
A High-Speed Processing LSI for RSA Cryptograms

using High-Radix Signed-Digit Numbers and

a new algorithm of modulo operation

Yoshinori Fujisawa Yasushi Fuwa

Nagano National College of Technology Shinshu University

Nagano-shi Tokuma 716 Nagano-shi Wakasato 4-17-1

Nagano-ken 381-8553 JAPAN Nagano-ken 380-8553 JAPAN

Abstract

In this work, we developed a high speed LSI for encoding and decoding the RSA

cryptogram and describe the processing method in this paper. This cryptogram is used

not only for encrypting data, but also for such purposes as authentication. However,

the RSA encoding and decoding processes take a long time because they require a

great deal of calculations. As a result, this cryptogram is not suited for practical use.

In order to make a high-speed processing method, we introduce the following ideas: 1.

To reduce the number of summation operations, we increase the number of coding bits

used to represent a digit. 2. We propose a high-speed addition operation for handling

the case in which each digit has a large number of bits. 3. We guarantee the value of

modulo operations by determining the possible range and create parallel subtraction

circuits as a result. By applying these concepts, we are able to reduce processing times

comparing to the previous methods. We also developed the LSI to realize our proposed

algorithm.

1 Introduction

Recently, the development of computer technology is progressing very quickly and the

polarization of the Internet is spreading in general. Various cash transactions using the

Internet have begun. On the other hand, computer crimes of illegal access, spoofs, and so on

have been increasing for a few years. The popularization of cash transactions is disrupted

by these crimes. The cryptosystem is one of the means to cope with these crimes.

There are public-key and secret-key cryptograms in a cryptosystem. The public-key cryp-

tograms have drawn attention compared with secret-key cryptograms because in addition to

the encoding and decoding functions, they can also be used in authentication applications.

However, in a public-key cryptogram, the encryption and decryption take a long time

because they require a great deal of calculations making it unsuitable for practical use. On

the other hand, the number of coding bits used to represent an encryption and decryption

key has a tendency to increase when improving crypto-strength. As a result, the problem of

increasing encryption time is taken seriously.

1



In this work, we developed the high speed LSI processing for public-key cryptogram. When

both encryption and decryption are executed in a public-key cryptogram it is necessary to

calculate powers and remainders with large numbers. These calculations can be realized

by repeated additions and subtractions. So, reducing the number of repetitions is signifi-

cant in improving the speed of processing time. Until now, many scholars researched speed

improvement methods for public-key cryptograms[2] and a number of researchers have devel-

oped some hardware for encryption and decryption processes using these results. However,

a feasible processing speed has not yet been attained. It is necessary to create a faster

implementation for public-key cryptograms to be used more popularly.

In this paper, we propose a new method of high-speed encryption and decryption for the

public-key cryptogram. This method is considered on the basis of three ideas as follows:

1. To reduce the number of summation operations, we increase the number of coding bits

used to represent a digit.

2. We propose a high-speed addition processing method in the case that the number of

coding bits used to represent each digit is large.

3. We guarantee the value of remainders to be within a constant range. Using this result,

we can realize parallel subtraction processes.

We can achieve higher speeds of encryption and decryption processing than in previous

works with these ideas.

In Section 2, we explain our target public-key cryptogram. Next, we propose new high-

speed encryption and decryption processing methods. In Section 5, we introduce our high

speed LSI processing for the RSA cryptogram. Finally, we evaluate our proposal against

previous methods.

2 Outline of RSA Cryptosystem

Among the various public-key cryptograms, the RSA cryptosystem[3], [7], [8], [9] in-

vented by Rivest, Shamir and Adleman in 1977 is considered the most powerful. In this

cryptosystem, the encryption key is a pair (e, F ) and the decryption key is a pair (d, F )

where component e is called a public key and d is called a private key.

Let the plain text be M and the cipher text be C. Then the RSA encryption and decryption

algorithms are given by

Encryption : C = M e mod F. (2.1)

Decryption : M = Cd mod F. (2.2)

where the range of M and C is between 0 and F -1. In (2.1) and (2.2), the keys e, d and F

are determined as follows:

2



1. Choose two large prime numbers p and q.

2. Calculate F = p× q.

3. Calculate L = LCM((p− 1), (q − 1)).

4. Choose e that satisfies the following two conditions, GCD(L, e) = 1 and (1 < e < L).

5. Calculate d which satisfies the following condition, e× d mod L = 1.

The security of an RSA cryptosystem depends on the complexity of calculation in factor-

izing F into p and q. Consequently, the value of F is increased for improving the safety.

