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Abstract

By modeling the normal and the failed behaviors of a process by two or more linear uncertain
systems, failure detectability in linear systems can be seen as a linear multi-model identification
problem. This paper describes an active approach for multi-model identification using minimal
auxiliary signals. Both additive and model uncertainty are included in this approach.

1 Introduction

By modeling the normal and the failed behaviors of a process by two or more linear uncertain
systems, failure detectability in linear systems can be seen as a linear multi-model identification
problem. Often there is no guarantee that one of the models can be ruled out by simply observing
the inputs and outputs of the system. For example if the input to a linear system at rest is zero,
the output would remain zero, and zero input/output is consistent with both models. Also, failure
may not be apparent during normal operations. For example, a failure of the brakes may not be
apparent while driving unless the driver performs a special test, such as tapping the brakes lightly.

For this reason a test signal, usually referred to as auxiliary signal [3, 4, 12], is sometimes injected
into the system to expose its behavior and facilitate the detection (identification) of the failure. This
means that the inputs of the system are partially or completely taken over by the failure detector
mechanism for a period of time during which the auxiliary signal is injected into the system and
the failure detection test is performed based on the measurements of the inputs and outputs.

In this paper we focus on the case when there are two possible models called Model 0 and Model
1. Let v represent the inputs taken over by the failure detector mechanism, y the outputs of the
system, and Ai(v) the set of outputs y consistent with Model i for a given input v. Then an
auxiliary signal v guarantees failure detection if and only if

A0(v) ∩ A1(v) = ∅. (1.1)

We call such a v a proper auxiliary signal.
If an auxiliary signal satisfying (1.1) exists, it is usually not difficult to find one, since unreasonably

“large” signals often do the job. But such signals cannot be used in practice. For example, if the
auxiliary signal is a mechanical force, there are always limitations on it (actuator characteristics).
Similarly if it is an electrical signal, there are limitations imposed by the electrical components.
But there are even more stringent conditions in practice imposed by the desire that the system
continue to operate in a reasonable manner during the test period. Thus the test period should be
short and the effect of the auxiliary signal on the system minimal. For example, in most cases, it
is required that the test signal have minimum energy.

In this paper we develop a method for constructing optimal auxiliary signals in the two-model
case. This paper is part of an ongoing investigation begun in [5, 6, 7]. It differs from previous
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papers in several key respects. The only earlier papers to consider model uncertainty in addition
to additive uncertainty are [10, 11]. However, this paper differs from [10] in the use of t dependent
criteria, and it differs from [10, 11] in the careful consideration of implementation of the test, the
discussion of decision making, and the inclusion of proofs. Our approach can be applied to more
general situations but space prohibits discussing those extensions here.

2 Basic Theory

The general models that we consider are of the form

ẋi = Aixi + Biv + Miνi, (2.2a)

Eiy = Cixi + Div + Niνi (2.2b)

where i = 0, 1 correspond to normal and failed system models respectively. The v is the auxiliary
signal which is computed prior to the test while y are outputs that become known during the test.
Since v, y are known they are common to both models. However, y cannot be used to design v since
v is computed before the test. The only condition on the system matrices is that the Ni’s have full
row rank. The unknown initial conditions xi(0) and noises ν are assumed to satisfy the bounds

Si(v, s) = xi(0)T P−1
i0 xi(0) +

∫ s

0
νT

i Jiνi dt < 1, ∀s ∈ [0, T ], (2.3)

where the Ji’s are signature matrices. That is, Ji is a diagonal matrix with 1 and −1 on the diagonal.
If Ji has any negative entries, then we also assume that νi ∈ L2. Coefficients A, B, C, D, M, N can
be time varying. Bounds other than 1 are included by rescaling system coefficients.

This formulation includes a number of different problems. For example, it includes the case of
purely additive noise where Ei = I and Ji = I. In that case we need only consider s = T in (2.3)
since the integrand is non-negative and the maximum value of the integral occurs at s = T [2, 6].

