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Abstract

We formulate a robust Wiener filtering problem for wide-sense stationary (WSS) Gaussian
processes in the presence of modelling errors. It requires solving a minimax problem that consists
of finding the best filter for the least-favorable statistical model within a neighborhood of the
nominal model. The neighborhood is formed by models whose relative entropy with respect
to the nominal model is less than a fixed constant. The standard noncausal Wiener filter is
optimal, but the causal Wiener filter is not optimal, and a characterization is provided for the
best filter and the corresponding least-favorable model.

1 Introduction

We examine the least-squares filtering problem for a signal based on observations over an infinite
interval. When exact joint second order statistics are available for the signal and observations, the
signal estimate is generated by a causal or noncausal Wiener filter, depending on whether a causality
constraint is imposed on the estimation filter. Unfortunately, in most situations the statistics of the
signal and observations are known only imprecisely. In such situations, the estimates produced by
an ordinary Wiener filter based on the nominal model may be less accurate than those generated by
more conservative filters that take into account the possible existence of modelling errors. In this
context, the recent prominence of H∞ and set membership robust filtering techniques [1, 2] appears
to have overshadowed another fruitful approach proposed approximately 20 years ago by Kassam,
Poor and their collaborators [3, 4, 5, 6]. In this approach, which was inspired by Huber’s pioneering
work [7] in robust statistics, the actual joint spectral density of the signal and observations is
assumed to belong to a neighborhood of the nominal model. This neighborhood or uncertainty
class can be specified in a variety of ways. It can be based on an ε-contamination model of the
type originally considered by Huber, a total variation model [4, 5], or a spectral band model [3, 6]
wherein the power spectral densities (PSDs) specifying the signal and observations are required to
stay within a band centered on the nominal PSD. Other classes that have been considered in the
literature [6] include p-point models which allocate fixed amounts of power to certain spectral bands
and moment-constrained models where some moments are fixed. The robust filtering problem then
reduces to the solution of a minimax problem where one seeks to find the best filter for the worst set
of statistics in the specified uncertainty class. This approach is straightforward at the conceptual
level, but sometimes difficult to implement in practice, since even when the minimax problem is
of convex-concave type so that a saddle point exists, it is not always possible to give a simple
parametrization to the saddle point.

In this paper, the neighborhood of the nominal model we consider is formed by models whose
relative entropy with respect to the nominal model is bounded by a fixed constant. Section 2
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considers the robust noncausal least-squares filtering problem for WSS Gaussian processes. In this
case, it is shown that the noncausal Wiener filter is robust with respect to the class of perturbations
considered. On the other hand, for causal filters, it is shown in Section 3 that the standard
Wiener filter is not robust and a characterization is provided for the optimum causal filter and
the corresponding least-favorable statistical model. The Section 4 presents some conclusions and
provides directions for further research.

2 Noncausal Wiener Filtering

Let X(t) and Y (t) be two jointly stationary scalar Gaussian processes over Z. The nominal and
actual Gaussian probability measures P and P̃ of the process

Z(t) =

[
X(t)
Y (t)

]
, (2.1)

are specified respectively by the mean and autocovariance functions

EP [Z(t)] = mZ =

[
mX

mY

]
(2.2)

EP [(Z(t + k)−mZ)(Z(t)−mZ)T ] = KZ(k) =

[
KX(k) KXY (k)
KY X(k) KY (k)

]
(2.3)

and

EP̃ [Z(t)] = m̃Z =

[
m̃X

m̃Y

]
(2.4)

EP̃ [(Z(t + k)−mZ)(Z(t)−mZ)T ] = K̃Z(k) =

[
K̃X(k) K̃XY (k)
K̃Y X(k) K̃Y (k)

]
. (2.5)

Then if

RZ(k) = mZmT
Z + KZ(k) (2.6)

R̃Z(k) = m̃Zm̃T
Z + K̃Z(k) (2.7)

denote respectively the nominal and actual autocorrelation functions of Z(t), the nominal and true
power spectral densities of Z(t) can be written as

SZ(ejθ) =
∞∑

k=−∞
RZ(k)e−jkθ

=

[
SX(ejθ) SXY (ejθ)
SY X(ejθ) SY (ejθ)

