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Abstract

The category of affine connection control systems is one whose objects are control affine

systems whose drift vector field is the geodesic spray of an affine connection, and whose control

vector fields are vertical lifts to the tangent bundle of vector fields on configuration space. This

class of system includes a large and important collection of mechanical systems. The morphisms

(feedback transformations) in this category are investigated.

1 Introduction

It is apparent that the study of what we will in this paper call “affine connection control systems” has

a significant rôle to play in the field of mechanical control systems. In a series of papers, e.g., [10, 3],

the author and various coauthors have shown how the affine connection framework is useful in

looking at mechanical systems whose Lagrangian is the kinetic energy with respect to a Riemannian

metric, possibly in the presence of constraints linear in velocity [9, 4]. In such an investigation,

there appears to be no particular advantage to working with affine connections that come from

physics, i.e., from the Riemannian metric and the constraints. Therefore, in this paper we deal

with general affine connections. The emphasis here is on the groundwork for the investigation of

ways in which one can simplify or alter affine connection control systems using feedback. To do

so, we use the language of category theory, since it provides a valuable organisational structure in

which many ideas surrounding feedback can be discussed in a systematic manner. More results

along the lines of what we present in this paper may be found in [8]. The approach we use is

strongly motivated by the approach of Elkin [5] for control affine systems.

Due to limitations of space, none of the stated results are given proofs, although these, along

with many additional results, are available in an unpublished version of this paper.

2 Background

First let us introduce the basic notation. If M is a smooth manifold we denote by C∞(M) the C∞

functions on M and by Γ∞(TM) the C∞ vector fields on M . For a map φ : M → N of manifolds

M and N , we denote by Tφ : TM → TN the derivative of φ, and by Txφ : TxM → Tφ(x)N the

restriction of Tφ. If c : I → M is a curve and if φ : M → N is a smooth map, cφ : I → N is the

curve defined by cφ = φ ◦ c.

2.1 Affine differential geometry

Due to space limitations, we do not review basic affine differential geometry, but assume the reader

is familiar with the material in, say, volume 1 of Kobayashi and Nomizu [7]. For mechanical

motivation for the use of affine connections, we refer to those papers cited in the introduction. We

should, however, provide the notation we shall use. An affine connection on a manifold Q is denoted

∇, so ∇XY is the covariant derivative of Y with respect to X. By Z we denote the geodesic spray,

which is a second-order vector field on TQ whose integral curves, projected to Q, are geodesics for

∇.
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Given manifolds Q and Q̃ with affine connections ∇ and ∇̃, respectively, a map φ : Q → Q̃ is

totally geodesic if Tqφ(∇XX)q = (∇̃X̃X̃)φ(q), where X̃ is a vector field on Q̃ that is φ-related to

X. Clearly a totally geodesic mapping has the property that it maps geodesics of ∇ to geodesics

of ∇̃. A submanifold N ⊂ Q is totally geodesic if for a geodesic c : I → Q, c′(t0) ∈ Tc(t0)N for

some t0 ∈ I implies that c
′(t) ∈ Tc(t)N for every t ∈ I.

2.2 The category of control affine systems

What we shall call “affine connection control systems” are examples of a commonly studied class of

control systems: those which are affine in their controls. A clear discussion of this class of systems

from a category theory perspective may be found in [5]. It is an unfortunate clash of common

notation that we will use the word “affine” in two rather different contexts here; in one case we

mean the general class of control systems affine in the controls, and in the other we means those

specific systems whose drift vector field is the geodesic spray of an affine connection.

An object in the category CAS of control affine systems is a pair Σ = (M,F) where M is

a finite-dimensional smooth differentiable manifold, and F is a finite collection of vector fields

F = {f0, f1, . . . , fm}. Associated with an object Σ = (M,F) in CAS is a control affine system

ẋ(t) = f0(x(t)) + u
a(t)fa(x(t)). (2.1)

In this equation we employ a summation convention where there is an implied summation over

repeated indices.

