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Abstract: The controllability for switched linear
systems with time-delay in control are first formulated
and investigated. A sufficient and necessary condition
for controllability of periodically switched linear systems
is presented. Furthermore, it is proved that the control-
lability can be realized in n + 1 periods at most. An
example illustrates the above results. Some further re-
sults are also presented.
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1 Introduction

Switched linear systems are an important class of hy-
brid dynamical systems which consist of a family of lin-
ear time-invariant systems and a switching law specify-
ing the switching between them. In recent years, there
has been increasing interest in the control problems of
switched systems due to their significance both in theory
and applications.

In the analysis and design of switched systems, con-
trollability and reachability are two important issues
that have been addressed in several references. Stud-
ies for the controllability, observability and stability for
periodically switched linear systems can be found in [1],
and some sufficient conditions and necessary conditions
are given. In [3], a necessary and a sufficient condition
are presented for reachability. [4] strictly defines con-
trollability, reachability, controllable set and reachable
set for general switched systems. The reachability of
second-order switched linear systems is discussed in [5].
On the basis of [1], [6] presents a necessary and sufficient
geometric condition for multiple-periodic controllability
of periodically switched linear systems and points out
that the controllability can be realized in n periods at
most.

Time-delay phenomena are very common in practi-
cal systems, for instance, economic, biological and phys-
iological systems. The controllability for linear time-
invariant systems with time-delay in the control is stud-
ied in [2]. But for switched linear systems, almost all
of the known results have not considered time-delay. In
this paper, the controllability for switched linear sys-
tems with time-delay in control is first formulated and
investigated. A sufficient and necessary condition for

controllability of periodically switched linear systems is
derived.

This paper is organized as follows. Section 2 for-
mulates the problem and presents the preliminary re-
sults. Section 3 defines 1-periodic controllability and m-
periodic controllability and presents the sufficient and
necessary conditions. In section 4, an example is given
to illustrate the results. Section 5 presents some further
results. Section 6 concludes the whole paper.

2 Preliminaries

Consider a switched linear system with time-delay in the
control function given by

x(t) = Ar(t)x(t) + Br(t)u(t) + Dr(t)u(t - 7') (1)

where z(t) € R" is the state, u(¢t) € R is the in-
put, the piecewise constant scalar function r(t) : RT —
{1,2,---, N} is the switching law, and {(4;, B;, D;)|i =
1,---, N} is a finite family of system realizations. More-
over, r(t) = ¢ implies that (A;, B;, D;) is chosen as the
system realization at time t. 7 > 0 is the fixed time
delay in control.

For system (1), a switching law is to specify when
and to which system realization one should switch at
each instant of time.

Definition 1 (Switching Sequence). For system (1),
a switching sequence w is a set with finite pairs

7% (g, b)), i, har) ) (2)

where M < oo is the length of w, iy € {1,--- N} is
the index of the mth realization (A;, ,B;, ,D;. ), and
hm > T is the time interval of (A;,,Bi, D, ), for
m=1,---, M.

()

Given initial time ¢y and switching sequence 7 =
{(im, ) YM_, | an associated switching law 7(t) can be
determined as

m—1 m
r(t) =im,ift € fto+ Y hto+» M) (3)
=1 =1

form=1,---,M.
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Remark 1. Here we assume that h,, > T in the defini-
tion of switching sequence in order to avoid unnecessary
complexity.

If r(¢t) is restricted to be a periodic function, we
get periodically switched systems. Without loss of
generality, we just take the switching sequence m =
{(1,h1), -+ ,(n,hy), -+ ,(N,hn)} as the period of sys-
tem (1).

Now, we introduce some mathematical preliminaries
as the basic tools for the discussion in the following parts
of the paper.

Definition 2 (Column Space). Given a matriz B €
R>™ the column space R(B) is defined as
def m
= {Byly e R}

R(B) (4)

Definition 3 (Generalized Invariant Subspace).
Given matrices Ay, -+ ,Axy € R"*" and By,--- ,By €
R"*P_ the generalized invariant subspace (A1|By + -+
AN|Bp) is defined as

de > . .
(A1 By + -+ An|By) € S R(ALB; + - + Ay By)
i=0
(5)
FEspecially,
def x> i
(A1Br) = ) R(AIBy) (6)
Lemma 1. Given matrices Ay, -+ ,Axy € R™™"™ and
Bla o 7BN € §Rn><p7
Nn—1 ) .
(A1|Bi+---+An|By) = Y R(A}Bi+---+ Ay By)
i=0
(7)
FEspecially,
(AnBr) =" "R(ALB)) (8)
Proof. See Appendix A. O

Remark 2. The subspaces (A1|B1+---+ Ax|Bn) and

(A1|B1) + - - + (An|BnN) are quite different. It is easy
to see that (A1|By + - + An|Bn) C (A1|By) + -+ +
(An|Bn)-

The following lemma is very basic, but it is the
starting point to discuss the conditions for system con-
trollability. For simplicity, let p.c. denote piecewise
continuous.

Lemma 2. Given matrices Ay,--- ,Ax € R™™"™ and
By,---,By € R™*P, for any 0 < tp < ty < +o0, we
have

{z|z = th exp(An, (ty — $))Bpu(s)ds,V p.c. u}
(A1\B1 + -+ An|Bn)
(9)
FEspecially,

{alz = [ eM =9 Biu(s)ds, ¥ p.c. u} = (A1|By)
(10)

Proof. See Appendix B. O

Lemma 3. Given matrices A € ", B € R"*P and

nonsingular matric P € RP*P | we have

(A|BP) = (A|B) (11)

Proof. See Appendix C. O

Lemma 4. Given matrices A € R*™, B € R™"*P_ for
any constant h € R, we have

exp(Ah) (A|B) = (A|B) (12)
(Alexp(Ah)B) = (A|B) (13)
Proof. See Appendix D. O

Lemma 5 (Separation Lemma). Given matrices
Ay, Ay € R By, By € R"*P | we have
(A1 By + Ag|Bz) + (A2|By) =

(A1|B1) + (A2|B2) (14)

Proof. See Appendix E. O

Remark 3. The separation lemma can be extended to
the multiple case, i.e.,

(A1|B1 + -+ AN|Bn + C1|D1 4+ -+ -+ Crr|Dag)
+(C1|D1+ -+ Cym|Dup)
= <A1|B1 +"'+AN|BN> + <01|D1 + "'+CM|DM>
(15)

Lemma 6. Given matric A € R"*", for almost all
T > 0 and any linear subspace YW C R™, we have
(AW) =

{exp(AT)|W) (16)

Proof. See Appendix F. O

3 Main Results

In this section, we establish the controllability criteria
for periodically switched linear systems.