]
. (2.8)

and

S̃Z(ejθ) =
∞∑

k=−∞
R̃(k)e−jkθ

=

[
S̃X(ejθ) S̃XY (ejθ)
S̃Y X(ejθ) S̃Y (ejθ)

]
. (2.9)
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They can be decomposed as

SZ(ejθ) = 2πmZmT
Zδ(θ) + ΣZ(ejθ) (2.10)

S̃Z(ejθ) = 2πm̃Zm̃T
Zδ(θ) + Σ̃Z(ejθ) , (2.11)

where δ(.) denotes the impulse function, and ΣZ(ejθ) and Σ̃(ejθ) are respectively the discrete-time
Fourier transforms of KZ(k) and K̃Z(k). For stationary Gaussian processes, the relative entropy
between the true and nominal models takes the form of the Itakura and Saito spectral distortion
measure [8]

I(m̃Z , Σ̃Z ;mZ ,ΣZ)
4
= ∆mT

ZΣ−1
Z (1)∆mZ

+
1
2π

∫ 2π

0
[tr{(Σ−1

Z Σ̃Z)(ejθ)− I2} − ln det(Σ−1
Z Σ̃Z)(ejθ)] , (2.12)

where
∆mZ

4
= m̃Z −mZ . (2.13)

In order to ensure the existence of I, we assume that the nominal spectral density matrix ΣZ(ejθ)
is positive definite for all θ ∈ [0, 2π]. Note that since ln det M is a concave function of positive
definite matrices M [9, pp. 501–502], I is a convex functional of m̃Z and Σ̃Z(·).

We consider the noncausal Wiener filtering problem where the goal is to estimate X(t) given the
observations {Y (s), s ∈ Z}. Let

X̂(t) =
∞∑

k=−∞
GkY (t− k) + h (2.14)

denote the estimate of X(t) produced by the pair (G, h) formed by the filter

G(z) =
∞∑

k=−∞
Gkz

−k (2.15)

and the additive constant h. We assume that the filter G(z) is BIBO stable, which ensures the
existence of the discrete-time Fourier transform G(ejθ). The estimation error is given by

E(t) = X(t)− X̂(t)

=
∞∑

k=−∞

[
δk −Gk

]
Z(t− k)− h , (2.16)

so that the mean and variance of the estimation error under the probability measure P̃ can be
expressed as

m̃E = EP̃ [E(t)] =
[

1 −G(1)
]
m̃Z − h (2.17)

and

K̃E = EP̃ [(E(t)− m̃E)2]

=
1
2π

∫ 2π

0

[
1 −G(ejθ)

]
Σ̃Z(ejθ)

[
1

−G(e−jθ)

]
dθ . (2.18)
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Consider now the convex ball

B = {(m̃Z , Σ̃Z) : I(m̃Z , Σ̃Z ;mZ ,ΣZ) ≤ c} (2.19)

centered on the nominal statistics (mZ ,ΣZ). Let also S be the class of estimators (G, h) such that
G(z) is BIBO stable. We seek to solve the minimax Wiener filtering problem

min
(G,h)∈S

max
(m̃Z ,Σ̃Z)∈B

J(m̃Z , Σ̃Z ;G, h) (2.20)

where
J(m̃Z , Σ̃Z ;G, h)

4
= EP̃ [E2(t)] = m̃2

E + K̃E . (2.21)

The solution of the minimax problem is obtained by exhibiting a saddle point for the objective
function J [10, Chap. 6].

Theorem 2.1 The function J(m̃Z , Σ̃Z ;G, h) admits a saddle point ((m̃0, Σ̃0)), (G0, h0)) ∈ B × S.
The estimator

G0(z) = ΣXY (z)Σ−1
Y (z) , h0 = mX −G0(1)mY (2.22)

is the optimal noncausal Wiener filter for both the nominal and least-favorable statistics of Z(t),
and the least-favorable statistics have the structure

m̃0 = mZ , Σ̃0(z) =

[
Σ̃X(z) ΣXY (z)
ΣY X(z) ΣY (z)

]
, (2.23)

so that only ΣX(z) is perturbed. If

S̃E(z) = Σ̃X(z)− ΣXY (z)Σ−1
Y (z)ΣY X(z) (2.24)

denotes the power spectrum of the error for the least favorable statistics and

SE(z) = ΣX(z)− ΣXY (z)Σ−1
Y (z)ΣY X(z) (2.25)

represents the error power spectrum for the nominal statistics, S̃E(z) can be expressed in terms of
SE(z) as

S̃E(z) = [S−1
E (z)− λ−1]−1 (2.26)

where there exists a unique Lagrange multiplier

λ > r(SE)
4
= max

θ∈[0,2π]
SE(ejθ) (2.27)

such that I(m̃0, Σ̃0,mZ ,ΣZ) = c.