As is always the case with a category, we need to specify its morphisms. We suppose that we have

two objects Σ = (M,F) and Σ̃ = (M̃ , F̃) where F̃ = {f̃0, f̃1, . . . , f̃m̃}. We let L(R
m,Rm̃) denote the

set of linear maps from Rm to Rm̃. A CAS morphism sending Σ to Σ̃ is a triple (ψ, λ0,Λ) where

ψ : M → N is a smooth mapping, and λ0 : M → R
m̃ and Λ: M → L(Rm,Rm̃) are smooth mappings

satisfying Txψ(fa(x)) = Λ
α
a (x)f̃α(ψ(x)), a = 1, . . . ,m, and Txψ(f0(x)) = f̃0(ψ(x))+λ

α
0 (x)f̃α(ψ(x)).

An essential feature of this class of morphisms is that there is a morphism (ψ, λ0,Λ) from Σ = (M,F)

to Σ̃ = (M̃, F̃) if and only if ψ maps trajectories for Σ to Σ̃. This is said precisely for affine

connection control systems in [8].

3 The category of affine connection control systems

Now we can properly discuss the actual subject of the paper. What we consider in this section is

a special class of control affine systems. We begin with a discussion of the objects in this category,

and note that it is precisely the systems described here that form the basis for the work of the

author and coauthors on “simple mechanical control systems (with constraints).”

3.1 Objects in ACCS

We shall denote by ACCS the category of affine connection control systems. An object in

this category is a triple Σaff = (Q,∇,Y) where Q is a finite-dimensional manifold, ∇ is an affine

connection on Q, and Y = {Y1, . . . , Ym} is a collection of vector fields on Q. If U ⊂ Q is an open

submanifold, we may define the restricted object Σaff |U = (U,∇|U,Y|U).

To an affine connection control system Σaff = (Q,∇,Y) we associate a control system given by

∇c′(t)c
′(t) = ua(t)Ya(c(t)). (3.2)

A controlled trajectory for Σaff = (Q,∇,Y) is a pair (c, u) with c : I → Q having the property

that its derivative t 7→ c′(t) is an absolutely continuous curve on TQ, and u : I → R
m is an

admissible control (say measurable) such that together c and u satisfy (3.2).
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The above manner of representing a control system associated with a triple (Q,∇,Y) emphasises

that the system essentially evolves on the configuration manifold Q. However, since the equa-

tions (3.2) are second-order, one may also think of them as a first-order system on TQ, and so as a

control affine system. Let us see what this control affine system looks like. First of all, let us state

that the object in CAS will have the form (TQ,F). That is, its state space is the tangent bundle

TQ. The vector field f0 is defined to be the geodesic spray Z corresponding to the affine connection

∇. We also need to regard the vector fields Y1, . . . , Ym as vector fields on TQ in the appropriate

manner. To do this, given a vector field X on Q, define the vertical lift of X to be the vector field

verlift(X) on TQ defined by verlift(X)(vq) =
d
dt

∣

∣

∣

∣

t=0

(vq + tX(q)), where vq ∈ TqM . In coordinates,

if X = X i ∂
∂qi
, we have verlift(X) = X i ∂

∂vi
. We then define fa = verlift(Ya), a = 1, . . . ,m. Thus,

to an affine connection control system Σaff = (Q,∇, {Y1, . . . , Ym}) we associate the control affine

system Σ = (TQ, {Z, verlift(Y1), . . . , verlift(Ym)}). The associated first-order control affine system

on TQ is then

v̇(t) = Z(v(t)) + ua(t)verlift(Ya(v(t))).

3.2 Morphisms in ACCS

Now let us look at morphisms in the category ACCS. Thus we need to specify a way to send an affine

connection control system to another affine connection control system. We consider morphisms that

are special forms of morphisms in CAS. This is sensible since, as we noted in the previous section,

we may think of ACCS as a subcategory of the category CAS. We let Σ2(TQ) denote the bundle

of symmetric (0, 2) tensors on Q, and we denote by RmQ the trivial vector bundle Q× R
m over Q.