The inventors of the RSA cryptosystem recommend selecting p and q as having more than

100 digits in decimal representation. Therefore, the factorized F is more than 200 digits in

decimal representation. On the other hand, the complexity of calculation for encryption and

decryption is also increased for a larger F , so the processing time becomes longer.

In an RSA cryptosystem, the algorithm of encryption and decryption uses the same algo-

rithm as (2.1) and (2.2). In this paper, we propose a high-speed processing algorithm for

encryption. However, the algorithm can also be used for decryption.

3 Proposed Processing Algorithm

In the most powerful processing method[2] among previously developed methods, a radix-

4 signed-digit (SD) system is used. Propagations of carry and borrow do not occur in this

system.

A radix-4 SD number system[1] is a representation method of numbers proposed by A.

Avizienis. In a radix-4 SD number representation, the signs of each digit are in symmetry.

For instance, an integer X is represented by a radix-4 SD number of n digits as follows:

X = xn−1 × 4n−1 + xn−2 × 4n−2 + · · ·

· · ·+ x1 × 41 + x0 × 40

=
n−1∑

i=0

xi × 4i. (xi ∈ {3̄, 2̄, 1̄, 0, 1, 2, 3}, x̄ = −x)

Here, X is between −4n + 1 and 4n − 1.

However, the value of e, F requires more than 1,000 bits in an RSA cryptosystem. So, the

problem is processing time. Because it is assumed that (2.1) is calculated using a radix-4 SD

system, the number of additions is more than 1.5 million times. In this section, we introduce

a new processing method to further reduce the number of addition operation. This method

is based on the following ideas.

1. To reduce the number of repetitions, let us consider using a higher radix SD number

than a radix-4 or radix-8 SD number. We adopt a general radix-2k SD number for the

new algorithm.

3



2. We design an algorithm that decreases the number of additions using a radix-2k SD

number.

3. Using 2, the number of repetitions becomes larger in the remainder algorithm because

the range for the value of R is extended. Therefore, we have to reconsider its algorithm.

Also, we introduce a new function (G(d,k)) that is considered to be a function of the

number of digits of F (d) and k. As a result, we can obtain the number of additions from

this function. We discuss this function in Section 4.

3.1 General addition of radix-2k SD numbers

Until now, there were many proposals for algorithms to be used in addition (or subtrac-

tion) circuits using not only radix-4 SD numbers but also radix-8 SD numbers. Addition

using an SD number system has the property that the carry propagation of each digit is

always constant in both radix-4 and radix-8 SD number cases. Therefore, there have been

no reports of speed improvement for addition circuits using a high radix SD number system.

However, increasing the number of coding bits used to represent a digit has a vital role

in our work in reducing the number of addition repetitions. We designate the number of

coding bits used to represent a digit by k. Also, the correctness of addition using a radix-2k

SD number system needs to be clarified. This is discussed in our paper[4].

3.2 Proof of proposed algorithms

There is a discussion about the correctness of our proposed algorithms using radix-2k SD

numbers in our paper [5],[6]. Here, we explain our paper briefly.

Assume that the encryption key e is represented by a radix-2k SD number (em−1 · · · e0)SD

such that e =
∑m−1

i=0
ei × (2k)i. Then (2.1) can be calculated by the following definition and

theorem.

Definition 3.1. For all Ti such that Ti = M ei modF

Pow(M, e, F, k)0 = Tm−1

Pow(M, e, F, k)i+1 = (((Pow(M, e, F, k)i)
2k

mod F )× Tm−i−1 mod F

The following theorem can be deduced.

Theorem 3.1. Pow(M, e, F, k)m−1 = M e mod F

Eq.(2.1) is calculated by following algorithm and its correctness is guranteed by definition

3.1 and theorem 3.1.

Algorithm 3.1.

4



Step 1 : C ← 1

Step 2 : i ← m− 1

Step 3 : j ← k

Step 4 : Q ← C

P ← Q× C mod F

C ← P

j ← j − 1

Step 5 : If j 6= 0, then go to Step 4.

Step 6 : If ei 6= 0, then

Q ← M ei mod F

P ← Q× C mod F

C ← P

Step 7 : If i 6= 0, then i← i− 1

go to Step 3.

Step 8 : If C < 0, then C ← C + F .

In Algorithm 3.1, M ei mod F is calculated in Step 6. But, it is assumed that M 2 mod F ∼

M2k
−1 mod F is calculated in advance. In this algorithm, the calculation of the following

expression needs a long processing time:

P = Q× C mod F. (3.3)

Equation(3.3) can be calculated by the following algorithm. Assume that C is represented

by a radix-2k SD number (cm−1 · · · e0)SD such that C =
∑m−1

j=0
cj × (2k)i.