Proof: We need to show that

J(m̃Z , Σ̃Z ;G0, h0) ≤ J(m̃0, Σ̃0;G0, h0) ≤ J(m̃0, Σ̃0;G, h) (2.28)

for all (m̃Z , Σ̃Z) ∈ B and (G, h) ∈ S. The second inequality is just a consequence of the fact that
(G0, h0) is the optimum noncausal Wiener filter for the pair (m̃0, Σ̃0).
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To verify that (m̃0, Σ̃0) maximizes J(m̃Z , Σ̃Z ;G0, h0) in the ball B, we form the Lagrangian

L(m̃Z , Σ̃Z , λ)
4
= J(m̃Z , Σ̃Z ;G0, h0) + λ(c− I(m̃Z , Σ̃Z ;mZ ,ΣZ)) . (2.29)

The first order Gateaux derivatives of L with respect to m̃Z in the direction of u ∈ R2 and with
respect to Σ̃(z) in the direction of a para-symmetric 2×2 matrix function V (z) are given respectively
by

∇m̃Z ,uL = 2∆mT
Z

( [
In

−G0(1)

] [
In −G0(1)

]
− λΣ−1

Z (1)
)

u (2.30)

∇Σ̃Z ,V L =
1
2π

∫ 2π

0
tr

{( [
In

−G0(e−jθ)

] [
In −G0(ejθ)

]
−λ(Σ−1

Z (ejθ)− Σ̃−1
Z (ejθ))

)
V (ejθ)

}
dθ . (2.31)

Recall that a matrix function V (z) is said to be para-symmetric if it admits the symmetry V (z) =
V #(z) with

V #(z)
4
= V T (z−1) . (2.32)

We have also

(∇m̃Z ,u)2L = 2uT

( [
In

−G0(1)

] [
In −G0(1)

]
− λΣ−1

Z (1)
)

u (2.33)

∇m̃Z ,u∇Σ̃Z ,V L = 0 (2.34)

(∇Σ̃Z ,V )2L = − λ

2π

∫ 2π

0
tr{(Σ̃−1

Z V Σ̃−1
Z V )(ejθ)}dθ

= − λ

2π

∫ 2π

0
tr{(F̃ V Σ̃−1

Z V F̃#)(ejθ)}dθ (2.35)

where F̃ (z) is an arbitrary matrix spectral factor of Σ̃−1
Z (z), i.e.,

Σ̃−1
Z (z) = F̃#(z)F̃ (z) . (2.36)

Thus, provided that the Lagrange multiplier λ is such that the matrix

W =

[
In

−G0(1)

] [
In −G0(1)

]
− λΣ−1

Z (1) (2.37)

is negative definite, the Hessian

Hm̃Z ,Σ̃Z
(u, V ) = [∇2

m̃Z ,u + 2∇m̃Z ,u∇Σ̃Z ,V +∇2
Σ̃Z ,V

]L (2.38)

will be negative definite for all m̃Z and Σ̃Z , so that L is a concave function of m̃Z and Σ̃Z .
Let Q be an arbitrary matrix square-root of ΣZ(1), i.e., ΣZ(1) = QQT . Premultiplying W on

the left by QT and on the right by Q, and denoting

M =
[

1 −G0(1)
]
Q , (2.39)
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we find that W is congruent to
W̄ = MT M − λI2 , (2.40)

which will be negative definite provided

λ > MMT = SE(1) . (2.41)

The Lagrangian L(m̃Z , Σ̃Z , λ) is then maximized by setting ∇m̃Z ,uL = 0 and ∇Σ̃Z ,V L = 0 for all
u and V (z), which yields ∆mZ = 0 and

Σ̃−1
0 (z) = Σ−1

Z (z)− 1
λ

[
1

−G0(z−1)