2.1 Model uncertainty

Our problem formulation also includes problems with model uncertainty including some of those
studied in [9, 8]. To see this, we suppress the i coefficient, and suppose that we have a system with
uncertain coefficients and uncertain initial conditions given by (here σ̄ is the largest singular value)

ẋ = (Ā + M∆G)x + (B̄ + M∆H)v, (2.4a)

y = (C̄ + N̄∆G)x + (D̄ + N̄∆H)v (2.4b)

σ(∆(t)) ≤ d1 (2.4c)

x(0)T P−1
0 x(0) < d (2.4d)

By adjusting the other terms such as H, G we may assume that d1 = 1. Suppose that system (2.4)
is modeled over the period [0, T ] as follows:

ẋ = Āx + B̄v + M̄ν̄, (2.5a)

0 = Gx + Hv − z, (2.5b)

y = C̄x + D̄v + N̄ ν̄ (2.5c)
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where ν̄ and z are respectively the noise input and noise output representing model uncertainty.
Note that (2.5b), (2.5c) can be written in the form

(
0
I

)
y =

(
G

C̄

)
x +

(
H

D̄

)
v +

(
0 −I

N̄ 0

) (
z

ν̄

)

which is in the form of (2.2b) with νi =

(
z

ν

)
. We assume that N is full row rank. Letting

ν = ∆z (2.6)

we see that (2.5) become (2.4a), (2.4b). Condition (2.6) and (2.4c) imply that ‖ν(t)‖ ≤ ‖z(t)‖ for
all 0 ≤ t ≤ T . Thus we have that∫ s

0
(‖ν‖2 − ‖z‖2) < 0, ∀s ∈ [0, T ] (2.7)

Combining (2.4d) and (2.7) we get the uncertainty on the initial conditions and ν satisfies

x(0)T P−1
0 x(0) +

∫ s

0
(‖ν‖2 − ‖z‖2)dt < d, ∀s ∈ [0, T ]. (2.8)

which is in the form of (2.3).
The problem we consider is system (2.5) along with the noise bound (2.8). Note that the noise

bound (2.8) is more general than (2.4d) and (2.7). Letting s = 0 we see that (2.8) implies (2.4d).
However, (2.8) does not also imply (2.7). This means that any test derived for the problem we
consider here will actually be conservative for the problem (2.4).

By using Pv = ∆z where P is a projection instead of (2.6) our general formulation includes
models with both model uncertainty and additive uncertainty (I − P )ν.

2.2 General problem

Suppose we have y, given a v, consistent with one of the models. We seek an optimal v for which
observation of y provides enough information to decide from which model y has been generated.
That is, we seek an optimal proper v. The first step is to characterize the proper v. That is those
v for which there exist no solution to (2.2) and (2.3) for i = 0 and 1 simultaneously.

Note that since Ni’s are full row rank, for any L2 functions v, u and y, there exist L2 functions
νi satisfying (2.2). So, the non-existence of solution to (2.2) and (2.3) is equivalent to:

σ(v, s) ≥ 1 (2.9)

where

σ(v, s) = inf
ν0,ν1,y
x0,x1

max(S0(v, s),S1(v, s)), (2.10)

subject to (2.2), i = 0, 1. We need a more computationally amenable criteria. Theorem 4.1 allows
us to switch the order of the inf-max (2.10) so that we can reformulate (2.10) as:

σ(v, s) = max
β∈[0,1]

φβ(v, s) (2.11)
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where

φβ(v, s) = inf
ν0,ν1,y
x0,x1

βS0(v, s) + (1 − β)S1(v, s) (2.12)

subject to (2.2) for i = 0, 1. Let

x =

(
x0

x1

)
, ν =

(
ν0

ν1

)
, A =

(
A0 0
0 A1

)
, M =

(
M0 0
0 M1

)
,

B =

(
B0

B1

)
, D = F0D0 + F1D1, C =

(
F0C0 F1C1

)
, N =

(
F0N0 F1N1

)
,

P−1
β =

(
βP−1

0,0 0
0 (1 − β)P−1

1,0

)
, Jβ =

(
βJ0 0
0 (1 − β)J1

)
,

where (here X⊥ denotes a maximal row rank left annihilator of X)

F =
(
F0 F1

)
=

(
E0

E1

)⊥

, (2.13)

we can reformulate (2.12) as follows:

φβ(v, s) = inf
ν,x

x(0)T P−1
β x(0) +

∫ s

0
νT Jβν dt (2.14)

subject to

ẋ = Ax + Bv + Mν (2.15a)

0 = Cx + Dv + Nν. (2.15b)

Lemma 2.1. Let B be the set of all β such that, for all s ≤ T , φβ(v, s) > −∞. Then the set B is
a sub-interval of [0, 1] and is independent of v.

Proof. Refer to Lemma 4.4

If B = ∅, then the φβ(v, s) for all β and consequently σ(v, s) is equal to −∞ for some s which
means that condition (2.9) can never be satisfied and thus there exists no proper auxiliary signal
v. In that case, there is no point in solving the optimization problem. Thus, we need only consider
the case where B is not empty. Theorem 2.1 provides sufficient conditions.