Definition 3.2. For all Uj such that Uj = (Q× cj) modF

Mul(Q, c, F, k)0 = Um−1

Mul(Q, c, F, k)j+1 = ((2k ×Mul(Q, c, F, k)j) + Um−j−1 mod F

The following theorem can be deduced.

Theorem 3.2. Mul(Q, c, F, k)m−1 = (Q× C) mod F

Eq.(3.3) is calculated by following algorithm and its correctness is guranteed by definition

3.2 and theorem 3.2.

Algorithm 3.2.

5



Step 1 : P ← 0

J ← n

G ← 1

Step 2 : J ← J − 1

Step 3 : G ← Q× cJ mod F

Step 4 : R ← 2k × P + G

Step 5 : P ← R mod F

Step 6 : If J = 0, then stop.

Otherwise, go to Step 2.

In Algorithm 3.2, it is assumed that Q× cJ mod F (cJ = −2k + 1 ∼ 2k − 1) is calculated

in advance.

The number of repetitions can be reduced in Algorithms 3.1, 3.2 if the value of k is increased

because the number of repetitions m depends on radix number 2k. If the value of k increases,

then the value of m decreases.

3.3 Calculation for Remainder

In this section, we introduce two methods for calculating remainder results.

3.3.1 Calculation using parallel processes

In the first algorithm proposed for calculating remainders, the range of values for R

becomes wide in Step 4 of Algorithm 3.2. This is a problem since the number of repetitions

increases for obtaining the value of R mod F . To solve this problem, we introduce a new

calculation method of R mod F .

The value of R is within the range of 0 and (2k + 1) × F in Algorithm 3.2. 2i × F

(i = 1, 2 · · · , k) can be calculated in advance because the value of F is fixed. So, R mod F

can be calculated by the circuit in Fig.1.

The addition processing time does not depend on the number of digits and the number of

coding bits in a radix-2k SD number representation. Then, it can be assumed that the total

processing time is the same as that for obtaining the value of one R mod F calculation.

3.3.2 Sequential calculation

The previous algorithm needs many addition circuits and it is difficult to realize it in

a LSI because of its limited gates. So, we propose another algorithm for remainders using

only one addition circuit. This algorithm uses a fact that the value of R is within the range

of 0 and (2k − 1) × F . When the operation of subtract F from R using addition circuit is

repeated until the result is smaller than F , the maximum number of subtractions is 2k − 1.

To reduce the number of subtractions, we use a binary search technique and obtain the

following algorithm.

6



Figure 1: Block diagram for the calculation circuit of R mod F .

Algorithm 3.3.

Step 1 : n ← 2k

Step 2 : t ← R− n× F

Step 3 : If t > 0, then R← t.

Step 4 : If n = 1, then stop.

Otherwise, k ← k − 1

go to Step 2.

In Algorithm 3.3, n × F (n = 2k, 2k−1, · · · , 21, 20) is calculated. However, this calculation

needs almost no processing time because this can be realized by bit shifts. Then, the result

of remainder calculations can be obtained by k addition.

4 Evaluation

In this section, we evaluate our proposed processing method. As a method of evaluating

the processing time, we compare the number of additions (subtraction is considered as the

same process) in a previous algorithm with the proposed algorithm. We compare the cases

of coding bit lengths of keys being 512 bits. In the case of the previous algorithm, the

coding bit length of each digit is fixed. The number of additions is not constant because the

calculation of remainders depends on the bit pattern used. So, we used the average number

of additions in the previous algorithm for comparison. In the case of our proposed algorithm,

the number of additions depends on the value of k. So, we discuss the optimum bit lengths

for k (function G(d,k)). Also, we use the worst value of the key because the number of

additions depends on the coding bit pattern of the key used.

Assume that e is L bits. Then, the number of repetitions of (3.3) is [L/k] ([M] is the

smallest integer greater than M) in Algorithm 3.1. Here, assume that [L/k] is the number

of digits d. In one repetition, (3.3) is calculated k times in Step 4 and 1 time in Step 6. It

7



is necessary to calculate the values of M 2 mod F , M3 mod F , ... , M2k
−1 mod F in advance

before the execution of Algorithm 3.1. These expressions can be calculated 2k − 1 times in

the same way as (3.3). As a result, (3.3) is calculated a total d× (k + 1) + 2k − 1 times.

Eq.(3.3) can be calculated using Algorithm 3.2. In this algorithm, Q × cJ mod F (cJ =

−2k + 1 ∼ 2k − 1, expect for the cases of cJ = −1, 0, 1) is calculated before execution. In

the cases of cJ = 2 ∼ 2k − 1, the number of addition repetitions is 2k − 2 times. Assume

that Q, C and F are L bits constantly in Algorithm 3.2. Then, the number of digits n is

represented by d digits. So, 2k × P + G in Step 4 and R mod F in Step 5 are calculated d

times for each calculation.

