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Abstract

In this paper, we discuss semidefinite relaxation techniques for computing minimal size ellip-
soids that bound the solution set of a system of uncertain linear equations (ULE). The proposed
technique is based on the combination of a quadratic embedding of the uncertainty, and the S-
procedure. The resulting bounding condition is expressed as a Linear Matrix Inequality (LMI)
constraint on the ellipsoid parameters and the additional scaling variables. This formulation
leads to a convex optimization problem that can be efficiently solved by means of interior point
barrier methods.

1 Introduction

In this paper, we propose a technique for the determination of deterministic confidence bounds on
the solutions of systems of linear equations, whose coefficients are imprecisely known. A similar
problem arises for instance in the context of interval linear algebra, where we are given matrices
A ∈ R

n,n and y ∈ R
n, the elements of which are only known within intervals, and one seeks to

compute intervals of confidence for the set of solutions, if any, to the equation Ax = y. Obtaining
exact estimates on the confidence intervals for the elements of x in the above context is known to
be an NP-hard problem, [8, 9].

Here, we consider a more general situation in which the data matrix [A y] belongs to an uncer-
tainty set U described by means of a linear fractional representation (LFR), and use semidefinite
relaxation techniques [6] to determine readily computable minimal ellipsoidal bounds for the set
of solutions. If desired, the bounding ellipsoid can then be projected along the coordinate axes
to obtain intervals of confidence on the individual elements of x. Alternatively, the width of the
uncertainty interval on an individual component of x can be directly used as the optimization cri-
terion, in order to obtain tighter interval bounds. Besides, we discuss special situations in which
semidefinite relaxations are lossless, and show how we can recover explicit solutions in these cases.

Semidefinite relaxation techniques for uncertain linear equations have been originally introduced
by the authors in [1]. Similar techniques have also been applied to state estimation and filtering
problems in the context of uncertain dynamical systems in [2, 5].

1G. Calafiore acknowledges funding from the CNR Agenzia 2000 program for the research presented in this paper.



1.1 Notation and preliminaries

For a square matrix X, X � 0 (resp. X � 0) means X is symmetric, and positive-definite (resp.
semidefinite). For a matrix X ∈ R

n,m, R(X) denotes the space generated by the columns of X,
and N (X) denotes the kernel of X. An orthogonal complement of X is denoted by X⊥, which is a
matrix containing by columns a basis for N (X), i.e. a matrix of maximal rank such that XX⊥ = 0.
X† denotes the (Moore-Penrose) pseudo-inverse of X.

Ellipsoids. Ellipsoids will be described as

E = {x : x = x̂ + Ez, ‖z‖ ≤ 1},
where x̂ ∈ R

n is the center, and E ∈ R
n,m, Rank(E) = m ≤ n is the shape matrix of the ellipsoid.

This representation can handle all bounded ellipsoids, including “flat” ellipsoids, such as points or
intervals. An alternative description involves the squared shape matrix P = EET

E(P, x̂) =

{
x :

[
P (x − x̂)

(x − x̂)T 1

]
� 0

}
.

When P � 0, the previous expression is also equivalent to

E(P, x̂) =
{
x : (x − x̂)T P−1(x − x̂) ≤ 1

}
.

The “size” of an ellipsoid is a function of the squared shape matrix P , and will be denoted f(P ).
Throughout this paper, f(P ) will be either Tr(P ), which corresponds to the sum of squares of the
semi-axes lengths, or log det(P ), which is related to the volume.

Uncertainty description. Structured uncertainty is described as follows: ∆ is a subspace of
R

np,nq , called the structure subspace (for instance, the space of matrices with certain block-diagonal
structure). Then, the uncertain matrix ∆ is restricted to

∆ ∈ ∆1
.= {∆ ∈ ∆ : ‖∆‖ ≤ 1} .

Associated to the structure subspace, we introduce the scaling subspace B(∆)

B(∆) =
{
(S, T, G) : ∀∆ ∈ ∆, S∆ = ∆T, G∆ = −∆T GT

}
. (1.1)

A structure that frequently arises in practice is the independent block-diagonal structure

∆ = {∆ : ∆ = diag (∆1, . . . ,∆�), ∆i ∈ R
npi,nqi} . (1.2)

For this structure, the scaling subspace is constituted of all triples S, T, G with S = diag (λ1Inp1 ,

. . . , λ�Inp�
), T = diag (λ1Inq1 , . . . , λ�Inq�

), G = 0. A particular case of this situation arises for
m = 1, and it is denoted as the unstructured uncertainty case.