Theorem 2.1. Suppose for some β ∈ [0, 1], that

N⊥
T JβN⊥ > 0, ∀t ∈ [0, T ] (2.16)

and the Riccati equation

Ṗ = (A − SβR−1
β C)P + P (A − SβR−1

β C)T − PCT R−1
β CP + Qβ − SβR−1

β ST
β , P (0) = Pβ (2.17)

has a solution on [0, T ] where

(
Qβ Sβ

ST
β Rβ

)
=

(
M

N

)
J−1

β

(
M

N

)T

. Then β ∈ B.

This result follows easily from Theorem 4.2. We shall assume from here on that there exists at
least one β for which the two conditions of Theorem 2.1 are satisfied.
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2.3 Construction of an optimal proper auxiliary signal

To simplify the discussion, we use the optimality criterion of minimizing the L2 norm of the auxiliary
signal. So the problem to solve is:

min
v

‖|v‖|2, subject to max
β∈[0,1]
s∈[0,T ]

φβ(v, s) ≥ 1 (2.18)

where ‖|v‖|2 =
∫ T
0 ‖v‖2 dt. The maximum value of φβ(v, s) does not always occur at s = T ,

although it often does. We reformulate (2.18) as follows

λβ,s = max
v �=0

φβ(v, s)
‖|v‖|2 . (2.19)

So that we end up having to solve the following problem

max
v

inf
ν,x

x(0)T P−1
β x(0) +

∫ s

0
νT Jβν − λ‖v‖2 dt (2.20)

subject to (2.15a) and (2.15b).

Theorem 2.2. Suppose the two conditions of Theorem 2.1 are satisfied. Then λβ,s is the infimum
of the set of all λ for which the Riccati equation

Ṗ = (A − Sλ,βR−1
λ,βC)P + P (A − Sλ,βR−1

λ,βC)T − PCT R−1
λ,βCP + Qλ,β − Sλ,βR−1

λ,βST
λ,β,

P (0) = Pβ (2.21)

where

(
Qλ,β Sλ,β

ST
λ,β Rλ,β

)
=

(
M B

N D

) (
Jβ 0
0 −λI

)−1 (
M B

N D

)T

has a solution on [0,s].

This result shows that λβ,s is an increasing function of s and thus it allows us to compute

λβ = max
s≤T

λβ,s (2.22)

by simply performing a “λ-iteration” by testing for the existence of a solution P to (2.21) over
[0, T ]. Then λ∗ and β∗ are obtained from

λ∗ = max
β∈B

λβ (2.23)

We define γ∗ by γ∗ = 1√
λ∗ . The values of λ∗ and β∗ are later used to compute the optimal auxiliary

signal v∗.
Note that the Riccati equation (2.21) for λ = λ∗ and β = β∗ does not necessarily have an escape

time T . Its solution may diverge before the end of the interval. We denote the actual escape time
T ∗. In most cases T ∗ is equal to T , but in general we only have that T ∗ ≤ T .

Lemma 2.2. The two-point boundary-value system:

d

dt

(
x

ζ

)
=

(
Ω11 Ω12

Ω21 Ω22

) (
x

ζ

)
(2.24)
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with boundary conditions:

x(0) = Pβ∗ζ(0) (2.25a)

ζ(τ) = 0. (2.25b)

where

Ω11 = −ΩT
22 = A − Sλ∗,β∗R−1

λ∗,β∗C (2.26a)

Ω12 = Qλ∗,β∗ − Sλ∗,β∗R−1
λ∗,β∗S

T
λ∗,β∗ (2.26b)

Ω21 = CT R−1
λ∗,β∗C (2.26c)

is well-posed for τ < T ∗ but it is not well-posed, i.e., it has non trivial solutions (x∗, ζ∗), for τ = T ∗.

See Section 4.2 for a proof.

Theorem 2.3. An optimal auxiliary signal is

v∗ = α((B + Sλ∗,β∗R−1
λ∗,β∗D)T ζ + DT R−1

λ∗,β∗Cx) (2.27)

where α is a constant such that ‖|v∗‖| = 1/γ∗.

