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Abstract

The subject area of this paper is the application of systems theory developed for

linear repetitive processes, a distinct class of 2D linear systems, to linear iterative learn-

ing control schemes. A unique feature is the inclusion of experimental results obtained

from the application of control laws designed using this theory to an experimental rig

in the form of a chain conveyor system. Some areas for further theoretical research

arising from this study are also briefly discussed.

1 Introduction

Iterative learning control, denoted by ILC from this point onwards, is a technique to control

systems operating in a repetitive mode with the additional requirement that a specified

output trajectory r(t) over a finite interval [0, T ] is followed to a high precision. Examples

of such systems include robotic manipulators that are required to repeat a given task to a

high precision, chemical batch processes or, more generally, the class of tracking systems.

Motivated by human learning, the basic idea of ILC is to use information from previous

executions of the task in order to improve performance from trial to trial in the sense that

the tracking error is sequentially reduced. The objective of ILC is to use the repetitive nature

of the process to progressively improve the accuracy with which the operation is achieved

by updating the control input iteratively from trial to trial.

Since the original work by Arimoto et al [3], the general area of ILC has been the subject of

intense research effort both in terms of the underlying theory and ‘real world’ applications.

One starting point for the literature here is the text [6] which gives a good survey up to

1992. For the recent ‘state of the art’ see, for example, [7].

Typical ILC algorithms construct the input to the plant on a given trial from the input

used on the last trial plus an additive increment which is typically a function of the past

values of the observed output error, i.e. the difference between the achieved and desired plant

output. Suppose that uk(t) denotes the input to the plant on trial k and that the (finite and

constant) trial length is denoted by T, i.e. t ∈ [0, T ]. Suppose also that ek(t) denotes the

difference between the desired trajectory r(t) and the system output yk(t) on the same trial.



Then the objective of constructing a sequence of input functions such that the performance

is gradually improving with each successive trial can be refined to a convergence condition

on the input and error:

lim
k→∞

||ek|| = 0, lim
k→∞

||uk − u∞|| = 0 (1.1)

where || · || is a signal norm in a suitably chosen function space (e.g., Lm
2 [0, T ]) with a

norm-based topology.

This definition of convergent learning is, in effect, a stability problem on an infinite-

dimensional two-dimensional (2D)-product space, typically of the form N × L2[0, T ]. As

such, it places the analysis of ILC schemes firmly outside standard (termed 1D here) control

theory – although (as we will see later in this paper) it still has an important role to play in

certain cases of strong practical interest. Instead, ILC schemes must be seen in the context

of fixed–point problems or, more precisely, repetitive processes [10].

In general, the work reported to date on ILC schemes can be divided (at a general level) into

two classes. In the larger class, nonlinear systems and, in particular, practically motivated

model structures typically encountered in robotics or process industries applications are

studied. A key point here is that (in the main) the results currently available typically make

critical use of special structural properties of the models of the underlying dynamics, e.g.,

those arising in control oriented models of mechanical or electro–mechanical systems.

This paper focuses on the second class where linear systems are considered in a general

setting. One immediate consequence of this choice is that well known analysis and design

concepts are theoretically available for use (with appropriate modifications as necessary).

For example, frequency domain methods have been used to derive convergence criteria in

the form of spectral conditions on the transfer function matrix describing the underlying

(pass-to-pass) dynamics [9]. These frequency domain approaches can be extended to the

time domain through the use of norm bounds on the operator which relates the error on the

previous trial to that on the current one – the so-called error transmission operator.

This paper begins by considering ILC schemes that take, in particular, the error on both the

current and a finite number of previous trials into account. The use of errors from previous

trials in the algorithm corresponds to a form of ILC (trial to trial) feedforward action and

the use of current trial error knowledge is direct (or current trial) feedback action. One

immediate benefit from the presence of the feedback element is that the usual advantages

of feedback control, e.g., stability of the closed loop system and increased robustness, are

potentially available.

The first part of the paper will demonstrate how a general class ILC schemes, where the

control action is a combination of feedback action on the current trial plus feedforward

action from the previous trial, can be formulated such that analysis of their stability and

convergence properties is equivalent (mathematically) to well studied generic problems for

a distinct sub-class of 2D linear systems known as differential and discrete linear repetitive

processes. Exploiting this equivalence then leads to necessary and sufficient conditions for

closed loop stability and computable bounds on the convergence rate. This, in turn, leads to



fundamental limitations on achievable performance expressed in terms of basic (1D) systems

theoretic properties such as the relative degree and minimum phase characteristics of the

example under consideration.

In the second part of the paper, the application of norm optimal approach to a chain

conveyor system is described. This is (to the best of the authors knowledge) the first ever

implementation of a controller designed using 2D systems theory. Finally, some open research

questions are briefly discussed - some of which are theoretically based and others which arise,

in essence, from the experimental work and related studies.

2 Stability and Convergence of ILC Schemes Using

Repetitive Process Theory

The state space model of the plant to be controlled by an ILC scheme is assumed to be of

the following form (with T <∞)

ẋk(t) = Axk(t) +Buk(t), t ∈ [0, T ]

yk(t) = Cxk(t) (2.2)

where on trial k, xk(t) is the n× 1 state vector, yk(t) is the m× 1 output vector, and uk(t)

is the l × 1 vector of control inputs. If the signal to be tracked is denoted by rd(t) then

ek(t) = rd(t) − yk(t) is the error on trial k. Also without loss of generality in this section

(except where stated) we set xk(0) = 0, k ≥ 1.