Independent scalar uncertainty parameters δ1, . . . , δ� with bounded magnitude |δi| ≤ 1 are rep-
resented in our framework via the structure subspace

∆ =
{
∆ : ∆ = diag (δ1Inp1 , . . . , δ�Inp�

), δi ∈ R
}

, (1.3)

and the corresponding scaling subspace constituted of all triples S, T, G with S = T = diag (S1 . . . , S�),
Si = ST

i ∈ R
npi,npi , G = diag (G1, . . . , G�), Gi = −GT

i ∈ R
npi,npi .

More general uncertainty structures, together with their corresponding scaling spaces, are detailed
for instance in [6, 4].



2 Uncertain Linear Equations

Let
[A(∆) y(∆)] = [A y] + L∆(I − D∆)−1[RA Ry], (2.4)

where A ∈ R
m,n, y ∈ R

m, L ∈ R
m,np , RA ∈ R

nq ,n, Ry ∈ R
nq , D ∈ R

nq ,np , and ∆ ∈ ∆1 ⊂
R

np,nq , and let this linear fractional representation (LFR) be well-posed over ∆1, meaning that
det(I − D∆) �= 0, ∀∆ ∈ ∆1; see Lemma A.1 for a readily checkable sufficient condition for well-
posedness. The representation (2.4) includes as special cases, for instance, interval matrices and
additive unstructured uncertainty. It also allows for representation of general rational matrix
functions of a vector of uncertain parameters δ1, . . . , δ�, see [6, 4] for further details.

Consider the set X of all the possible solutions to the linear equations A(∆)x = y(∆), i.e.

X .= {x : A(∆)x = y(∆), for some ∆ ∈ ∆1}.
In the sequel, we provide conditions under which the set X is contained in a bounded ellipsoid E .
Then, we exploit these conditions to determine a minimal (in the sense of the selected size measure)
ellipsoid containing the solution set X . The key technique is explained below.

Consider the linear fractional description (2.4), then the equation A(∆)x = y(∆) is rewritten as

Ax − y + L∆(I − D∆)−1(RAx − Ry) = 0,

which in turn can be expressed using a slack vector p in the form

Ax − y + Lp = 0 (2.5)

RAx + Dp − Ry = q (2.6)

p = ∆q. (2.7)

Define

Ψ .= [A L y], (2.8)

ξ
.= [xT pT − 1]T , (2.9)

then all vectors ξ compatible with (2.5) must be orthogonal to Ψ, and can be expressed as

ξ = Ψ⊥η, with η
.=

[
ν

1

]
, Ψ⊥

.=

[
Ψ⊥1 ψ⊥2

0 · · · 0 −1

]
, (2.10)

where Ψ⊥1 is an orthogonal complement of [A L], and ψ⊥2 is any vector such that [A L]ψ⊥2 = y.
Notice that if no such ψ⊥2 exists, then the solution set X is clearly empty. All feasible ξ must
therefore lie on the flat

F .= {ξ : ξ = Ψ⊥η, with η =
[

νT 1
]T },

and the corresponding feasible x on the projection Fx
.= {x = [In 0n,np 0n,1]ξ : ξ ∈ F}. The

feasible ξ are further constrained by (2.6)–(2.7): By Lemma A.4, for any triple (S, T, G) ∈ B(∆),
S � 0, T � 0, the set of all pairs (q, p): p = ∆q for some ∆ ∈ ∆1 is bounded by the set

QS,T,G
.=




[
q

p

]
:

[
q

p

]T [
T G

GT −S

] [
q

p

]
≥ 0


 . (2.11)
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Therefore, the set of ξ compatible with (2.6)–(2.7) is bounded by the set

HS,T,G
.= {ξ : ξT Ω(S, T, G)ξ ≥ 0}, (2.12)

where

Ω(S, T, G) .= ΥT

[
T G

GT −S

]
Υ, (2.13)

Υ .=

[
RA D Ry

0np,n Inp 0np,1

]
. (2.14)

To conclude, the set of ξ compatible with all conditions (2.5)–(2.7) is bounded by the intersection
F ∩HS,T,G, and therefore X ⊆ X S,T,G, where X S,T,G is the projection

X S,T,G =
{
x = [In 0 0]Ψ⊥η : ηT ΨT

⊥Ω(S, T, G)Ψ⊥η ≥ 0
}

, (2.15)

with η and Ψ⊥ defined in (2.10).
To make the point clear, we remark that for any triple (S, T, G) ∈ B(∆), S � 0, T � 0, X S,T,G

provides an outer approximation for the solution set X . In particular, when ∆ is a full block
(unstructured uncertainty) the embedding in Lemma A.4 is tight, and the approximation is exact,
i.e. X S,T,G = X .