Proof. An optimal auxiliary signal is obtained by setting to zero the first variation associated to
the optimization problem (2.20). Denoting the Lagrange multipliers associated with the constraints
(2.15a) and (2.15b) respectively ζ and µ, we obtain

ẋ = Ax + Bv + Mν (2.28a)

0 = Cx + Dv + Nν (2.28b)

ζ̇ = −AT ζ + CT µ (2.28c)

Jβν = MT ζ − NT µ (2.28d)

−λv = BT ζ − DT µ (2.28e)

which in particular, after replacing λ and β respectively with λ∗ and β∗, implies


N D 0
Jβ 0 NT

0 λ∗I −DT







ν

v

µ


 =




Cx

MT ζ

BT ζ


 (2.29)

from which we get

v = (B + Sλ∗,β∗R−1
λ∗,β∗D)T ζ + DT R−1

λ∗,β∗Cx (2.30a)

µ = R−1
λ∗,β∗(λ∗Cx − ST

λ∗,β∗ζ) (2.30b)

ν = J−1
β∗ (MT ζ − λ∗NT Rλ∗,β∗(ST

λ∗,β∗ζ + Cx)). (2.30c)

System (2.24) is then obtained by substituting these expressions for v, µ and ν in (2.28a)-(2.28e).
Formula (2.27) is just a renormalization of (2.30a).

Note that if T ∗ < T , we can reduce our test period by setting T = T ∗ because the additional
time is not of any use to us: it doesn’t allow us to improve the separability index. So from here on
we assume that T = T ∗.
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3 On-line detection tests

Once the auxiliary signal v is constructed, it can be used for on-line failure detection. Unlike the
construction of v which is done off-line and thus can be computationally intensive, the on-line
computation burden must be such that real-time implementation can be envisaged for the available
hardware.

3.1 Standard solution

One solution to on-line detection problem would be simply to use a realizability test for each of
the two models. That is, test whether y is consistent with Model i. In fact, since by construction
A0(v∗) ∩ A1(v∗) = ∅ in a perfect world, we would only have to implement a single realizability
test for one of the two models. But in the real world the models are not perfect and the on-line
detection test should be based on both realizability tests.

Theorem 3.1. Consider model (2.2) with uncertainty model (2.3). Suppose that Ni⊥
T ΓNi⊥ >

0, ∀t ∈ [0, T ], and the following Riccati equation has a solution on [0,T];

Ṗi = (Ai − SiR
−1
i Ci)Pi + Pi(Ai − SiR

−1
i Ci)T − PiC

T
i R−1

i CiPi + Qi − SiR
−1
i ST

i , Pi(0) = Pi0

(3.31)

where

(
Qi Si

ST
i Ri

)
=

(
Mi

Ni

)
J−1

i

(
Mi

Ni

)T

. Then a realizability test for Model i is:

γi,s(y) < 1, for all s ∈ [0, T ] (3.32)

where γi,s =
∫ s
0 µT

i R−1
i µi dt and µi is the output of the following system

˙̂xi = Aix̂i − (Si + PiCi
T )R−1

i µi + Biv
∗, x̂i(0) = 0 (3.33a)

µi = Cix̂i − (Eiy − Div
∗). (3.33b)

Another advantage of using two realizability tests is that it could result in faster detection since a
realizability test can detect “non-realizability” before the end of the test period T . The realizability
tests for models (2.2a)-(2.2b) are obtained directly from the application of Theorem 4.2 and its
corollary. Note that y 	∈ Ai(v) as soon as γi,s ≥ 1 for some s.

3.2 Hyperplane test

It is sometimes possible to construct a “hyperplane” test to be used for on-line detection. A
separating hyperplane doesn’t always exist, but it does in many interesting cases when the Ai(v)
are convex. The separating hyperplane test can be expressed as follows:

∫ T

0
h(t)T (y − y∗(t))dt � 0. (3.34)

We have noted explicitly the dependence of h and y∗ on t to emphasize that they almost always
depend on time.
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Theorem 3.2. Suppose a separating hyperplane exists and that the two conditions of Theorem 2.1
are satisfied. Then, a separating hyperplane can be characterized as follows:

h =

(
F

(
E0

−E1

))T

R−1
λ∗,β∗(Cx∗ + Dv∗ + Qλ∗) (3.35)

and

y∗ =

(
E0

E1

)l ((
C0 0
0 C1

)
x∗ +

(
D0

D1

)
v∗ +

(
N0 0
0 N1

)
ν∗

)
. (3.36)

Proof. The optimization problem that defines v can be written

inf
ν,x,y0,y1

x(0)T P−1
β x(0) +

∫ T

0
νT Jβν dt (3.37a)

subject to

ẋ = Ax + Bv + Mν (3.37b)(
E0 0
0 E1

) (
y0

y1

)
=

(
C0 0
0 C1

)
x +

(
D0 0
0 D1

)
v +

(
N0 0
0 N1

)
ν (3.37c)

y0 − y1 = 0. (3.37d)

The Lagrange multiplier associated with the constraint (3.37d) gives h. We are of course interested
in the case v = v∗. Computing the optimality conditions by performing a first order variation yields
the following additional equations:

ζ̇ + AT ζ +

(
C0 0
0 C1

)T

ω = 0 (3.38a)

(
E0 0
0 E1

)T

ω +

(
I

−I

)
h = 0 (3.38b)

Jβν − MT ζ − NT ω = 0 (3.38c)

where ζ and ω are respectively the Lagrange multipliers associated with (3.37b) and (3.37c).