] [
1 −G0(z)

]
. (2.42)

Noting that ΣZ(z) admits the block spectral factorization

ΣZ(z) =

[
1 G0(z)
0 1

] [
SE(z) 0

0 ΣY (z)

] [
1 0

G0(z−1) 1

]
, (2.43)

the identity (2.42) implies that Σ̃0(z) admits the factorization

Σ̃0(z) =

[
1 G0(z)
0 1

] [
S̃E(z) 0

0 ΣY (z)

] [
1 0

G0(z−1) 1

]
(2.44)

where the error spectrum S̃E(z) obeys (2.26).
The structure (2.43) and (2.44) of ΣZ and Σ̃0 implies

(Σ−1
Z Σ̃0)(z) =

[
1 0

−G0(z−1) 1

] [
S−1

E S̃E 0
0 1

] [
1 0

G0(z−1) 1

]
(2.45)

so that
tr(ΣZΣ̃0 − I2) = S−1

E S̃E − 1 (2.46)

det(ΣZΣ̃0) = S−1
E S̃E (2.47)

and thus

I(m̃0, Σ̃0;mZ ,ΣZ) =
1
2π

∫ 2π

0
[(S−1

E S̃E)(ejθ)− 1− ln(S−1
E S̃E(ejθ))]dθ . (2.48)

Substituting (2.26), this gives
I(m̃0, Σ̃0;mZ ,ΣZ) = γ(λ) (2.49)

with

γ(λ)
4
=

1
2π

∫ 2π

0
γ(λ, SE(ejθ))dθ (2.50)

where
γ(λ, d)

4
=

λ

λ− d
− 1− ln(

λ

λ− d
) . (2.51)

Note that the integral on the right hand side of (2.50) converges only if λ > r(SE).
For λ > d > 0, we have

d

dλ
γ(λ, d) = − d2

λ(λ− d)2
< 0 (2.52)
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and

lim
λ→∞

γ(λ, d) = 0 , lim
λ→d

γ(λ, d) = +∞ , (2.53)

so that γ(λ, d) is a monotone decreasing function of λ. Since γ(λ) is expressed as an integral of
this function, it is itself monotone decreasing with

lim
λ→∞

γ(λ) = 0 , lim
λ→r(SE)

γ(λ) = ∞ . (2.54)

For any positive c, there exists therefore a unique λ0 such that γ(λ0) = c. For this value of the
Lagrange multiplier the condition (2.41) is satisfied, so that the saddle point identity (2.28) holds
with

I(m̃0, Σ̃0,mZ ,ΣZ) = c . (2.55)

�

Thus, the noncausal Wiener filter is robust with respect to a relative entropy mis-modelling
criterion. This robustness property should probably not come as a complete surprise since it is
already known that H2 smoothers are also optimal with respect to the H∞ criterion [11].

However, the performance of the Wiener filter is affected by model errors. Specifically, the MSE
corresponding to the nominal model is given by

MSE =
1
2π

∫ 2π

0
SE(ejθ)dθ (2.56)

whereas the MSE for the least favorable statistics takes the form

M̃SE =
1
2π

∫ 2π

0
S̃E(ejθ)dθ . (2.57)

Taking into account (2.26), the excess MSE, i.e., the additional mean-square error occasioned by
the least-favorable model perturbation, can be expressed as

MSEexc = M̃SE−MSE

=
1
2π

∫ 2π

0

S2
E(ejθ)

λ0 − SE(ejθ)
dθ (2.58)

where λ0 satisfies γ(λ0) = c. Then, using the inequality

x2

1− x
>

x

1− x
+ ln(1− x) (2.59)

for 0 < x < 1 with

x = SE(ejθ)/λ0 , (2.60)

and taking into account the expression (2.48) for I, one finds (see [12] for details)

MSEexc > λ0c . (2.61)
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3 Robust Causal Estimation

Up to this point, we have not imposed any causality constraint on the estimators under consider-
ation. The class C of causal estimators is formed by the pairs (G(z), h), such that G(z) is stable
and