We now state the following theorem, which characterizes a bounding ellipsoid for the solution set
X .

Theorem 2.1. If the there exist (S, T, G) ∈ B(∆), S � 0, T � 0 such that[
P [I 0 x̂]Ψ⊥

ΨT
⊥[I 0 x̂]T ΨT

⊥ (diag (0, 0, 1) − Ω(S, T, G)) Ψ⊥

]
� 0 (2.16)

is feasible, then the ellipsoid E(P, x̂) contains the solution set X .
Solving the convex optimization problem in the variables P, x̂, S, T, G

minimize f(P ) subject to (2.17)

(S, T, G) ∈ B(∆), S � 0, T � 0, (2.16) (2.18)

yields an outer ellipsoidal approximation of X , that is optimal in the sense of the sufficient condition
(2.16).

Proof of Theorem 2.1.

1. For any triple (S, T, G) ∈ B(∆), S � 0, T � 0, the condition E(P, x̂) ⊇ X S,T,G obviously
implies E(P, x̂) ⊇ X .

2. The family of ellipsoids E(P, x̂) that lie in Fx satisfy the flatness condition (I − P †P )(x −
x̂) = 0, ∀x ∈ Fx, which can be expressed using the notation introduced previously, as
(I − P †P )[In 0 x̂]Ψ⊥η = 0, ∀η, i.e.

(I − P †P )[In 0 x̂]Ψ⊥ = 0. (2.19)
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3. An ellipsoid E(P, x̂) ⊂ Fx contains the point x = [In 0 0]Ψ⊥η ∈ Fx if and only if (notice that
x − x̂ = [In 0 x̂]Ψ⊥η) [

P [In 0 x̂]Ψ⊥η

∗ 1

]
� 0. (2.20)

Using Lemma A.5, this is rewritten as

1 − ηT ΨT
⊥[In 0 x̂]T P †[In 0 x̂]Ψ⊥η ≥ 0 (2.21)

(I − P †P )[In 0 x̂]Ψ⊥η = 0. (2.22)

Since (2.19) holds for all ellipsoids that lie entirely in Fx, condition (2.22) is always satisfied,
therefore the ellipsoid E(P, x̂) ⊂ Fx contains the point x = [In 0 0]Ψ⊥η ∈ Fx if and only if
(2.21) is satisfied.

4. The ellipsoid E(P, x̂) lies in Fx and contains X S,T,G if and only if (2.19) holds, and (2.21) is
satisfied for all η such that ηT ΨT

⊥Ω(S, T, G)Ψ⊥η ≥ 0. By the S-procedure and homogenization
(see Lemma A.2 and Lemma A.3), the above happens if (2.19) holds, and there exist τ ≥ 0
such that

ΨT
⊥

(
diag (0, 0, 1) − [I 0 x̂]T P−1[I 0 x̂]

)
Ψ⊥ � τΨT

⊥Ω(S, T, G)Ψ⊥.

Using the Schur complement rule, the two previous conditions are written in the equivalent
matrix inequality form as[

P [I 0 x̂]Ψ⊥
ΨT

⊥[I 0 x̂]T ΨT
⊥ (diag (0, 0, 1) − τΩ(S, T, G)) Ψ⊥

]
� 0. (2.23)

Further, from Lemma A.3, we have that (2.23) is also a necessary condition for the inclusion,
if there exist η0: ηT

0 ΨT
⊥Ω(S, T, G)Ψ⊥η0 > 0.

In synthesis, if there exist (S, T, G) ∈ B(∆), S � 0, T � 0, such that (2.23) is satisfied (notice
that τ can be absorbed in the S, T, G variables and then eliminated from the condition), then the
ellipsoid E(P, x̂) lies in Fx and contains X . Moreover, if there exist η0: ηT

0 ΨT
⊥Ω(S, T, G)Ψ⊥η0 > 0,

(2.23) is also necessary for an ellipsoid E(P, x̂) ⊂ Fx to include X S,T,G.
Based on the condition (2.23), we can then minimize a (convex) size measure f(P ) of the bounding

ellipsoid, which results in the statement (2.17) of the theorem. Notice that this optimization
problem is a semidefinite program (SDP), if f(P ) = Tr(P ), and a MAXDET problem, if f(P ) =
log det(P ). In both cases the problem can be efficiently solved in polynomial-time by interior point
methods for convex programming, [10, 11].