From (3.38b) it follows that

(
E0

E1

)T

ω = 0. But thanks to (2.13) we know that columns of F T

form a basis for the null-space of

(
E0

E1

)T

so that there exists a σ such that ω = F T σ. It is now

straightforward to show that σ = −R−1
β∗ (Cx + Dv + Q∗

βζ).. But h =
(
ET

0 −ET
1

)
F T σ which gives

(3.35). Then (3.36) follows easily (3.37c) by letting y∗ = y0 = y1.

3.3 Numerical issues

All the off-line computations required for the construction of the optimal auxiliary signal and the
hyperplane test can be done efficiently using Scilab [1] or Matlab. The computation of λβ,s requires
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a “λ-iteration” which needs the solution of the Riccati equation (2.21). This can be implemented
using a standard ODE solver. Note that for a given β, this λ-iteration gives the maxs λβ,s.

The optimization over the scalar β can be done simply by discretizing the set B (in the worst
case B = [0, 1]). That gives us β∗.

Finally the computation of the optimal auxiliary signal and the hyperplane test (if applicable)
requires the solution of the two-point boundary value system (2.24). This problem is not standard
because this system is not well-posed. To find the solution, we need first the following result:

Lemma 3.1. For any solution (x, ζ) of the boundary-value system (2.24), we have, over [0, T ),

x = Pζ (3.39)

where P is the solution of the Riccati equation (2.21) with β = β∗ and λ = λ∗.

Proof Suppose that (x, ζ) satisfies (2.24)-(2.25a). Let ζ̂ be the solution of

˙̂
ζ = (Ω21P + Ω22)ζ̂, ζ̂(0) = ζ(0). (3.40)

Let x̂ = P ζ̂. It is straightforward to verify that (x̂, ζ̂) is a solution of (2.24)-(2.25a). But (x, ζ) and
(x̂, ζ̂) are solutions of (2.24) which satisfy the same initial condition and hence x = x̂. �

We have seen that as t goes to T , P (t) diverges so P̄ (T ) = limt→T P (t)−1 is singular. P̄ (T ) can be
computed by inverting P (t) for a t close to T ; this may not be numerically reliable. Alternatively,
when we get close to T (say at t = T − δ for some small δ) and P (t) starts diverging, one switches
from the Riccati equation (2.21) to the following equivalent Riccati equation (here P̄ = P−1)

− ˙̄P = P̄ (A − Sλ∗,β∗R−1
λ∗,β∗C) + (A − Sλ∗,β∗R−1

λ∗,β∗C)T P̄ − CT R−1
λ∗,β∗C +

P̄ (Qλ∗,β∗ − Sλ∗,β∗R−1
λ∗,β∗S

T
λ∗,β∗)P̄ , P̄ (T − δ) = P−1(T − δ).

This equation can be integrated up to T yielding a singular P̄ (T ). We do not use this Riccati
equation from the beginning (t = 0) since, as noted earlier, P (t) becomes singular somewhere in
the middle of the interval, which means that P̄ goes through infinity at that point. Thus δ must
be chosen small enough to avoid this singularity, but not too small in order to avoid numerical
problems with the inversion of P (T − δ).

Once we have found P̄ (T ), noting that P̄ (T )x(T ) = ζ(T ) = 0, we can let x(T ) be any non zero
vector xT in the null space of P̄ (T ). We can now find a non zero solution to (2.24) by taking as
boundary (final) condition

x(T ) = xT , ζ(T ) = 0. (3.41)

This system is well-posed and has a unique solution. However, since this system is not backward
stable, its numerical solution can result in large errors. The way to avoid this problem is to use
(2.24) with boundary (final) condition (3.41) simply to solve for (x, ζ) over a short interval, for
example [T − δ, T ]. Then from T − δ on, use