3.1 1-periodic Controllability

Definition 4 (1-periodic Controllability). System
(1) is 1-periodic controllable if for any given pair of
points xo, xy, and initial control function ug(t), t €
[to — 7,t0], there exists a piecewise continuous control
function u(t) which steers the state of the system from

z(to) = xo to x(tn) =y, where ty =ty + leil hy

For system (1), given initial state zo and initial con-
trol input wug(t) on [tg — 7,to], let ¢, = to + >0y hu,
m = 1,---, N, then the terminal state z7 can be ex-
pressed as follows

xTp= Hl NeXp(A hi)xo
N i+1 i

+ 57 [T et f eAiti=s)(Byu(s) + Dyu(s — 7))ds
i=11=N ti—1

(17)



— 8)|(Bsu(s) + Dyu(s — 1))ds
exp AZ(tZ )| B;u(s)ds
f cexp [Ai(ti — s)|Dyu(s — 7)ds
= j; exp [A;(t; — s)|Biu(s)ds
+ft.‘ T exp[Ai(ti — 5)]exp(—A;T) Dyu(s)ds
= j;“—g exp [A;(t; — s)] exp(—A;7) Diu(s)ds
—ﬁ—ft‘ Texp [Ai(t; — 8)](B; + exp(—A;T)

D;)u(s)ds
+ ff;,T exp [A;(t; — )| Biu(s)ds
— cAihi tt:,_llf‘r Aiti-1— s)e AT Dyu(s)ds
+ i exp [A <t = 8)|(Bi + exp(—AiT) Di)u(s)ds

L

Then (17) can be rewritten as

- exp [Ai(ti — )| Biu(s)ds

1

zp= [] edihi {:co + fttooiT eAl(tO*S)Eluo(s)ds}
z:N
—1 i+1 -
z [T exp(Aihy) { J77 e Fuu(s)ds
p— :N

ft (e (ti=9) By et ti=) B L) u(s)ds}
+ftN 17- exp [An (tn — $)](By + En)u(s)ds
+ftN L exp [An(ty — s)|Byu(s)ds
(18)
where

E; =exp(-A;7)D;, F;=B;,+E;, i=1,--- N.
(19)

We define the set

= {x|x = Z H eAithi {fi;f Ai(t; S)Fl-u(s)ds

=1 l=
+ f::‘ (AETB A B uls)is
—i—ftN Texp [An(ty — 8)](Bn + En)u(s)ds

+fon-

L exp [An(ty — s)]|Byu(s)ds, ¥ p.c. u
(20)

Theorem 1. System (1) is 1-periodic controllable if and
only if V1 =

Proof. System (1) is 1-periodic controllable if and only
if for any x,  and uo, there exists u(t) such that equa-
tion (18) holds. This is equivalent to V; = R™. O

Corollary 1 (Sufficient). System (1) is 1-periodic con-
trollable if

N—1i+1
ST exp(Aih) (Ai|Fy) + (An[Fy) = R" (21
i=1 =N
Proof. Consider the set
—14i+1 bt
Uy = xlz = Z [T ettt [, 7 eAeltim9) Fu(s)ds
i=1 =N

+ftN lT AN(tN S)FNU(S)d&V p.c. U}

It is easy to verify that Uy C V. In fact, we have

N—-1i41

= > 11 exp(Alhl){x|x:

i=1 |=N

ti—1

"7 exp [Ai(t; — )| Fyu(s)ds, ¥ p.c. u}

{x|x = j; Texp [An(ty — 8)]Fnu(s)ds,

V p.c. u}

By Lemma 2, we have

N—1 it1
= Z H exp(Alhl) <AZ‘FZ> + <AN|FN>
i=1 =N
Thus, U; = R™ implies V; = R"™. O

Remark 4. For system (1), let 7 = 0, we get the fol-
lowing switched system without delay

x(t) = Ar(t)l‘(t) + FT.(t)u(t) (23)
It is easy to verify that system (23) is controllable if and
only if Uy = R™ (For more details, see [1]). Thus, Corol-
lary 1 means that the controllability of a switched system
without delay implies the controllability of a switched
system with delay.

Corollary 2 (Sufficient and Necessary). System (1)
is 1-periodic controllable if and only if

[ A (AR +
By, En]) = ®"

’:]Jr

Ty

(AilBi + Aiy1|Eiy1)) (24)

Z

Proof. From (20), by Lemma 2, we have

N—1 i+l
V) = IT exp(Aihi)< {z]x =

=1 =N
o7 exp [Ailts — )| Fiu(s)ds, ¥ pec. u}
+{z|z =
tt:—T (ettm)B; ettt (im) By ) u(s)ds,
Vp.c.u}

+{z|r = tt]]vv__f exp [An(ty — 9)](Bn + En)u(s)ds,
+{z|x = ft _exp [An(tn — s)]Byu(s)ds,V p.c. u}

=5 T exp(Aihn) (AdF) + (A By + A1 Bisn))
By + En)) + (An|Bn)

x
N

(25)
By Lemma 3 and Lemma 5, we have (Ax|(By + En)) +
(ANn|Bn) = (AN|[Bn, EN]). By Theorem 1, the conclu-
sion of Corollary 2 is obvious. O



3.2 Multiple-periodic Controllability

Definition 5 (m-periodic Controllability). System
(1) is m-periodic controllable if for any given pair of
points xg, xf, and initial control function uo(t), t €
[to — T,to], there exists a piecewise continuous control
function u(t) which steers the state of the system from

z(to) = o to x(tmn) = T, where ty,n = to+m Zl]il h

Remark 5. System (1) is said to be multiple-periodic
controllable if there exists m such that the system is m-
periodic controllable.

Theorem 2. System (1) is m-periodic controllable if

U + (HLN exp(Aihi)) Uy + -

m—1 (26
+ (H}:N exp(Aihi)) L[l = %”

=

= SV LN exp(Aih) (Ai|Fy) + (An|F).

Proof. The proof proceeds in a way similar to that of
Corollary 1 and is thus omitted here. O

where Uy

Remark 6. System (1) is m-periodic controllable, for

any m >n if
u1>m”

< H exp(Ai hi)
=N

Theorem 3. System (1) is m-periodic controllable if
and only if

(27)

(28

=

Vi + (TTioy exp(Aihi) ) V1 + -+
( _nexp( Ah))miill =R"

where Vi = Zi\gl ;-&-le exp(Ah)((A;|Fy) +
<A \B + Ait1|Eit1)) + (An|[Bn, En]), and D1 =
S TLEN exp(Auhy) ((Ai F) + (A | Bi+ Aiga | Eiga)) +
<AN|FN> (AN|Bn + A1|EY).