In the case of unstructured uncertainty, the condition expressed in the above theorem becomes
necessary and sufficient, as detailed in the following corollary.

Corollary 2.1. Let ∆ = R
np,nq , and assume there exists η0 such that

ηT
0 ΨT

⊥ΥT

[
I 0
0 −I

]
ΥΨ⊥η0 > 0. (2.24)
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Then the ellipsoid E(P, x̂) lies in Fx and contains the solution set X if and only if there exists
τ ≥ 0 such that


P [I 0 x̂]Ψ⊥

ΨT
⊥[I 0 x̂]T ΨT

⊥

(
diag (0, 0, 1) − τΥT

[
I 0
0 −I

]
Υ

)
Ψ⊥


 � 0. (2.25)

Minimizing the ellipsoid size f(P ) under the above constraint then yields the optimal ellipsoid
containing X .

2.1 Decoupled ellipsoid equations

In this section, we build upon the LMI condition given in Theorem 2.1 and derive decoupled
conditions for the optimal ellipsoid, in terms of its shape matrix P and center x̂ separately. These
decoupled conditions yield further insight into the problem and permit to obtain explicit results in
the case of unstructured uncertainty. A first result is stated in the following corollary.

Corollary 2.2. Let

Q(S, T, G) =

[
Q11 q12

qT
12 1 − q22

]
.= ΨT

⊥ (diag (0, 0, 1) − Ω(S, T, G)) Ψ⊥, (2.26)

B
.= [In 0]Ψ⊥1. (2.27)

Consider the optimization problem in the variables (S, T, G) ∈ B(∆)

minimize f(BQ†
11B

T ) subject to: (2.28)

S � 0, T � 0, (2.29)

Q(S, T, G) � 0, (2.30)

(I − Q†
11Q11)BT = 0. (2.31)

If the above problem is feasible, then there exist a bounded ellipsoid that contains X . In this case,
calling Sopt, Topt, Gopt the optimal values of the problem variables, the ellipsoid E(Popt, x̂opt) with

Popt = BQ†
11(Sopt, Topt, Gopt)BT (2.32)

x̂opt = [In 0]ψ⊥2 − BQ†
11(Sopt, Topt, Gopt)Q12 (2.33)

is an outer ellipsoidal approximation of X , that is optimal in the sense of the sufficient condition
(2.16). This solution is equivalent to the one provided by Theorem 2.1.

Proof. With the position (2.10), let us define the following partitions[
[In 0] x̂

]
Ψ⊥

.=
[

B z
]

(2.34)

ΨT
⊥ (diag (0, 0, 1) − Ω(S, T, G)) Ψ⊥

.= Q =

[
Q11 q12

qT
12 1 − q22

]
, (2.35)
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where B = [In 0]Ψ⊥1, z = [In 0]ψ⊥2 − x̂. Notice that ΨT
⊥diag (0, 0, 1)Ψ⊥ = diag (0, 0, 1). Then,

condition (2.16) is equivalent to the following condition, obtained by simple reordering of the blocks
(dependence on S, T, G is sometimes omitted to avoid clutter)

 P z B

zT 1 − q22 qT
12

BT q12 Q11


 � 0. (2.36)

Now, by Lemma A.6 the above is feasible for some P, z if and only if

Q(S, T, G) � 0,

[
P B

BT Q11

]
� 0 (2.37)

is feasible for some P . Therefore problem (2.17) is equivalent to

min
S,T,G

min
P

f(P ) subject to (2.37), (2.38)

(S, T, G) ∈ B(∆), S � 0, T � 0, (2.39)

which, by Corollary A.1, is equivalent to

min
S,T,G

f(X̄(S, T, G)) subject to (2.40)

(S, T, G) ∈ B(∆), S � 0, T � 0, (2.41)

Q(S, T, G) � 0, (2.42)

(I − Q†
11Q11)BT = 0, (2.43)

where X̄(S, T, G) = BQ†
11(S, T, G)BT .