ζ̇ = (−AT + CT R−1
λ∗,β∗CP + CT R−1

λ∗,β∗S
T
λ∗,β∗)ζ (3.42)

to solve for ζ down to zero. This relation is obtained easily from (3.39). The optimal auxiliary
signal is then given by (2.27).
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4 Needed Theoretical Results

4.1 Optimization of the max of quadratic functionals

In our development the inf-max of noise measures plays a fundamental role. The actual form of
the noise measures varies but the following situation covers all cases. We consider the following
optimization problem

c = inf
x

max(G0(x), G1(x)) (4.1)

where Gi(x) are quadratic functionals and x ∈ X where X is a real Hilbert space. That is, X has
an inner product <, > and contains all its limit points. In general X will be a direct sum of an L2

space and a finite dimensional space. The functionals may be written

Gi(x) =< Pix, x > + < x, qi > +ri (4.2)

where Pi is a bounded symmetric operator. In the finite dimensional case (4.2) becomes xT Pix +
qT
i x + ri, i = 0, 1, for matrices Pi, vectors qi and scalars ri.
We will need the following facts.

Lemma 4.1. For any quadratic functional G(x), if G(x0) = α0 > α1 = G(x1), then there is a
closed interval [t0, t1] and a continuous function x(t) on this interval such that G(x(ti)) = αi for
i = 0, 1, x(t0) = x0, and G(x(t)) is monotonically non-increasing on the interval.

Proof. Note that we do not assert that x(t1) = x1. In the actual use of this result later
we really only need to be able to take G(x(ti)) arbitrarily close to αi. Thus we can assume
without loss of generality that 0 is an isolated point of the spectrum of P . If G is non-negative
the proof follows from just having x(t) rescale x0. For the general case note that Pi symmetric
means we may decompose X into an orthogonal sum X1 ⊕ X2 ⊕ X3 and relative to this direct
sum we have Pi = P+ ⊕ −P− ⊕ 0 where P+, P− are positive definite, and x = x+ ⊕ x− ⊕ xo,
q = q+ ⊕ q− ⊕ qo. By a change of variables x = z + a we may assume q+ = 0, q− = 0. Thus (4.2)
becomes G(x) =< P+x+, x+ > − < P−x−, x− > + < x0, q0 > +r. The Lemma now follows by
considering the individual summands and scaling them separately. �

The optimization problem (4.1) can be re-written as follows. Let

c = inf
x

max
β∈[0,1]

βG0(x) + (1 − β)G1(x) (4.3)

Lemma 4.2. Suppose c is defined by (4.3). Let S = {x|G0(x) = G1(x)}. If c ≥ 0, then at least
one of the following statements holds

1. c is the global minimum of G0(x)

c = min
x

G0(x), (4.4)

2. c is the global minimum of G1(x)

c = min
x

G1(x), (4.5)
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3. or

c = inf
x∈S

G0(x) = inf
x∈S

G1(x) (4.6)

Note that the inf in (4.3) cannot always be replaced with a min even if c ≥ 0 as can be seen
from the example c = infx1,x2 max(x2

1, 1−x1x2). Clearly here c = 0 but zero is not achieved by any
(x1, x2).

Proof. Suppose that c ≥ 0. Let δ be the inf in (4.6). Clearly c ≤ δ. If c = δ we are done since
then (4.6) holds. Suppose then that c < δ. Let {xj} be a sequence such that max{G0(xj), G1(xj)}
decreases monotonically to c. Let

S1 = {x : G0(x) > G1(x)}, S2 = {x : G1(x) > G0(x)}

Since c < δ there must be a subsequence of {xj} which lies in S1 or S2. We may assume that it is
in S1. Thus we have G0(xj) → c. If c is the global min of G0, then we are done. Suppose this is
not the case. Then there is an x̂ ∈ S1 with c ≤ G0(x̂) < δ and an x̃ ∈ S2 with G0(x̃) < c ≤ G0(x̂).
Applying Lemma 4.1 we get an x(t) on [0, 1] such that x(0) = x̂ and G0(x(1)) = G0(x̃). Clearly
x(1) ∈ S2. But now consider the continuous scalar function b(t) = G0(x(t)) − G1(x(t)). We have
b(0) > 0 and b(1) < 0 so there is a value t̂ so that b(t̂) = 0. But then this x(t̂) is in S and
G0(x(t̂)) < δ because G0(x(t)) decreases. But this contradicts the definition of δ.