Proof. The proof proceeds in a way similar to that of
Corollary 2 and is thus omitted here. O

Remark 7. System (1) is m-periodic controllable, for
any m > n+ 1 if and only if
y1> =R

1

Vi + < H exp(Aihl-)
i=N

Thus, if system (1) is multiple-periodic controllable, then

the controllability can be realized in n+1 periods at most.

(29)

Remark 8. The above criteria are of geometric form.
But it is easy to transfer them to algebraic form, i.e, by
verifying certain matrices to be full rank or not.

4 Example

In this section, we give an example to illustrate that a
switched system with time-delay can be 1-periodic un-
controllable but multiple-periodic controllable.

Example 1. Consider the following 5-dimensional
switched system, with two realizations given by

1 0000 0 0
0200 0 0 0

Ai=10 03 0 0|.,Bi=|0]|,Di=]0|;
0000 0 1 0
0000 0 1 1

"0 0 0 0 07 (1] F0
0000 0 1 0
As=10 0 0 0 0 |,Bo=|1]|,Dy=]0
00000 0 1
100 0 0 0] 0 0 |

(30)

Assume the time delay 7 = 1 and the switching sequence

is {(1,2),(2,2)}.

By a simple calculation, we have

1 0 0
1 0 0
Vi=span{| 1 [,|0],] 0]} (31)
0 1 2
0 2 1
and
Uy + exp(24z) exp(241)U; + (exp(24z) exp(241))%U;
e2 et eb 1 0
et 8 el? 1 0
=span{| e |, | e |, [ e® |, |1 |,]0]}
1 1 1 1 1
0 0 0 0 2
(32)

It is obvious that dim(V;) = 3 and dim(l; +
exp(24z) exp(2A41)U; + (exp(242) exp(241))2U;) = 5.
Thus Example 1 is not 1-periodic controllable but 3-
periodic controllable.

5 Some Further Results

Some further results will be presented in this sec-
tion. The controllability, stability and stabilization of
switched linear systems without time-delay can be re-
ferred to [8-24].

5.1 Controllability of

Systems

Periodic-Type

5.1.1 1-periodic Controllability

Theorem 4 (Sufficient and Necessary Condition
). System (1) is 1-periodic controllable if and only if

2

—1 i+1

+

exp(Aih){Ai|[Bi, Di]) + (An|[Bn, Dn]) = R"

R

h
Il
_

(33)



Proof. For (20), by Lemma 2, we have

Vl—

=1 =

ti—1

—1 1+1 i
ol eAl’”{{m— [ M) Fru(s)ds, ¥ pec. u)

i
+Halz = [ (eMEIB; + et imI B ) u(s)ds,

t;i—T

Y p.c. u}}

tN—T

+Halz = [ eA¥EN=9)(By + Ex)u(s)ds,V p.c. u}

tN—l

+{z|x = f e

tN—T

+(

Next we will prove

N—-1i+1

; eXp(Alhl)(<Ai|Fi> +
+_<A |(By + E))

=N

N

We prove it by induction. For N = 1, by Lemma 3

NN =) Bru(s)ds, Y p.c. u}

2 f[exp(Alhl)(<Ai|Fi)+
A_N|_B +EN)) +

and Lemma 4, we have

(A1|(B1 + Ev)) +

= (A1[[B1, Er]

= (41|[B1, E1]) =

Hence, for N =1, (35)holds.

(An|Bn)

(A1|Bn)

I 0

I I )
(A1|[B1, D1])

For N =2, by Lemma 5, we have

efzhz <<A1|B1 + E1) + (A1|B1 + A2|E2>>

+(A3|Bs + E5) +

(A2|Ba)

(Ail Bi + Aig1|Eiy1))

(34)

(Ail Bi + Aig1|Eiy1))
+ (An|Bn)

= 5 1 explatn) (A1 [Bi. D) + (Ax By, Do)

(35)

= cA2h (A4 By + Bn) + (4| By + 43| Ba) + (43| Ba) )

+(A2|Ba)

— gAsho (<A1|Bl + E1) + (A4|By) + <A2|E2>)

+(A2|B2)

= 2% ({4y|[By, El) + (A2]Ez)) + (4] Bo)
= eA2h2 (A |[By, D1]) + (As|[Ba, D3))

Thus, for N =2, (35

) holds.

Suppose for N — 1, (35) holds, then we have

Z H exp(Athi) ((Ail Fy) + (Ail Bi + Aiy1|Eig1)

i=1 [=N

+(AN|(BNn + EN)) + (AN|BN)
]1_\7[ exp(Aihy)({(A1]|F1) + (A1|B1 + A3|E»))

+ - :I]—\—t[_leXp(Alhl)(<AiFi> + <AZ|B7, + Ai+1|Ei+1>)
+<;4 ~|(By + EN)) + (An|Bn)

= l:g_leXp(Alhl)“AﬂFﬂ + (A1| By + Az|Es))
+% 11 ep(n) (415, D) + (Al [By. D)

= lzlj_leXp(Alhl)“AﬂFﬂ + (A1| By + Ag|Ea) + (A2|E2))
5 T el (Ai[B: D) + (Ax By, D)

= T exp(Aih)(Ai][By, D))
TN in
+ ;2 l:]l_vlileXP(AlthAiHBz‘,DiD + (An|[Bn, Dn])

— 5 TT exp(Aih) (A5, D) + (Ax By, Dy

Thus, for N, (35) holds. Hence, for 1,2,--- , N, (35)
holds. The conclusion of Theorem 4 is obvious. O
5.1.2 Multiple-periodic Controllability

Theorem 5 (Sufficient and Necessary Condition).
System (1) is m-periodic controllable if and only if

1 1
Vit (TT exp(aih) Vi 4+ (T] exp(Aih))™vi = B
i=N i=N (36)
where V1 = Z le—i—]lv exp(Aihy) ((Ai|[Bi, Di]) +

Proof. The proof is similar to that of Theorem 1. O

5.2 Controllability of Aperiodic-Type
Systems

In this part, we discuss the controllability of aperiodic-
type switched systems with time-delay in control. The
results are similar to those of systems without time-delay
in control.