In the case of first remainder method in Section 3.3.1, R mod F can be realized by a parallel

processing circuit. In this circuit, processing time is equivalent to one addition processing

time. To calculate (3.3), addition is executed 2k − 2 + 2 × d times. Also, it is necessary to

calculate −2× F ∼ −2k × F in advance before using the parallel processing circuit. These

results can be obtained by addition processing of 2k − 2 times before (2.1) and (2.2) are

calculated. So, we can obtain the number of additions by the following function (G(d,k)).

Here, the number of coding bits used to represent a digit is k bits.

G(d, k) = (d× (k + 1) + 2k − 1)

× (2k − 2 + 2× d) + (2k − 2). (4.4)

In the case of the second remainder calculation method in Section 3.3.2, R mod F can be

realized by sequential processing. The number of additions depends on k. So, we can obtain

the number of additions by the following function (G(d,k)).

G(d, k) = (d× (k + 1) + 2k − 1)

× (2k − 2 + (k + 1)× d) + (2k − 2). (4.5)

Fig.2 based on (4.4), (4.5) and the previous method of processing shows the change in

the number of additions for various key lengths. Here, the number of additions using the

first remainder method (proposed algorithm1) is indicated with a solid line, the second

remainder method (proposed algorithm2) is indicated with a bold line, and the previous

algorithm result is indicated with a broken line. The dot on the broken line is the average

number of additions.

As seen from this diagram, k = 5 ∼ 6 is the most suitable value in the proposed algorithms.

As a result, we clarified that the processing time become higher than the previous method

using our proposed algorithm.

5 LSI for RSA Cryptograms

In this work, we developed LSI to realize the proposed algorithm shown in Fig.3. In this

LSI, we used proposed algorithm2 (Algorithm 3.3) because of the smaller number of gates

8



Figure 2: Change in the number of additions with a 512 bit key length.

Figure 3: High speed LSI for RSA cryptogram.

needed.

The operation specifications of this LSI are as follows.

Coding bits of a digit 5 bits

Number of key bits 512 bits

Active frequency 38 MHz

Number of Gates 440,000 gates

Processing performance 20,271 bits/sec

(case of 512 bits of key) (see Fig.4)

Type of a wafer 880KGate Standard Cell

9



Figure 4: Performance of LSI.

6 Conclusion

In this paper, we proposed two new processing algorithms for an RSA public key cryp-

togram system. Then, we developed LSI to realize our proposed algorithm using a sequential

processing algorithm for calculating remainders. In our future work, we will develop a faster

algorithm for remainders and the corresponding LSI.

References

[1] A.Avizienis, “Signed-digit number representations for fast parallel arithmetic”, IRE

Trans.Elect.Comput., EC-10, pp.389-400, 1961.

[2] M. Kameyame, S. Wei, T. Higuchi, “Design of an RSA encryption processor based on

Signed-Digit multivalued arithmetic circuits”, Trans.(D), I.E.I.C.E., Japan,Vol.J71-D,

No.12, pp.2659-2668, 1988.

[3] Yoshinori Fujisawa, Yasushi Fuwa, Hidetaka Shimizu, “Public-Key cryptography and

pepin’s test for the primality of Fermat numbers”, Formalized Mathematics, Vol.7(2),

pp.317-321, 1998.

[4] Yoshinori Fujisawa, Yasushi Fuwa, “Definitions of Radix-2k Signed-Digit number and

its adder algorithm”, Mechanized Mathematics and Its Applications, Vol.1(1), pp.11-20,

2000.

[5] Yasushi Fuwa, Yoshinori Fujisawa, “High-speed algorithms for RSA cryptograms”, For-

malized Mathematics, in press.

10



[6] Yoshinori Fujisawa, Yasushi Fuwa, “Proposal of a High-Speed Processing Method for

RSA Cryptograms using High-Radix Signed-Digit Numbers”, Personal Computer Users’

Application Technology Association, Vol.10(1), pp.61-70, 2000.

[7] Kineo Matsui, “Cryptographic algorithm”, Morikita Publishing Co., Ltd., Japan, 1987.

[8] Shinichi Ikeno, Kenji Koyama, “Modern cryptosystem [Gendai angouriron]”, I.E.I.C.E.,

Japan, 1995.

[9] Kouichi Sakurai, “CRYPTOGRAPHY : Theorey and Practice”, Kyouritsu Publishing

Co., Ltd., Japan 1996.

11