Lemma 4.3. If c ≥ 0, then there exists a β ∈ [0, 1] such that for all x we have

βG0(x) + (1 − β)G1(x) ≥ 0 (4.7)

Proof. We can suppose that there exists an x such that G1(x) < 0 (otherwise, G1(x) ≥ 0 for all
x and we can take β = 0). Also, clearly, for any x, if G1(x) < 0 then G0(x) ≥ 0 since otherwise
c < 0. We can now use Theorem 4.2.1 of [9] which states that for two quadratic functionals G0(x)
and G1(x), if there exists x̄ such that G1(x̄) > 0, then the following conditions are equivalent:

1. G0(x) ≥ 0 for all x such that G1(x) ≥ 0;

2. there exists a constant τ ≥ 0 such that G0(x) − τG1(x) ≥ 0, for all x.

For that, let G1(x) = −G1(x) and G0(x) = G0(x). Then from the above result follows that there
exists a constant τ ≥ 0 such that G0(x) + τG1(x) ≥ 0, for all x. If we let τ = 1−β

β we obtain (4.7)
which is the desired result.

The preceding results enable us to prove the result which allows us to interchange the inf-max
with a max-inf.

Theorem 4.1. If c ≥ 0 then

c = max
β∈[0,1]

inf
x

βG0(x) + (1 − β)G1(x). (4.8)
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Proof. Since max inf ≤ inf max, we know that

c ≥ max
β∈[0,1]

inf
x

βG0(x) + (1 − β)G1(x). (4.9)

So if condition (4.4) holds, then the equality is obtain by setting β = 1. Similarly, if (4.5) holds,
then the equality is obtain by setting β = 0. So the only case that we need to consider is when

c = inf
x∈S

G0(x) = inf
x∈S

G1(x). (4.10)

Let B denote the set of all β for which βG0(x)+ (1−β)G1(x) is convex in x. This set is not empty
because it contains at least one element as shown in Lemma 4.3, and it is closed. Thanks to (4.10),
we have

c = inf
x

max
β∈[0,1]

βG0(x) + (1 − β)G1(x) = inf
x∈S

max
β∈[0,1]

βG0(x) + (1 − β)G1(x)

= inf
x

max
β∈B

βG0(x) + (1 − β)G1(x) = max
β∈B

inf
x

βG0(x) + (1 − β)G1(x). (4.11)

But infx βG0(x) + (1 − β)G1(x) is −∞ if β is not in B proving (4.8).

Corollary 4.1. If c > −∞, (4.8) holds.

Proof. Suppose c = −p < 0 and let Gi(x) = p + Gi(x), i = 0, 1. Then apply Theorem 4.1.

We have thus shown that the order of inf and max can be exchanged in problem (4.3) when c is
finite and that the max-inf is −∞ when c is −∞. This shows that we can exchange the order of
max and inf in every case.

Lemma 4.4. The set B consisting of those β for which βG0(x) + (1− β)G1(x) is convex in x is a
closed interval inside [0, 1].

Proof. It is easy to see that β ∈ B if and only if M(β) � βP0 + (1 − β)P1 ≥ 0. Clearly then B is
closed. Now let 0 ≤ λ ≤ 1, and let β1 and β2 be in B. We can see that λβ1 + (1 − λ)β2 is in B by
noting that M(λβ1 + (1 − λ)β2) = λM(β1) + (1 − λ)M(β2) ≥ 0. Thus B is connex.

Remark The solution to the optimization problem (4.1) can thus be constructed as follows

c = max
β∈B

inf
x

βG0(x) + (1 − β)G1(x). (4.12)

The minimization problem is a standard LQ problem, and the maximization is that of a concave
function over a finite interval. Note also that B being not empty does not imply that c is not −∞.
For that we need an additional assumption: non-singularity.

Definition 4.1. The optimization problem (4.1) is called non-singular if there exists a β ∈ [0, 1]
such that βG0(x) + (1 − β)G1(x) is strictly convex.

Clearly in the finite dimensional case, non-singularity is equivalent to the existence of β ∈ [0, 1]
such that

βP0 + (1 − β)P1 > 0. (4.13)
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Lemma 4.5. If the optimization problem (4.1) is non-singular, then c > −∞.

Proof. Let β such that (4.13) is satisfied. Then the optimization problem:

inf
x

βG0(x) + (1 − β)G1(x) (4.14)

has a finite solution because we have a strictly convex quadratic functional. Thus c > −∞.

Note that non-singularity is not a necessary condition for c > −∞, but sufficient. However, it is
a necessary and sufficient condition for c > −∞ for all qi and ri. Also note that in the non-singular
case, B is not reduced to a single point.