If S is a section of RmQ ⊗ Σ2(TQ), then for a = 1, . . . ,m, we define a section S
a of Σ2(TQ) by

Sa(X,Y ) = S(ea ⊗ (X,Y )), where ea is the ath standard basis vector for (Rm)∗.

We consider affine connection control systems denoted Σaff = (Q,∇,Y) and Σ̃aff = (Q̃, ∇̃, Ỹ)

with Y = {Y1, . . . , Ym} and Ỹ = {Ỹ1, . . . , Ỹm̃}. Recall our notation that if c is a curve on Q and

φ : Q→ Q̃ is a smooth map, we let cφ be the curve on Q̃ given by cφ = φ◦ c. An ACCS morphism

sending Σaff to Σ̃aff is a triple (φ, S,Λ) with the following properties:

1. φ : Q→ Q̃ is a smooth mapping;

2. S is a smooth section of Rm̃Q⊗Σ2(TQ) and Λ: Q→ L(Rm,Rm̃) is a smooth map that together

satisfy the following conditions:

(a) Tqφ(Ya(q)) = Λ
α
a (q)Ỹα(φ(q));

(b) Tqφ(∇XX)q = (∇̃X̃X̃)φ(q)+S
α(X(q), X(q))Ỹα(φ(q)) where X̃ is a vector field on Q̃ that

is φ-related to the vector field X on Q.

If Λ(q) is an isomorphism for each q ∈ Q then the ACCS morphism (φ, S,Λ) is called control

nondegenerate . If

Tqφ(spanR{Y1(q), . . . , Ym(q)}) = spanR{Ỹ1(φ(q)), . . . , Ỹm̃(φ(q))}

for all q ∈ Q, the ACCS morphism (φ, S,Λ) is called complete .

Let us look at what are isomorphisms in this category. Let Σaff = (Q,∇,Y) and Σ̃aff = (Q̃, ∇̃, Ỹ)

be two affine connection control systems, and suppose that (φ, S,Λ) sends Σaff to Σ̃aff . We say that

(φ, S,Λ) is an isomorphism of Σaff and Σ̃aff if φ : Q→ Q̃ is a diffeomorphism and if φ−1 has the

property that for every controlled trajectory (c̃, ũ) of Σ̃aff , there exists an admissible input u for
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Σaff so that (c̃φ−1 , u) is a controlled trajectory of Σaff . Given two affine connection control systems

Σaff = (U,∇,Y) and Σ̃aff = (Ũ , ∇̃, Ỹ), we say that they are locally equivalent by (φ, S,Λ)

if for each q ∈ Q there exists a neighbourhood U of q and a neighbourhood Ũ of φ(q) so that

(φ|U, S|U,Λ|U) is an isomorphism from Σaff |U to Σ̃aff |Ũ . Given an affine connection control system

Σaff , one is often interested in what types of affine connection control systems are locally equivalent

to Σaff . Indeed, this is one of the basic problems that we hope to be able to address with our

approach.

3.3 Properties of ACCS morphisms

We first note that in [8] it is proved that if (φ, S,Λ) is an ACCS morphism then φ maps controlled

trajectories to controlled trajectories, and that conversely, if a map φ : Q → Q̃ has this property,

then it forms part of an ACCS morphism. Since we can think of ACCS as a subcategory of CAS,

it follows that ACCS morphisms can be realised as CAS morphisms. This is easy to do, and the

following result states the resulting correspondence.

Proposition 3.1 Let Σaff = (Q,∇,Y) and Σ̃aff = (Q̃, ∇̃, Ỹ) be affine connection control systems

with Σ = (TQ,F) and Σ̃ = (T Q̃, F̃) the corresponding control affine systems. If (φ, S,Λ) is an

ACCS morphism sending Σaff to Σ̃aff , then (ψ, λ0,Λ
′) is a CAS morphism sending Σ to Σ̃ where

ψ = Tφ, λα0 (vq) = S
α(vq, vq), and Λ

′(vq) = Λ(q).