Definition 6 (State Controllability). For system
(1), given initial state xo and initial control function
uo(t), t € [to — 7,10, the state xy is said to be (xo,up)-
controllable, if there exist a switching sequence m =
{(imn, hin) YM_ | and a piecewise continuous function u(t),
t € [to,tn] such that x(ty) = zo, z(tn) = x5, where
tn=to+ Yo h

Definition 7 (System Controllability). System (1)is
(completely) controllable, if for any xo and initial con-
trol function ug(t), t € [to — 7, 0], any xy is (xo,uo)-
controllable.



Now we introduce the definition of controllable set.
Based on this concept, a geometric criterion for the con-
trollability of switched systems is presented.

5.2.1 Controllable Set of Switching Sequence

Definition 8 (Controllable Set). For system (1),
given xg, initial control function wug(t), t € [to — T, to]
and switching sequence ™ = {(im, b ) YM_,, the set of all
the states starting from xo and uo(t) through the switch-
ing sequence T is called the (xg,ug)-controllable set of
the switching sequence 7, denoted by C(xg, ug, ).

Given initial state xp and initial control function
uo(t), t € [to—T, o], the system state through the switch-
ing sequence 7 = { (i, hm)}M_, can be represented as

to—T

1 to
F= ] etuln {xo + J eAil(tos)Eiluo(s)ds}
I=N

M—1m+1

ton—T
+ 3 10 e"‘”’”{ J et Fy u(s)ds
t

m=1 =M
tm—T
+L/ . eXp inr (t]bf - S)](B'LM + EiM)u(S)dS
+ ftM _r exp [Aiy, (tar — )] Biy, u(s)ds
(37)
where
tm = to + Zlyil hy, Ei, = exp(—Ai, hm)Ds,,
(38)

Then we can draw the following conclusion.

Theorem 6. For system (1), given xzq, initial con-
trol function ug(t), t € [to — 7,%0] and switching se-
quence © = {(im, hm)}M_,, the (1o, u)-controllable set
C(xo,up, ™) of the switching sequence 7 is as follows:

C(Io,U(),TI') = ITL(SC07UO77T)
M—1m+1
Y I et (A (B D)
m=1 =M
+ <AiM|[B1M ) D; ]> (39)
where
1
In(xo,ug,m) = [] eai{xg
o =N (40)
+ [ et B, ug(s)ds}
to—T
In particular, for xo =0, ug = 0, we have
M—-1m+1
C(O, 0, 7T) = Zl ll_J[VI eXp(Aiz hl)<AimHB2m7 D; ]>
+ <AiM|[B1M’D1M]>
(41)

which is a linear subspace in R™, denoted by C(r).

Proof. The proof is similar to that of Theorem 4. O

Some basic properties of C(r) are given below.

Definition 9 (Product of Switching Sequences).
Given two switching sequences T = {(im, hm)}M_ and
72 = {(Jm,gm)}E_,, the product of the switching se-
quences m, and o is defined as

def
1 /\71'2 =

{(ilvhl)v"' 7(iM7hM)7 (42)
(.71791)7 Ty (jL7gL)}
Since it is easy to prove that (m3 A m2) A w3 =
m1 A (w2 A 3), we denote it by w1 A my A 7.

Definition 10 (Power of Switching Sequences).
Given a switching sequence 7, the power of the switching
sequence T is defined as

n times
f—/‘ﬁ
ahn T T (43)
Definition 11 (Exponential Matrix). Given a

switching sequence ™ = {(im, hm)}M_,, the exponential
matriz of the switching sequence  is defined as

H eXp lm

(44)

Theorem 7. Given switching sequences m and T3, we
have

C(m Ame) = exp(ma)C(my) + C(m2) (45)

Proof. Tt can be easily proved by the definitions of

the product of switching sequences and the controllable
set. O

Theorem 8. Given a switching sequence w, we have

C(r"\") =

{exp(m)|C(m)) (46)

Proof.

C(m) = exp(m)C(n" ") 4 C(m)
= [exp(m)]? (7" =?) + exp(m)C(r) + C(r)

Corollary 3. Given a switching sequence w, we have

exp(m"")C(7"") = C(x"") (47)

Proof. It’s easy to verify it by the property of cyclic in-
variant subspaces. O



5.2.2 Geometric Criteria for Controllability

For system (1), a sequence of linear subspaces can be
defined recursively as follows:

N N

Wi = ;(AA[Bi,Di]), = ;(Ailwl>7"' ,
7,7\[ 1=

W, = (A (Wh-1)

(48)
It is easy to prove that for any switching sequence T,

C(m) € Wh.

Theorem 9. For system (1), there must exist a switch-
ing sequence my such that

C(Wb) = Wi (49)

Proof. By lemma 6, for every system realization
(A;, B;, D;), there must exist a constant h; > 7 such that
for any linear subspace W, (A;|W) = (exp(4;h:)|W),

i =1,---,N. Thus, the subspace sequence Wy, --- , W,
can be redefined as
N N
W = Zl<Ai|[BmDi]>, = Zl<exp(Aihi)|W1>,-~~ ,
N =
Wn == Z<6XP(A1hz)‘Wn—1>
i=1
(50)

Suppose dim(W,,) = d. By (50), there must exist d sub-
spaces Vi, ---, Vg such that

d
Wa=> Vm
m=1

where each subspace has the form as follows:

Iprzmmm 1B, D,)) (51)

where M < oo, i1, ,in,J € {1,-+-,N}.
Consider the subspace of form (51), we can choose
the switching sequence

:{<ja1)7<iM7hiM>7"' ’(ilﬁhh)} (52)

such that

M
1] (4, b,

m=1

)(4;[Bj; Dj]) € C(n)

Proof. By Theorem 9, there must exist a switching sequence 7, = {(is,

So we can choose the switching sequence 71, - - , mg such
that V,, C C(my,), for m =1,--- ,d. Then we have

(53)

Now we construct the switching sequence .

First, if C(m\™) = W, we can get m, = 71", If not,
there must exist a switching sequence k € {2,---,d},
(without loss of generality, let k = 2) such that

C(ma) Z C(m™)
Since
C(may A TP™) = exp()™)C(ma) + C(m™)
By (47), we get
C(me Amp™) = exp(ny")(C(m2) + C(71"))
then

dim(C(me A (")) = dim(C(m2) + C(71™))

> dim(C(71"™)) + 1
=2

Thus, we can construct the switching sequence as follows

T =™

Ty = mo AT
— — An
g =Tg N (’de,l)

and let
Ty = T4
It’s obvious that
dim(C(mp)) > d
Hence, C(m,) = Wh,. O

Corollary 4 (Sufficient and Necessary Condition).
System (1)is controllable if and only if

W, = R" (54)

h)¥M_ | such that C(m,) = W, = R".