4.2 Continuous-time problem and the Riccati equation

Lemma 4.6. Suppose the Hamiltonian two-point boundary value system

ξ̇ =

(
A Q

R −AT

)
ξ (4.15)

0 = V0ξ(0) + VT ξ(T ) (4.16)

where V0 =

(
Πi −I

0 0

)
, VT =

(
0 0
0 I

)
, is well-posed (i.e. has unique zero solution) for all

T ∈ [0, T̄ ) but it is not well-posed for T = T̄ . Then the solution of the Riccati equation

Ṗ = AP + PAT − PRP + Q, P (0) = Π−1
i , (4.17)

diverges at t = T̄ .

Proof. Let Ψ be the system matrix, i.e, Ψ(0) = I and

d

dt

(
Ψ1 Ψ2

Ψ3 Ψ4

)
=

(
A Q

R −AT

) (
Ψ1 Ψ2

Ψ3 Ψ4

)
. (4.18)

The well-posedness of the two-point boundary value system over [0, T ] can then be characterized in

terms of the invertibility of the matrix V0+VT Ψ(T ) =

(
Πi −I

Ψ3(T ) Ψ4(T )

)
which after straightforward

manipulation can be shown to be equivalent to invertibility of Ψ3(T ) + Ψ4(T )Πi. Let M(t) =
Ψ3(t) + Ψ4(t)Πi. Then we know that M(t) is invertible for t < T̄ and singular for t = T̄ . But it is
straightforward to verify that P (t) = (Ψ1(t)+Ψ2(t)Πi)M(t)−1 satisfies the Riccati equation (4.17),
and it diverges at t = T̄ because M(T̄ ) is singular.

Now consider the following optimization problem

J(s, a, b) = min
x(0),ν

x(0)T P−1
0 x(0) +

∫ s

0
νT Γν dt (4.19)

subject to

ẋ = Ax + Bν + a (4.20)

b = Cx + Dν (4.21)
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over the interval [0, T ]. Matrices A, B, C and D have piece-wise continuous-time entries. D is
surjective, P0 > 0 and Q is symmetric and invertible but not necessarily sign-definite. Vectors a

and b are known continuous functions of time.

Theorem 4.2. Optimization problem (4.19) has a bounded unique solution for all s ∈ (0, T ] if and
only if

D⊥
T ΓD⊥ > 0, ∀t ∈ [0, T ] (4.22)

where D⊥ is a highest rank matrix such that DD⊥ = 0 and the Riccati equation

Ṗ = (A − SR−1C)P + P (A − SR−1C)T − PCT R−1CP + Q − SR−1ST , P (0) = P0 (4.23)

where

(
Q S

ST R

)
=

(
B

D

)
Γ−1

(
B

D

)T

has a solution on [0,T].

Corollary 4.2. If it exists, the unique bounded solution to the optimization problem (4.19) is given
by J(s, a, b) =

∫ s
0 µT R−1µ dt where µ = Cx̂ − b and where x̂ satisfies ˙̂x = Ax̂ − (S + PCT )R−1µ +

a, x̂(0) = x0 where P is the solution of (4.23).

Proof. Space prohibits giving anything but an outline of the proof of Theorem 4.2. Recall that in
an optimal control problem defined on an interval [t0, tf ] that the cost to go, W (x, t) is the minimal
cost given we start at position x at time t. The principle of optimality from dynamic programming
says that the cost to go function satisfies the equation

0 = min
ν

H(x, ν, Wx) (4.24)

where H is the Hamiltonian. The principle (4.24) in turn leads to a partial differential equation
on W . Now note that if we change the time direction in (4.19)–(4.21) by letting t = T − τ , then
we get a standard terminal cost optimal control problem. Accordingly we shall use the principle
(4.24) in reverse. Thus cost (4.19) is the past cost given x(t), ν(t). Let V (s, z) for a vector z, be the
minimum value of (4.19) with the added constraint that x(s) = z. We then determine x̂,Π(t), µ(t)
such that

V (s, x) = (x − x̂)T Π(0)(x − x̂) +
∫ s

0
µT R−1µdt (4.25)

Note that the existence condition we consider in Theorem 4.2 has to do with a family of op-
timization problems and in particular optimization problems (4.19) for all s ∈ (0, T ]. It turns
out the existence condition for the single optimization problem (4.19), s = T , is not the same in
general.

5 Conclusion

We have developed some of the theory and algorithms for the design of auxiliary signals for perform-
ing model identification in the presence of both additive and model uncertainty. The perturbations
satisfy certain bounds and guaranteed indentification is provided by the auxiliary signals.
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