If Sopt, Topt, Gopt are the optimal values of the above optimization problem, then (again by Corol-
lary A.1) the optimal ellipsoid is given by

Popt = BQ†
11(Sopt, Topt, Gopt)BT (2.44)

zopt = BQ†
11(Sopt, Topt, Gopt)Q12. (2.45)

From the latter we then retrieve the ellipsoid center as

x̂opt = [In 0]ψ⊥2 − zopt. (2.46)

Remark 2.1 (Boundedness). From Corollary 2.2 we immediately obtain a readily checkable
sufficient condition for the solution set of uncertain linear equations to be bounded: If there exist
(S, T, G) ∈ B(∆) such that (2.29)–(2.31) are satisfied, then the solution set X is bounded. These
conditions become also necessary, under the hypotheses of Corollary 2.1.

Remark 2.2 (Emptiness and uniqueness). A preliminary analysis of (2.5) through (2.10) shows
that a necessary condition in order to have (at least) a solution is that y ∈ R([A L]). Notice also
that if N ([A L]) is empty, then the uncertain linear equations may have at most one solution. In
this case, the solution of the optimization problems in Theorem 2.1 and Corollary 2.2 would yield
an ellipsoid reduced to a point, i.e. Popt = 0.
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Without need to solve any optimization problem, we may therefore conclude that:

if y �∈ R([A L]) ⇒ X is empty;

if N ([A L]) = 0 ⇒ X is either empty or reduced to a point.

In the latter case, if y �∈ R([A L] then X is certainly empty, otherwise the only candidate solution
is of the form x̂ = [In 0]ψ⊥2, with ψ⊥2

.= [x̂T p̂T ]T . To check if this is actually a solution, we can
in some cases proceed by direct inspection. For instance, let q̂ = RAx̂ + Dp̂− Ry, then in the case
of unstructured uncertainty x̂ is the unique solution if and only if p̂T p̂ ≤ q̂T q̂.

2.2 Special case: unstructured uncertainty

In the unstructured uncertainty case, we have S = λI, T = λI, G = 0. The matrices Q11(λ), q12(λ), q22(λ)
are linear in λ, and it is convenient to express them as Q11(λ) = λQ̄11, q12(λ) = λq̄12, q22(λ) = λq̄22,
with

Q̄11 = ΨT
⊥1([0 I]T [0 I] − [RA D]T [RA D])Ψ⊥1, (2.47)

q̄12 = ΨT
⊥1[RA D]T Ry + ΨT

⊥1([0 I]T [0 I] − [RA D]T [RA D])ψ⊥2, (2.48)

q̄22 = RT
y Ry − 2ψT

⊥2[RA D]T Ry − ψT
⊥2([0 I]T [0 I] − [RA D]T [RA D])ψ⊥2. (2.49)

The optimal ellipsoid containing the solution set is in this case computable in closed form, as
detailed in the following corollary, whose proof is omitted for brevity.

Corollary 2.3. Let ∆ = R
np,nq , B

.= [In 0]Ψ⊥1, and assume that y ∈ R([A L]) (if this condition
is not satisfied, the solution set is empty).

Then, the solution set X is bounded if

Q̄11 � 0, (2.50)

(I − Q̄†
11Q̄11)B = 0, (2.51)

(I − Q̄†
11Q̄11)q̄12 = 0. (2.52)

The above conditions are also necessary, if there exists η0 such that

ηT
0

[
−Q̄11 q̄12

q̄T
12 q̄22

]
η0 > 0. (2.53)

When (2.50)–(2.52) are satisfied, the optimal ellipsoid containing X is given by

Popt =
1

λopt
BQ̄†

11B
T (2.54)

x̂opt = [In 0]ψ⊥2 − BQ̄†
11q̄12, (2.55)

with
1

λopt
= max{q̄22 + q̄T

12Q̄
†
11q̄12, 0}.

When Popt = 0 then the solution set contains at most one point. In particular, if q̄22 ≥ 0, then
X = {[In 0]ψ⊥2}, otherwise X is empty.
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2.2.1 Additive uncertainty

As a special case of the unstructured uncertainty situation above, we consider a classical problem
in linear algebra, where the data A, y are affected by additive uncertainty