Given any initial state xo, any initial input ug, and any terminal state x, cons1der1ng the state

1 to
T§— H exp(A4;, h) {xo —|—/t

=N 0—T

there must exist an input function u(¢) such that

:»—A

Tfp—
I=N
M—1m+1
[T exp(4; ) {ft " Texp (A, (tm
m=1[=M
+ i (exp A, (s,

thnr—T
LT exp [y (b — 8))(Biy, + Bry, uls

exp(Aizhl) {1’0 + fttOO*T exp [A“ (to o

S)]Binz + eXp [Aim+1 (tm

exp [A;, (to — s)]Eiluo(s)ds} € C(mp),

5)]E¢1u0(s)ds} =

— s)|F;, u(s)ds

im

— 5)]Eim+1) u(s)ds}
ds—&—ftM exp [A;,, (tar — 8)| By, u(s)ds



where

tm=to+ > hi, Ei, =exp(—Ai hm)Di,, F,, =B, +E,, m=1--M
i=1
That is,
1
zy =[] exp(4;hy) {xo + f:OO_T exp [As, (to — s)]Eiluo(s)ds}
l:J]\\[J—l m—+1 P
+ exp(Aihi) { [T exp [Ai,, (b — )|y, u(s)ds
m=11=M
+ 7 (exp 4y, <tim = 9B, + exp[Ai,,,, (b — )] B,,..,) u(s)ds }
—l—j;M Cexp [, (tar — 8)|(Biy, + Eiy)u(s)ds + ftM _exp [Asy, (tar — )] Biy,u(s)ds
By the definition of controllability, system (1) must be controllable. O

5.3 Controllability of switched systems
with multiple time-delay

Consider the switched linear system with multiple time-
delays in control function given by

—I—ZD

where z(t),u(t) and r(¢) are defined as before, and
{(A“ Bi,Di71, s aDLK)'Z- == 1, s ,N} is a finite fam-
ily of system realizations. Moreover, r(t) = ¢ implies
(Ai,Bi,D;1,--- ,D; k) is chosen as the system realiza-
tion at time ¢. K < oo is the number of time-delays of
the system.0 < 7 < --- < 7 are K fixed time-delays.

z(t) = Ar(t) x(t) + B,«(t ku (t — 1) (55)

Remark 9. Similarly, we can describe the switching

Theorem 10 (Sufficient and Necessary condition).

law by introducing the switching sequence. In order to
avoid unnecessary complexity, we suppose the holding
time h.,, > Tk.

In this part, we will discuss the controllability of sys-
tem (55). The 1-periodic controllability, the m-periodic
controllability of periodic-type systems, and the control-
lability of aperiodic-type systems are investigated, re-
spectively. All the sufficient and necessary criteria are
presented in geometric form.

5.3.1 Controllability of Periodic-Type Systems

Without loss of generality, we still choose the switch-
ing sequence m = {(1,h1), -+, (N,hn)} as the period of
system (55).

System (55) is 1-periodic controllable if and only if

N-1i+1

Z H exp(Aihi)(

i=1 =N

Ai|[Bi,Diq, -+, Di k) + (An|[BN, DN, -+, Dn.g]) = R" (56)

Proof. We just give a proof for K = 2. Whereas for K > 2, the proof is similar. For system (55), given initial state
o and initial control function ug(t), t € [to — 7, to], let t, = to + >,y by, m=1,--- , N, then the state z; can be
represented as :

1
Ty = VHN exp(A;h;)xo
1_N—1 i+1 (57)
+ > H exp(A4;h;) ft exp [A;(ti — 9)](Biu(s) + D;1u(s — 1) + Diau(s — 12))ds
=1 [=N
—i—f:}ffi exp [An(tn — 8)[(Bnu(s) + Dyu(s — 11) + Dy gu(s — 12))ds
Since
[ exp[Ai(ti — 5)](Diau(s — 1) + Digu(s — 72))ds
= fti:ﬁT exp [A;(t; — s)] exp(—A;71)D; 1u(s)ds + fttl_lTQT2 exp [4;(t; — s)] exp(—A;72)D; 2u(s)ds
— ftti 117 ™ exp [A(t; — )] exp(—A;12)D; 2u(s)ds
—l—ft’ ! o exp [A;(t; — s)][exp(—Aiﬁ)Dm +exp(—AiTg)Di72}u(s)ds
+ft1 > exp [A;(t; — s)] [Bi + exp(—A4;71)D; 1 + exp(fAiTg)Di,g]u(s)ds
n fttz—:zl exp [A4;(t; — 5)][B; + exp(—A;71)D; 1 |u(s)ds (58)

+j; exp [A;(t; — s)|Biu(s)ds
= exp(4; h ftl 11 :21 exp [Ai(ti—1 — s)] exp(—AiT2)D; 2u(s)ds
+exp(A;h;) ft T exp[Ai(tio1 — 8)] [exp(—A;71)D;1 + exp(—A;72)
+ ftz ™ exp [Ai(t; — )] [Bi + exp(—Ai71) Di1 + exp(—Ais)
+ ft o , €Xp [A (t — )| [Bi + exp(—A;m1) Di1 ] u(s)ds
— 5)|Biu(s)ds

I

D; 2 u(s)ds
D;2]u(s)ds

exp



Thus, (57) can be rewritten as

.’L‘fZ

—.

i
=

to—T1
exp(A;h;) {xo + / exp [A1(to — s)] exp(—A172) D1 1up(s)ds
t

0—T2

0—T2

to—T71
+ / exp [A1(tg — s)] eXp(AlTQ)DLlUO(S)dS}
t

2

—14i+1 ti—To
+ H exp(A;h) { / elAi(ti—s)] {Bi + e(_AiTl)Dm + 6(_AiT2)Di)2:|U(8)dS
=N ti—1

i=1

& =

i—T1

/ { [Ai(ti—9)] |:Bi 4 e—Aim) p, 1} t el ti=olg(~Ainm)p. 2}u(8)ds
ti—T2

ti
+/ {e[A’i(ti_s)]Bi + elAir1(ti=s)] |:€(_Ai+lTl)Di+1,1 + e(—AHsz)DHLQ] }u(s)ds}
t.