Gk = 0 (3.1)

for k < 0, so that G(z) is analytical on and outside the unit circle. Then, consider the minimax
problem (2.20)–(2.21) with S replaced by C. Applying an analysis similar to the one of Section 2,
it is not difficult to find that a saddle point (m̃0 , Σ̃0), (G0(z), h0) will have the following structure.
The least-favorable statistics take the form by

m̃0 = mZ , Σ̃0(z) =

[
Σ̃X(z) Σ̃XY (z)
Σ̃Y X(z) Σ̃Y (z)

]
(3.2)

Let
Σ̃Y (z) = F̃ (z−1)F̃ (z) (3.3)

be a spectral factorization of Σ̃Y (z) where the filter F̃ (z) has minimum phase. Let also {K(z)}+

represent the causal part of an arbitrary filter K(z). Then, the estimator

G0(z) = {Σ̃XY F̃−1(z−1)}+F̃−1(z) , h0 = mX −G0(1)mY (3.4)

is the optimal causal Wiener filter for the statistics (m̃0, Σ̃0(z)), and Σ̃0(z) satisfies the identity

Σ̃−1
0 (z) = Σ−1

Z (z)− 1
λ

[
1

−G0(z−1)

] [
1 −G0(z)

]
, (3.5)

where the Lagrange multiplier is selected such that (2.55) holds. To see how the above conditions
were derived, note that given the least-favorable model (m̃0, Σ̃0), the second inequality in (2.28)
implies that (G0, h0) must be the optimal causal Wiener filter for this model. Given the estima-
tor (G0, h0), the maximization of J(m̃Z , Σ̃Z ;G0, h0) can be performed by using the approach of
Theorem 2.1. This yields m̃0 = mZ and the identity (3.5) for Σ̃0(z).

To ensure that the filter (G0, h0) and statistics (m̃0, Σ̃0) represent an actual saddle point of
J(m̃Z , Σ̃Z ;G, h), we need only to prove that after substitution of (3.4) inside (3.5), the resulting
equation admits a solution Σ̃0(z) which is positive definite on the unit circle for a value of λ such
that I(m̃0, Σ̃0,mZ ,ΣZ) = c. Unfortunately, unlike the causal case, the equation (3.5) does not
appear to admit a closed form solution. If S̃E(z) denotes the Schur complement of Σ̃Y (z) inside
Σ̃0(z) and if SE(z) is the Schur complement of ΣY (z) inside ΣZ(z), by matching the (1, 1) blocks
on both sides of (3.5), it is easy to verify that (2.26) still holds. However, the other blocks of Σ̃0(z)
are harder to evaluate.

4 Conclusions

In this paper, we have proposed a methodology for robust filtering that employs the relative entropy
as a measure of proximity between two statistical models. By examining the resulting minimax
problem, it was shown that the standard noncausal Wiener filter is optimal. However, the causal
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Wiener filter is not optimal and a characterization was given for the structure of an optimal filter
and the matching least-favorable statistical model. The higher level of difficulty of robust causal
filtering problems should not come as a surprise, since previous work on robust Wiener filtering
[4, 5, 6] had also this feature.

The report [12] extends the results described here to least-squares filtering problems defined over
a finite interval. In this case, the relative entropy is expressed as the Kullback-Leibler (KL) di-
vergence [13]. The formulation outlined here and in [12] provides only a starting point for the
investigation of robust filtering from a KL divergence viewpoint. Several topics appear to deserve
further investigation. First, it would be of interest to develop numerical techniques, possibly it-
erative, to solve the coupled spectral equations (3.4)–(3.5) for the optimal causal filter and the
associated least-favorable model. Also, up to this point, we have considered unstructured pertur-
bations for the joint statistics of the process to be estimated and the observations. However, there
exists situations where it makes sense to consider structured perturbations. For example, given
observations of the form

Y (t) = X(t) + N(t) , (4.1)

if the noise process N(t) is independent of X(t), it would be of interest to restrict the class of
model perturbations to those that maintain this property. Finally, we have limited our attention
to external statistical descriptions of the observations and process to be estimated. It would be
of interest to extend our results to situations where an internal state-space model of the system is
available.

References

[1] B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite-Quadratic Estimation and Control.
Philadelphia, PA: Soc. for Indust. Applied Math., 1999.

[2] I. R. Petersen and A. V. Savkin, Robust Kalman Filtering for Signals and Systems with Large
Uncertainties. Boston, MA: Birkhäuser, 1999.
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