The converse question here is not so clear. That is, if one has a CASmorphism (ψ, λ0,Λ
′) sending an

object in ACCS ⊂ CAS to another object in ACCS ⊂ CAS, is it necessarily the case that (ψ, λ0,Λ
′)

is derived from an ACCS morphism as described in Proposition 3.1? The following example answers

the question in the negative.

Example 3.2 We take Q = Q̃ = R2, ∇ and ∇̃ to be the canonical flat connection on R2, and

Y1 = Ỹ1 = (1, 0). Thus we have defined two identical single-input affine connection control systems,

Σaff = (Q,∇, {Y1}) and Σ̃aff = (Q̃, ∇̃, {Ỹ1}). One may then check that the triple (ψ, λ0,Λ
′) is a

CAS morphism sending Σ to Σ̃ when ψ is defined by ψ(x, y, u, v) = (x, y + v, u, v), λ0 = 0, and

Λ′ = 1. However, we note that ψ is not a bundle mapping, and so in particular cannot be of the

form ψ = Tφ for some mapping φ : Q→ Q̃. Therefore, there is no ACCS morphism that gives rise

to the CAS morphism (ψ, λ0,Λ
′) in the manner described in Proposition 3.1. �

Thus ACCS morphisms are indeed a smaller class than are CAS morphisms. This is important

because it tells us that the classification problem in ACCS will not be contained as a subset of the

classification problem in CAS, since the former has more structure. Let us provide an instance of

this additional structure.

Proposition 3.3 Let Σaff = (Q,∇,Y) and Σ̃aff = (Q̃, ∇̃, Ỹ) be affine connection control systems.

Suppose that (φ, S,Λ) is an ACCS morphism that maps Σ to Σ̃aff , and that Λ(q) ∈ L(Rm,Rm̃)

is an epimorphism for each q ∈ Q with right inverse denoted by Θ(q). On Q define an affine

connection ∇ by (∇XY )q = (∇XY )q −S
α(X(q), Y (q))Θaα(q)Ya(φ(q)). Then φ : Q→ Q̃ is a totally

geodesic mapping between ∇ and ∇̃. Furthermore, there exists an ACCS isomorphism from Σaff to

Σaff = (Q,∇,Y).

3.4 Compositions and decompositions of ACCS morphisms

We now wish to determine conditions under which a morphism in ACCS can be written as a

product of two simpler ACCS morphisms. If Σaff,1 = (Q
1,∇1,Y1), Σaff,2 = (Q

2,∇2,Y2), and

Σaff,3 = (Q
3,∇3,Y3) are affine connection control systems, and (φ1, S1,Λ1) and (φ2, S2,Λ2) are
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ACCS morphisms sending Σaff,1 to Σaff ,2 and Σaff,2 to Σaff ,3, respectively, then one verifies that

their composition is the ACCS morphism (φ21, S21,Λ21) defined by φ21 = φ2 ◦φ1, S
σ
21(X(q), Y (q)) =

Sσ2 (Tqφ1(X(q)), Tqφ1(Y (q)))+S
α
1 (X(q), Y (q))(Λ2)

σ
α(φ1(q)), and (Λ21)

σ
a(q) = (Λ1)

σ
α(q)(Λ2)

α
a (φ1(q)).

Now let us define the special classes of ACCS morphisms one may consider. An ACCS morphism

(φ, S,Λ) that maps Σaff = (Q,∇,Y) to Σ̃aff = (Q̃, ∇̃, Ỹ) is a morphism over controls if Q ⊂ Q̃

and if φ : Q → Q̃ is the inclusion map. The category whose objects are affine connection control

systems and whose morphisms are ACCS morphisms that are morphisms over controls we denote by

CACCS. The idea is that a morphism over controls does essentially nothing to the system’s states,

and alters only the controls. Moreover, a morphism over controls is an algebraic operation since

one only alters the controls by a map that is affine in control. It is CACCS morphisms that one

will naturally use in practice when simplifying the equations. Often their application is given the

name “partial feedback linearisation.”