+

i T2

tN—T2
/ exp [An(tn — 8)] [BN + exp(—AnT1)Dn1 + eXp(—ANTQ)DN,Q]U(S)dS

tN—1

+ / o exp [An(tn — s)] [BN + eXp(_ANTl)DN,l]U(S)dS

N—T2

tN
+ / exp [An (tn — 8)] Byu(s)ds
tN—T1

(59)
Then, system is 1-periodic controllable if and only if the following linear space is the entire space
Vi = {z]z = f(u),p.c. u} (60)
where
N—1 i+1 timTo
flu) = H exp(A;h;) { / elAi(ti=9)] [BZ- +exp(—A;m)D;1+ exp(—AiTg)Diﬁg}u(s)ds
i=1 I=N tiz1
ti—T1
+/ {6[Ai(ti_s)] [Bi + exp(_AiTl)Di,l} + eldina(tims)] exp(_Ai+172)Di+1,2}u<5)d8
t;—T2
ti
+/ {e[A iti=a)l g 4 elAir(ti= S)]{ (—Aiam) . i1,1 + e(—AimT) p. i1 2} }u(s)ds}
ti—Tz
tN—T2
+ / exp [An(ty — )] [By + exp(—An71) Dy + exp(—AnT2) Dy 2] u(s)ds
tN—1
tN—T1
+ / exp [An(tn — 8)][By + exp(—=An71) D 1]u(s)ds
tN—T
i
+ / exp [An(tn — s)|Byu(s)ds (61)
tN—T1
By Lemma 2, we have
N—1 i+1
Z H exp(Alhl) { <A1|(B1 + GXp(fAiTl)Di,l + exp(—AiTg)Di72)>
i=1 I=N
+(A;|B; + Ai| exp(—A;11) D1 + Aip1] exp(—Aitr172)Diy1 2)
+(Ai|B; + Aip1] exp(—Aigx1m1)Dig11 + Aiga] eXp(Ai+1T2)D¢+1,2>}
+ <AN‘BN +eXp(_ANTl)DN,1 +eXp(—ANT2)DN’2>
+ (An|Bn +exp(—AnT1)Dn1)
+ (An|Bn) (62)
By Lemma 4 and 5, it’s easy to prove that
N—1 i+1
Vio= > ] exp(Aihi)(Ail[Bs, exp(—Aim1) D; 1, exp(—Aim2) D; 2])
i=1 =N
+ <AN|[BN, eXp(—ANTl)DN,l, eXp(—ANTQ)DN72]> (63)



By Lemma 3, the conclusion of the theorem is proved. O

Theorem 11 (Sufficient and Necessary Condition). System(55) is m-periodic controllable if and only if

V1 + (H exp(A;h))Vy + -+ + (H exp(A;h;))™ "V, = R (64)
i=N

=N
where Vy is defined as (63).

Remark 10. For m > n, system (55) is m-periodic controllable if and only if

1
<H exp(A;h;) v1> = R" (65)
i=N

Similar to the discussion in the single time-delay case, we can easily extend the results to the multiple time-delay
case. In the following, we present the corresponding results without proof.

5.3.2 Controllability of Aperiodic-Type Systems

Theorem 12. For system (55), given initial state xg, initial control function ug(t), t € [to — 7, to] and switching

sequence T = {(im, him) }M_1, the (x0,up)-controllable set C(zo,ug, ™) of the switching sequence m is
M—1m+1
C(*/'L.Ovan ) In 1'07’“0, Z H e(A”hl) Z [B’Lva’Lm,17"' 7Dim,K]>
m=11=M
+<AiM|[BleD1Ma"' 7DiM,K]> (66)
where
1 lo—TK -1
In(zo,up,m) = H exp(A4;, hi)q o —|—/ exp [Aj, (to — s)] exp(—As, Tk ) Diy kuo(s)ds
I=N to—Tx
to—TK -2
+ / exp [A;, (to — 5)](exp(—AilTK)DihK + eXp(—AilTK_l)DihK_l)uo(s)ds
lo—TK -1
_l’_
to
+ / exp [A;, (to — s)](exp(—AilTK)Dil7K + 4 eXp(—Ailﬁ)Dihl)uo(s)ds (67)
to—71

In particular, for xo = 0and ug =0, we get

M—1m+1

C(anzﬂ-) = Z H eXp(Aizhl)<Aim |[B7'7n’DZm717 o 7Dim,K]> + <AiMHBiMaD7?Ma T 7D7:M7K}> (68)
m=1[=M

which is a linear space in R™, denoted as C(m).
For system (55), a sequence of linear subspaces is defined recursively as follows:

N N

N
Wi :Z<Ai|[Bi7Di,la"' Dikl), Wa :Z<A1|W1>, e, Wy = Z (AiWp—1) (69)

i=1 i=1 i=1

Theorem 13. For system (55), there must evist a 5.4 Controllability of Switched Systems
switching sequence my, such that with Distinct Time-delays

The above criteria for controllability, from single time-

C(my) = Wh (70) delay case to multiple time-delays case, and from

periodic-type systems to aperiodic-type systems, are all

derived on the assumption that the time-delays of every

Corollary 5 (Sufficient and Necessary Condition). system realization are consistent. A common character-
System (55) is controllable if and only if istic of all of the above results is that the criteria are
independent of the size of time-delays. Next, we discuss

controllability criteria for switched linear systems with

Wy, = R" (71)  distinct time-delays.

10



The switched linear system with single distinct time- Theorem 14. For system (72), for any switching se-
delay can be described as follows quence ™ = { (i, b)) YM_1, if By > 10, ,m=1,--- M,

#(t) = Ayyz(t) + Broyu(t) + Dogyu(t — 7)) (72) then its controllable set is
where  x(t),u(t), r(t) are defined as before.

{(4;,Bi, D;,7;)]i = 1,--- , N} is a finite family of system M—1m+1

realizations. Moreover, r(t) = ¢ implies (4;,B;,D;,7;) C(mw) = Z H el (A, B, Di, )+ (Aiy |[Bins> Din])
is chosen as the system realization at time t. 7; > 0 is m=11=M

the fixed time-delay, for i =1,--- , V. (73)

Proof. We just give the proof for the switching sequence m = {(1, h1), (2, ha)}. The process can be easily extended
to more general switching sequence. For the switching sequence m = {(1, hy), (2, ha)}, we have