[A(∆) y(∆)] = [A y] + L∆[RA Ry],

with L = ρIm, ρ > 0, [RA Ry] = In+1, ∆ ∈ R
m,n+1, ‖∆‖ ≤ 1. In this case, we may choose the

orthogonal complements as

Ψ⊥1 =

[
ρIn

−A

]
; ψ⊥2 =

[
0

y/ρ

]
,

and therefore Q̄11 = AT A − ρ2I, q̄12 = −AT y/ρ, q̄22 = 1 − yT y/ρ2. Condition (2.53) is then
satisfied if and only if ρ2 > λmin{[A y]T [A y]}. In this case, the solution set is bounded if and
only if Q̄11 � 0, i.e. for ρ2 < λmin{AT A}. On the other hand, if ρ2 < λmin{[A y]T [A y]} then
ρ2 < λmin{AT A} and q̄22 < 0,2 therefore the solution set is empty. Lastly, we consider the situation
when ρ2 = λmin{[A y]T [A y]}. There are two possibilities: i) λmin{[A y]T [A y]} < λmin{AT A},
then X is bounded (and in particular, X is empty if q̄22 < 0 and it is a singleton if q̄22 = 0); ii)
λmin{[A y]T [A y]} = λmin{AT A}, then X is empty if q̄22 < 0, and it is unbounded if q̄22 = 0. We
may resume these results as follows.

• If λmin{[A y]T [A y]} < ρ2 < λmin{AT A}, then the optimal bounding ellipsoid for X is given
by

Popt = α(AT A − ρ2I)−1

x̂opt = (AT A − ρ2I)−1AT y,

with α
.= ρ2 − yT y + yT A(AT A − ρ2I)−1AT y.

• If ρ2 < λmin{[A y]T [A y]}, then the solution set is empty.

• If ρ2 = λmin{[A y]T [A y]} < λmin{AT A}, then the solution set is empty if ρ2 < yT y, and it is
the singleton X = {x̂opt} if ρ2 = yT y.

• If ρ2 = λmin{[A y]T [A y]} = λmin{AT A}, then the solution set is empty if ρ2 < yT y, and it is
unbounded if ρ2 = yT y.

• If ρ2 ≥ λmin{AT A}, then the solution set is unbounded (with the exception of the previous
particular case).

We notice that the center of the above ellipsoid is closely related to the well-known Total Least
Squares solution to the uncertain equations, see [4] for further details.

2This is since λmin{[A y]T [A y]} ≤ λmin{AT A}, and

[
−Q̄11 q̄12

q̄T
12 q̄22

]
� 0 if and only if ρ2 ≤ λmin{[A y]T [A y]}.
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3 Numerical Examples

Consider the data

A(∆) = I2 + 0.2δ1

[
1 0
0 −1

]
+ 0.5δ2

[
0 1
−1 0

]
; y =

[
1
1

]
,

with |δ1| ≤ 1, |δ2| ≤ 1. Here, the matrix A(∆) is the identity, plus two additive perturbations. The
uncertain data can be expressed in LFR format as

[A(∆) | y(∆)] =

[
1 0 1
0 1 1

]
+ L∆[RA | Ry], (3.56)

L =

[
0.2 0 0 0.5
0 −0.2 −0.5 0

]
, RA = [I2 I2]T , Ry = 0,

∆ = diag (δ1I2, δ2I2), with |δ1| ≤ 1, |δ2| ≤ 1. The scaling subspace is in this case given by the set of
triples (S, T, G) with S = T = diag (S1, S2), with S1, S2 ∈ R

2,2 symmetric, and G = diag (G1, G2),
with G1, G2 ∈ R

2,2 skew-symmetric.
To have an approximate idea of the shape of the solution set X , we randomly generated a number

of samples of δ1, δ2, and solved the corresponding linear equations. The points obtained are shown
in Figure 1 (Notice that the solution set of this ULE is not convex), together with the optimal
bounding ellipsoid, determined by the solution of the convex problem in Theorem 2.1, having
parameters

x̂ =

[
0.859
0.859

]
; P =

[
0.462 −0.246
−0.246 0.462

]
.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 1: Solution set and bounding ellipsoid for the ULE resulting from the data in (3.56), and
structured uncertainty ∆ = diag (δ1I2, δ2I2).
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As a second example, consider again the LFR (3.56), but assume now that the uncertainty matrix
∆ is unstructured, i.e. ∆ ∈ R

4,4, ‖∆‖ ≤ 1. In this case, applying the results of Corollary 2.3, we
obtain

x̂ =

[
2.381
2.381

]
; P =

[
6.576 0

0 6.576

]
.

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 2: Solution set and bounding ellipsoid for the ULE resulting from the data in (3.56), and
unstructured uncertainty ∆ ∈ R

4,4, ‖∆‖ ≤ 1.

This ellipsoid is depicted in Figure 2, together with 5, 000 randomly generated solutions in X .
We remark that in this case (unstructured uncertainty) the solution set indeed coincides with the
bounding ellipsoid computed by means of Corollary 2.3. This fact would become apparent if more
solution points (corresponding to random uncertainty samples of ∆) are plotted.

