

−1

]
, d1 =

[
0

1

]
,

with U0 = {e1, e2}. This example is artificial – in a real network the reflection directions

di should agree with the basic service options Gei, i.e. the columns of G. That is not the

case here. However the example does involve boundary extremals in an essential way. We

consider it for that reason.
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0
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0.4

0.6

0.8

x2

0

0.05

0.1

0.15

0.2

VA

BCDE

0.5

1

Figure 1: V (x) and extremals for the example

The behavior on the boundary ∂1Ω (the x2-axis) is particularly interesting. There are

two possible solutions of the boundary extremal equations (3.9) with i = 1 and terminal

conditions x(0) = p(0) = 0: one each for u∗ = e1, e2. One might anticipate that since −Ge2

has a stronger vertical component than −Ge1, that u∗ = e2 ought to be the optimal control

in this region. However when one calculates the boundary extremal for u∗ = e2 it turns out

that the optimality requirement (3.4) fails. On the other hand, the boundary extremal using

u∗ = e1,

x(1)(t) = (0,
−3

2
√

2
sin(

√
2t)), p(1)(t) =

3

2
(1 − cos(

√
2t)(1, 1), 2

√
2 < t ≤ 0

does satisfy all the necessary conditions. On the boundary ∂2Ω we again find that only the

boundary extremal using u∗ = Ge1 satisfies all the necessary conditions:

x(2)(t) = (−2 sin(t), 0), p(2)(t) = (2(1 − cos(t), 1), −π/2 < t ≤ 0.
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With these two boundary extremals x(1) and x(2) as a beginning, one must construct the

rest of a family of saddle-point extremals satisfying all the necessary conditions in some region

Ω of R
2
+. A plot of the resulting value function V (x) along a selection of the extremals of the

family is in Figure 1. The extremals in sectors A, B, and E are those along which u∗ = e1

is optimal, while u∗ = e2 is optimal in sectors D and C . In sectors A and E the extremals

run to one of the two boundaries and then follow the boundary extremal x(1) or x(2) to the

origin. Thus in both these regions the resulting value V (x) is dependent on the boundary

extremals x(i). Sector D is particularly interesting. As one follows the u∗ = e1 extremals E

backwards from the boundary into the interior, the optimality condition (3.4) begins to fail

at some point, and one must switch to u∗ = e2 to continue in D. The curve along at which

this control switching occurs is the boundary between sectors E and D. The extremals in

sectors B and C follow the pattern of [2], joining along a relaxed extremal with u∗ = ( 5
13
, 8

13
)

to reach the origin.

The region shown in the figure is Ω = {2x1 + 3x2 < 2.64575}. In this region all the ingre-

dients of a simple verification theorem can be established from the extremal constructions

described above: the associated V (x) is a C1 (classical) solution of Hπ(x,DV (x)) = 0 in Ω,

and is the value function of the game described in §1. The optimal control policy is to use

u∗ = e1 when the state x is in the sectors A, B, or E of the figure; and to use u∗ = e2 when

x is in C or D.
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