C(m) = {x|x = exp(Aghg)/ 1 exp [A1(t1 — 8)](Biu(s) + Dyu(s — 7))ds

to

+/ ’ exp [Aa(ta — s)](Bau(s) + Dau(s — 7))ds, ¥ p.c. u} (74)

ty

We just consider two cases: 1) 71 > 7o and 2) 73 < 7». For 71 = 79, it has already been discussed. For
71 > T2 (see Fig. 1), we can divide the integral interval into five parts, i.e,

to

C(r) = elA2h2) {x|x = / o exp [A1(t1 — s)](B1 + exp [ A171]D1)u(s)ds,V p.c. u}

t1—72
+6(A2h2){ac|x = / exp [A1(t1 — s)]Biu(s)ds,V p.c. u}
t

1—T1

ty
—|—€(A2h2){$|$ — / {e[Al(tl—S)]Ble[Az(h—S)]e[—A2T2]D2}u(S)dS7V p-c. U}
t1—T2

+{:v|x = / o exp [Az(t2 — 9)](B2 + exp [~ Aa(72)]Dau(s))ds, ¥ p.c. u}

ty

+{[L’|£L’ = /ttz exp [Aa(t2 — s)|Bau(s)ds, ¥ p.c. u}

- exp(Aghg){<A1|Bl +exp[—Aim]D1) + (A1]B1) + (A1 By + As|exp PAng]Dg)}

+<A2|B2 + exp [—AQTQ]D2> + <A2|BQ>
= exp(A2h2)(A1][B1, D1]) + (A2|[Ba, D2]) (75)

B,

to L e T

ty — 7 ty — Ty
Flg 1If 7 > 7

For 11 < 79, there are two cases: tg < t1 — 72 and ¢y > t; — 7o. For tg < t; — 7o (see Fig 2), we can divide the

11



integral interval into five parts, i.e,

to

C(m) = e(A2h2){:L'.r = / o exp [A1(t1 — s)](B1 + exp [—A171|D1)u(s)ds,V p.c. u}

t1—71
+€(A2h2) {$|£E = / { exp [Al(tl — S)](Bl —+ exp [7A17'1}D1)
t

1—T2

+exp [Aa(t: — 8)] exp [_AQTQ]DQ}u(s)ds, Y p.c. u}

t
L) {xlx _ / 1 {e[Al(nfs)]Bl + €[A2(t1*5)]e[7A272]D2}u(s)ds’v p.c. u}
t

1—T1

+{m -/ T exp [Aa(ts — 5))(Ba + exp [ A ()] Dyu(s))ds, ¥ pec. u}

ty

2—T2

+{a?|ac = /t : exp [Az(ta — s)|Bau(s)ds,V p.c. u}
= eXp(A2h2){<A1|(Bl + exp [—AlTl]D1)> + <A1|(Bl + exp [—AlTl]Dl)

+A2| exp [—AQTQ]D2> + <A1|Bl + A2| exp [—AQTQ]D2>}

+<A2|Bg + exp [—Ang]Dg) + <A2|BQ>
= exp(Azha)(A1|[B1, D1]) + (A2|[B2, D2)

For tg > t1 — 72 (see Fig 3), we can divide the integral interval into four parts, i.e,

to

C(m) = exp(Aghg){xx = / o {exp [A1(t1 — 8)](B1 + exp [-A171]D1)
+exp [A2(t1 — 5)] exp [—AQTﬂDz}U(s)dSaV u}

t
+6(A2h2){1'|1’ _ / 1 {6[A1(t178)]B1 + e[Az(h*S)]e[*Aw'z]DQ}u(s)ds,V U}
t

1—T1

—|—{z|x = / o exp [Aa(ta — s)](Bz2 + exp [—Aa(72)]Dau(s))ds, V u}

t1

—|—{x|x = /:2 exp [Aa(ta — )| Bau(s)ds, ¥ u}

2—T2

= eXp(Ath){<A1|(B1 +exp [~ A1 Dy) + As| exp [~ Aao] D)

+<A1‘B1 + A2| exp [_AQTQ]DQ }

)
+(As|Bs + exp [~ Aaz]Da) + (As|Ba)
= exp(Azha)(A1[[B1, D1]) + (A2|[B2, D2])

Thus, for every case, we get the same result (73).

12



: b
t1—7'1

ty — 7 to — T

Fig. 21f < To,tg <ty —To

Corollary 6. System (72)and system (55)have the same
controllability, i.e.,

1)For periodic-type case, system(72) is 1-periodic
controllable (m-periodic controllable) if and only if sys-
tem (55) is 1-periodic controllable(m-periodic control-
lable).

2)For aperiodic-type case, system (72) is controllable
if and only if system (55) is controllable .

Remark 11. For system with multiple time-delays, we
have similar conclusions, i.e, controllability is indepen-
dent of the size of time-delays.

6 Conclusion

The controllability for switched linear systems with
time-delay in control has been first formulated and in-
vestigated. A sufficient and necessary condition for con-
trollability of periodically switched linear systems has
been presented. Furthermore, it is proved that the con-
trollability can be realized in n + 1 periods at most. An
example illustrate the above results. We have also pre-
sented some further results in Section 5.

Appendix A

P’I"OOf Of Lemma 1. Form =1,---,N, we have

n—1
AT, =" amiAl, (78)
1=0

n—1
=0

Denote fm(z) = 2™ — 3 = HT]X:1 fm(z). Sup-

am,izt, f(z)

ioso that f(z) = 2N" — Zi\;%_l o;xt, then form=1,--- , N, we
ave
Nn—1 )
AN = 3" AL, (79)
1=0

This implies that for any m > Nn — 1

Nn—1

R(AT'B1+ -+ ARYBN) C > R(A{B1+---+ Ay By) (80)
i=0
Nn—1 X
Thus, (A1|B1 + --- + AN[By) = Y R(A{B1 + - +
=0

Al By). O

1

13

to
: h—m
— Ty lo — T

Fig. 3lf 1y < 1o, tg > t1 — 7o

Appendix B

Proof of Lemma 2. First, we have

N oy
{z|]z = Z / explA;(ty — s)|Biu(s)ds,¥ p.c. u}
i=17to0

t
N I
A tr — m
= {z|lz= Z / Z %Biu(s)ds,v p.c. u}
z:lto m=0
o] ty (t )m N
—s
= {z|lz= Z /fTu(s)dsZ A*B;,V p.c. u}
m=0¢, i=1
o] N
c YR (Z (Ai)’"Bz->
m=0 i=1
= (A1|B1+---+ AN|By) (81)
Secondly, let h =ty — tg, then we have
t
{xlz = Zivzl ftof exP[Ai(tf - S)}Biu(s)ds,
YV p.c. u}
= {zle = 2N, [ exp[A;i(h — t)]B;u(t)dt,
vV p.c. u}
Now we prove
{zle = XN, [ exp[Ai(h — )] Biu(t)dt, ¥ p.c. u} (82)

D (A1|B1+ -+ AN|Bn)

Consider the matrix

"N AL () A\ T
W:/O {;e i Bi}{;e i Bi} ds  (83)

Since WT = W and it is positive semi-definite, we have

NW) L

R(W)

where N (W) is the null space of matrix, which is defined as
N(W) = {z|Wz = 0} (84)

and ”V,” denotes the orthogonal complement space of the sub-
space V.
Furthermore,

y eEN(W)
s yTWy=0

/ T A;(h—s) ad A;(h—s)p T
= b/y {%Z::le1 Bi}{;e’ Bi} yds =0

N T
o {Zef‘i(h*s)Bi} y=0, 0<s<h (85)
i=1



By(85), we know that any order derivations of { SN explA;(h—
T
s)]Bi} y to s should be 0 at s = h, i.e.,
(Srmpes (shoahyee
{ZN BT(AT)Nn 1}y —0

It follows that

<
m

oS00 o ()

i=1

I
b

I/ .
M=
for

S——
+
!