Remark. The “concentration” of the solutions that we observe in Figure 2 may suggest an
alternative probabilistic approach for bounding the solution set. In fact, we could seek for a
minimal ellipsoid that contains not all the possible solutions, but only a given percentage of them.
The result would of course depend upon the underlying probability distribution that it is assumed
on ∆. This approach is out of the scope of this paper, but seems interesting for further research.

A Appendix

Lemma A.1 (Well-posedness). The LFR M(∆) = M +L∆(I −D∆)−1R is well-posed over ∆1

if and only if det(I − D∆) �= 0 for all ∆ ∈ ∆1. A sufficient condition for well-posedness is: there
exist a triple (S, T, G) ∈ B(∆), S � 0, T � 0 such that[

D

I

]T [
T G

GT −S

] [
D

I

]
� 0.
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The above condition is also necessary in the unstructured case, i.e. when ∆ = R
np,nq .

This lemma was first derived in the context of µ-analysis in [3]. A proof of the results in the
form given here may be found in [6].

Lemma A.2 (Homogenization). Let T = T T . The following two conditions are equivalent.

(a)

[
ξ

1

]T [
T u

uT v

] [
ξ

1

]
≥ 0 for all ξ;

(b)

[
T u

uT v

]
� 0.

Proof. The implication from (b) to (a) is trivial. We show that (a) implies (b) by contradiction.

Suppose ∃ ξ̄, α such that
[

ξ̄T α
] [

T u

uT v

] [
ξ̄T α

]T
< 0. Then, if α �= 0, dividing both sides

by α2, we get
[

1
α ξ̄T 1

] [
T u

uT v

] [
1
α ξ̄T 1

]T
< 0, which clearly contradicts the hypothesis (a).

On the other hand, α = 0 would imply that ξ̄T T ξ̄ < 0. Choosing then ξ = βξ̄ and substituting in
(a) we have

β2(ξ̄T T ξ̄) + 2βuT ξ̄ + v, (A.57)

which is a concave parabola in β, since ξ̄T T ξ̄ < 0. Therefore, there will exist a value of β such that
(A.57) is negative, which contradicts the hypothesis.

Lemma A.3 (S-procedure). Let F0(ξ), F1(ξ), . . . , Fp(ξ) be quadratic forms in the variable ξ ∈ R
n

Fi(ξ) = ξT Tiξ + 2uT
i ξ + vi, i = 0, . . . , p,

with Ti = T T
i . Then, the implication

F1(ξ) ≥ 0, . . . , Fp(ξ) ≥ 0 ⇒ F0(ξ) ≥ 0 (A.58)

holds if there exist τ1, . . . , τp ≥ 0 such that

F0(ξ) −
p∑

i=1

τiFi(ξ) ≥ 0, ∀ξ. (A.59)

When p = 1, condition (A.59) is also necessary for (A.58), provided there exist some ξ0 such that
F1(ξ0) > 0. Notice also that, by homogenization, condition (A.59) is equivalent to

∃τ1, . . . , τp ≥ 0 such that

[
T0 u0

uT
0 v0

]
−

p∑
i=1

τi

[
Ti ui

uT
i vi

]
� 0. (A.60)

Lemma A.4 (Quadratic embedding). Let Q .=
{[

qT pT
]T

: p = ∆q for some ∆ ∈ ∆1

}
,

and B(∆) =
{
(S, T, G) : ∀∆ ∈ ∆, S∆ = ∆T, G∆ = −∆T GT

}
. For any triple (S, T, G) ∈ B(∆),

S � 0, T � 0, define the set

QS,T,G
.=




[
q

p

]
:

[
q

p

]T [
T G

GT −S

] [
q

p

]
≥ 0


 . (A.61)
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Then Q ⊆ QS,T,G.
In the case of unstructured uncertainty ∆ ≡ R

np,nq we have in particular that Q ≡ QS,T,G, for
S = λInp, T = λInq , λ ∈ R, and G = 0, λ > 0.

Proof. Let [qT pT ]T ∈ Q, then for any (S, T, G) ∈ B(∆), S � 0, T � 0 we have that qT Gp =
qT G∆q = 0, by the skew-symmetry of G∆. In addition, we have

qT Tq − pT Sp = qT (T − ∆T S∆)q
= qT (T − ∆T ∆T )q � 0.