An ACCS morphism (φ, S,Λ) is a morphism over configurations if Sq = 0 and Λ(q) = idRm

for each q ∈ Q. We denote by QACCS the category whose objects are affine connection control

systems and whose morphisms are ACCS morphisms that are morphisms over configurations. The

idea here is that one leaves the controls alone, and alters only the configuration spaces.

Let us give a list of results that concern the various types of morphisms and decompositions of

given morphisms into products of the simpler types. The idea in all cases is that one can in many

cases reduce the problem of finding a desired ACCS morphism into first one of a CACCS and a

QACCS morphism, followed by the other.

Proposition 3.4 A triple (φ, S,Λ) is a QACCS morphism mapping Σaff = (Q,∇,Y) to Σ̃aff =

(Q̃, ∇̃, Ỹ) if and only if the following two conditions hold:

1. φ : Q→ Q̃ is a totally geodesic mapping between ∇ and ∇̃;

2. each control vector field Ỹa on Q̃ is φ-related to the control vector field Ya on Q.

Proposition 3.5 A control nondegenerate ACCS morphism (φ, S,Λ) is a composition of a CACCS

isomorphism with a QACCS morphism.

Proposition 3.6 An ACCS isomorphism (φ, S,Λ) is a composition of a QACCS isomorphism with

a CACCS isomorphism.

Proposition 3.7 Let Σaff = (Q,∇,Y) and Σ̃aff = (Q̃, ∇̃, Ỹ) be affine connection control sys-

tems, and suppose that (φ, S,Λ) is a complete ACCS morphism and that m = m̃. Then for each

q ∈ Q there is a neighbourhood U of q and a neighbourhood Ũ of φ(q) so that the morphism

(φ|U, S|U,Λ|U) from Σaff |U to Σ̃aff |Ũ is the composition of a CACCS isomorphism and a QACCS

morphism.

4 Future directions

The preceding discussion of the category ACCS and its morphisms is only cursory. There is some

more that has been done, and much that needs to be done to fully exploit the way of thinking

presented here. Let us outline some of this.

Restricted systems, etc. The idea of a “subsystem” or “restricted system” is that the controlled

dynamics of a subsystem can be contained in that of the full system. The author has presented some

of the basic results concerning subsystems and restrictions in ACCS [8]. Such systems will naturally

arise, for example, in studies of controllability properties of affine connection control systems.
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Factor systems The notion of a factor system comes up in any setting where there is a natural

quotient operation. In mechanics, this happens frequently since a mechanical system often possesses

a symmetry group which acts by affine transformations on the system’s configuration space. At

present, the bearing of such structure on a general affine connection is poorly understood. The

control theoretic setting for factor systems may provide a suitable context in which to confront this

gap in our understanding of affine differential geometry. Preliminary results are given in [8].

Local equivalence The problem of local equivalence in ACCS is likely to be a difficult one.

However, the success of methods motivated by the category theory approach [5] gives some hope

that significant progress may be possible. There are already some ad hoc approaches to this problem

in the presence of additional structure. Indeed, the “kinetic shaping” techniques of [2] (see also [6])

may be seen as providing local equivalence to a desired form of the closed-loop system, remaining

in the setting of the Levi-Civita connection. In coming to grips with the local equivalence problem,

one will have to understand how the local invariants of an affine connection interact with the control

vector fields Y. As an instance of how the challenges here surpass those of local equivalence in CAS,

we make the following observation. As a system in CAS, the input distribution of an ACCS system

is involutive (vertically lifted vector fields always commute). However, in CAS, the classification

problem for systems with involutive input distributions is known [5, Theorem 3.3]. However, none

of the representatives of the possible equivalence classes in [5] are ACCS systems!
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