VS
M=
=
o

N———

= (Ai|Bi+---+AN|Bn)L

Conversely, it can be proved that if y € (A1|B1+---+An|Bn)L
then (85)holds, i.e., y € N(W). Thus, we have

NW) = (A1|B1 + -+ AN|Bn) L
or equivalently
RW) =

For any = € (A1|B1 + ---
such that © = Wz. Now let

N
s) = {Z BiT(exp[A h—
i=1

(A1|B1+ -+ An|BnN) (87)
+ An|Bn), by (87), there exists z

s)])T} z, s€0,h]

then
Wz

h N N
= / {Z eAi(hS>Bi} {Z BiTeA?ULS)} zds
0 li=1 i=1
h N
/ {Z eAi(h_S)Bl} u(s)ds
0 li=1

N th
Z / eAi(h=%) B.u(s)ds
i=170

It implies (82). Based on (81) and (82), we can see that the lemma
holds. O

Appendix C

Proof of Lemma 3. For any nonsingular matrix P € RPXP, we
have

R(BP) = {BPyly € R} = {B2|s = Py,y € R*}
It follows that R(BP) C R(B). On the other hand, R(B) =

R[(BP)P~'] C R(BP). Then we have R(BP) = R(B). There-
fore,
(A|BP) =R(BP)+ R(ABP)+---+ R(A""1BP)
=R(B) + R(AB) + -+ + R(A""1B)
= (A|B)
|

Appendix D

Proof of Lemma /4. 1t’s easy to prove that exp(Ah) (A|B) C
(A|B). Since exp(Ah) is nonsingular, we have

dim(exp(Ah) (A|B)) = dim((A|B))
Hence, (12) holds. For any positive integer m, we have

R(A™ exp(Ah)B) = R(exp(Ah)A™ B) = exp(Ah)R(A™ B)

Thus,
n—1
= Y R(A™exp(Ah)B)

m=0
= exp(Ah) E R(A™B)
= exp(Ah)<A\B>

(A] exp(Ah)B)

= (A|B)
O
Appendix E
PTOOf Of Lemma 5. For any positive integer m, we have
R(A B1 + AmBz) + R(AmBz)
R([AmBl + AmBQ, A BQ])
I 0
—R(APBLApBy) | L0 )
= R([AT*B1, A} Ba))
Thus,
(A1|B1 + Az|B2) + (A2|B2)
2n—1
=% (R} B + AP By) + R(AY By)
i
=% (RAT'BL) + R(AT By))
m=0
= (A1]B1) + (A2|Ba)
O
Appendix F
n .
Proof of Lemma 6. Suppose A" = Y ;A1) exp(At) =
i=1
T (1) A1,
i=1
First, considering the derivation of exp(At) to t, we have
dexp(At)/dt = Aexp(At)
=A (Z )\i(t)Ai_1>
" =1 .
=2 M)A
i=1
It follows that
n
doNmAT = Z Ai(t)ATT
i=1
Since A™ = 3 a; AL let
i=1
M) = o
A2 (t) = A(t) + a2 n(t)
(88)
An(t) = An—1(t) + anAn(t)
and
1(0) 1
A2(0) 0
. = R (89)
An(0) 0
Equation (88) can be rewritten in matrix form
() OB
Aa(t) S e
. A . (90)
where
0 0 a1 ]
R 1 [
A= . (91)
1 an |




Then the solution of the initial value problem (89) and (90) is

A1(t) 1
A2(t) . 0
= exp (At> . (92)
An(t) 0
Secondly, consider the linear system
§(t) = Ay(t) + bu(t) (93)

where A is defined as (91), and b = [1,0, - - - ,0]T. Obviously, sys-
tem (93) is completely controllable. According to the discretiza-
tion theory of continuous systems, for almost all 7' > 0, the fol-
lowing discrete system

y(k+ 1) = Hy(k) + Do (k) (94)
is complete controllable, where
T
H = exp(AT), D= </ exp(At)dt) b. (95)
0

Thus, the matrix [D, HD,---, H" !D] is nonsingular. Notice
that the matrix

[D7HD7 7Hn71D}

= (fOT exp(A‘t)dt) [b, HD, - - - , H"~ 1] (96)

and the matrix fOT exp(/Yt)dt are both nonsingular. So the matrix
[l_;, Hl:7 cee ,H"_ll;] is also nonsingular.
Thirdly, consider the following equation

(exp(AT)™ = 3 i (mT) A~

(97)
i=1
form =0,1,--- ,n— 1, where T is taken as above. Equation (97)
can be rewritten as
I I
exp(AT) A
. =(E®I) . (98)
(exp(AT))"~! A
where
1 0 0
M (T) 2o (T) An(T)
A((n=1T)  A2((n—1)T) An((n = 1)T)
(99)
Here ® denotes the Kronecker-product of matrices.
By (92), it’s easy to prove that
E:[E,Hgﬂ",Hn_lg]T (100)

which shows that = is non-singular. By the definition of Kronecker-
product, (E® I)~! ==~ ® I. Thus, we have

1 I
A exp(AT)
=E'®I)- ) (101)
An—l (exp(AT))n—1
Denote 21 = [€ij]nxn, we have
AT =3 € (exp(AT))I L. (102)
j=1
fori=1,---,n.
Finally, for any linear space W C R™, we have
n
ATIW =3 "5 (exp(AT)) MW C (exp(AT)| W) (103)
j=1
fori=1,---,n.
Hence, we have (A|W) C (exp(AT)|W). Since (A(W) D
(exp(AT)|W), (AIW) = (exp(AT)|W) holds. O
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