In the above, we have used the fact that, since S∆ = ∆T , the matrix ∆T ∆T is symmetric,
then T commutes in the product with ∆T ∆, and therefore these two matrices are simultaneously
diagonalizable ([7], Corollary 4.5.18), i.e. we may write the factorizations T = V JT V T , ∆T ∆ =
V J∆V T , where JT , J∆ are diagonal, and V is orthogonal. It then follows that the eigenvalues of
T − ∆T ∆T are the diagonal terms of (I − J∆)JT , which are non-negative, if T � 0. The previous
conditions are written compactly as

[
q

p

]T [
T G

GT −S

] [
q

p

]
≥ 0, (A.62)

which proves the first part of the lemma.
To prove the second part of the lemma, we consider the case of unstructured uncertainty, i.e.

∆ = R
np,nq (only one full block). In this case the set B(∆) reduces to the set of triples (S, T, G),

with S = λInp , T = λInq , λ ∈ R, and G = 0. Clearly, p = ∆q for some ∆ : ‖∆‖ ≤ 1 if and only if
pT p ≤ qT q, which is equivalent to (A.62), for any λ > 0.

Lemma A.5 (Schur complements). The condition[
A B

BT D

]
� 0

is equivalent to
D � 0, A − BD†BT � 0, (I − D†D)BT = 0

and also to
A � 0, D − BT A†B � 0, (I − A†A)B = 0,

where A†, D† denote the Moore-Penrose pseudoinverse of A and D, respectively. Notice that the
condition (I − A†A)B = 0 means that R(B) ⊆ R(A). Similarly, the condition (I − D†D)BT = 0
means that N (D) ⊆ N (B) or, equivalently, that R(BT ) ⊆ R(D).

Lemma A.6 (Block elimination). Let Q11 = QT
11, Q22 = QT

22. There exist matrices X = XT

and Z such that 
 X Z B

ZT Q11 Q12

BT QT
12 Q22


 � 0 (A.63)
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if and only if [
Q11 Q12

QT
12 Q22

]
� 0, and (A.64)

∃X = XT :

[
X B

BT Q22

]
� 0. (A.65)

Proof. The implication from (A.63) to (A.64)–(A.65) is straightforward, since if a matrix is
positive semi-definite, so are all principal sub-matrices. The converse is proved below.

By Lemma A.5, (A.63) is equivalent to

Q22 � 0 (A.66)[
X Z

ZT Q11

]
−

[
B

Q12

]
Q†

22

[
B

Q12

]T

� 0 (A.67)

(I − Q†
22Q22)

[
B

Q12

]T

= 0. (A.68)

Clearly, (A.64) implies (I − Q†
22Q22)QT

12 = 0, and (A.65) implies (I − Q†
22Q22)BT = 0, therefore

(A.64)–(A.65) imply (A.68). Define now

X̄
.= BQ†

22B
T (A.69)

Z̄
.= BQ†

22Q
T
12 (A.70)

Q̄11
.= Q11 − Q12Q

†
22Q

T
12, (A.71)

then (A.67) writes [
X − X̄ (Z − Z̄)

(Z − Z̄)T Q̄11

]
� 0. (A.72)

From (A.64) it follows that Q̄11 � 0, therefore (A.72) is feasible for X = X̄, Z = Z̄, which concludes
the proof.

Corollary A.1 (Decoupling). Let all symbols be defined as in Lemma A.6, and let[
Q11 Q12

QT
12 Q22

]
� 0.

Then the problem
min
X,Z

f(X) subject to (A.63) (A.73)

is equivalent to
min
X

f(X) subject to (A.65). (A.74)

Moreover, if problem (A.74) is feasible and f(·) is either the trace function f(X) = Tr(X), or the
log-det function f(X) = log det(X), then problem (A.73) has a unique optimal solution given by

X̄
.= BQ†

22B
T (A.75)

Z̄
.= BQ†

22Q
T
12 (A.76)
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Proof. When (A.64) holds, we know from Lemma A.6 that (A.63) is feasible if and only if (A.65)
is feasible, which immediately proves the equivalence between problems (A.73) and (A.74).

If the latter is feasible, then (A.63) is also feasible, and therefore (A.72) holds (with the symbols
defined in (A.69)–(A.71)), which means that

X � X̄ + (Z − Z̄)Q̄†
11(Z − Z̄)T

(I − Q̄†
11Q̄11)(Z − Z̄)T = 0.

Now, since the function f(·) is concave on the cone of positive-semidefinite matrices (both in the
case of trace and log-determinant) the minimum of f(X) is achieved for X = X̄, Z = Z̄.
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