The class of ILC schemes considered in this section are of the following form which, in

effect, is a (static and dynamic) combination of (a finite number of) previous input vectors,

the current trial error, and the errors on a finite number of previous trials. In particular, on

trial k + 1 the control input vector is calculated using

uk+1(t) =
N

∑

i=1

αiuk+1−i(t) +
N

∑

i=1

Ki[ek+1−i](t)

+ K0[ek+1](t) (2.3)

In addition to the memory’ N, the design parameters in this control law are the static

scalars αi, 1 ≤ i ≤ N, the linear operator K0[·](t) which describes the current trial error

contribution, and the linear operator Ki[·](t), 1 ≤ i ≤ N, which describes the contribution

of the error on trial k + 1 − i. Next we show how the closed loop system in this case can

be written as a special case of the general model of linear constant pass length repetitive

processes.

First note that the open loop error dynamics can be written in convolution form as

ek+1(t) = rd(t)−G[uk+1](t), 0 ≤ t ≤ T (2.4)



where

G[u](t) = C

∫ t

0

eA(t−τ)Bu(τ) d τ (2.5)

Using this description, it is easily shown that the closed-loop error dynamics on trial k + 1

can be written over 0 ≤ t ≤ T as

ek+1(t) = (I +GK0)
−1

{

N
∑

i=1

(αiI −GKi)[ek+1−i](t) + (1−

N
∑

i=1

αi)rd(t)

}

(2.6)

or, equivalently, in the form

êk+1 = LT êk + b (2.7)

where

êk(t) =
[

eT
k+1−N(t), · · · , eT

k (t)
]T

(2.8)

is the so-called error super-vector.

Suppose now that êk ∈ ET , where ET is a suitably chosen Banach space, and b ∈ WT ,

where WT is a linear subspace of ET . Then in this setting, the bounded linear operator LT

maps ET into itself, the term LT êk describes the contributions of the errors on the previous

N trials to the current one, and b, termed the disturbance vector, describes the contribution

from external sources on the current trial. Note also that the theory which now follows

applies to any ILC scheme which can be written in the abstract form (2.7).

It is now routine to argue that convergence of a closed loop ILC scheme of the form con-

sidered here as k →∞ is equivalent to stability of its linear repetitive process interpretation

(i.e. (2.7)). The following is the first basic stability definition.

Definition 2.1. An ILC scheme which can be written in the form (2.7) is said to be asymp-

totically stable if there exists a real scalar δ > 0 such that, given any initial error ê0, the

sequence {êk}k≥1 generated by the perturbed process

êk+1 = (LT + γ)êk + b, k ≥ 0 (2.9)

converges strongly to a limit error ê∞ ∈ ET whenever ||γ|| ≤ δ. , where || · || denotes both

the norm on ET and (later) the induced operator norm.

Note here that if b = 0, the limit error is ê∞ = 0 and the action of the ILC scheme is

to reduce any initial non-zero error exponentially to zero. Note also that this definition of

stability includes a certain degree of robustness. In particular, the term γ acts as (additive)

model uncertainty and, by definition, the system is required to retain asymptotic stability

in the presence of small perturbations from the nominal model.

Direct application of the linear repetitive process stability theory of [10] now yields the

following result.



Theorem 2.1. An ILC scheme with closed-loop error dynamics of the form (2.6) (or, equiv-

alently, (2.7)) is asymptotically stable and hence converges if, and only if, all roots of

zN − α1z
N−1 − · · · − αN−1z − αN = 0 (2.10)

have modulus strictly less than unity.

In fact, the roots of (2.10) are the spectral values of LT in this particular case and this

condition is simply the interpretation of the general result that asymptotic stability of a

process described by (2.7) holds if, and only if, r(LT ) < 1 where r(·) denotes the spectral

radius of its argument.

If the condition of Theorem 2.1 holds then the closed loop error dynamics converge in the

norm topology of Lp[0, T ] to

e∞ = (I +GKeff)
−1rd (2.11)

where the so-called effective controller Keff is given by

Keff =
K

1− β
(2.12)

where

β =
N

∑

i=1

αi, K =
N

∑

i=0

Ki (2.13)

The simplest way to obtain (2.11) is to replace all variables in (2.6) by their strong limits

and re-arrange.

The following result, whose proof again follows by direct application of repetitive process

stability theory and is hence omitted here, gives a bound on the error sequence when Theorem

2.1 holds.

Theorem 2.2. Suppose that the condition of Theorem 2.1 holds. Then the resulting error

sequence is bounded by an expression of the form

||êk − ê∞|| ≤M1(max(||e0||, · · · , ||eN−1||) +M2)λ
k
e (2.14)

where M1 and M2 are positive real scalars, and λe ∈ (max|µi|, 1) where µi, 1 ≤ i ≤ N, is a

solution of (2.10).

The result of Theorem 2.1 is counter-intuitive in the sense that stability is largely inde-

pendent of the plant and the controllers used. This is a direct result of the fact that the trial

duration T is finite and over such an interval a linear system can only produce a bounded out-

put irrespective of its stability properties and in this definition of stability unstable outputs

of this kind are still ‘acceptable’. Hence even if the error sequence generated is guaranteed to

converge to a limit, this terminal error may be unstable and/or possibly worse than the first

trial error, i.e. the use of ILC has produced no improvement in performance. To guarantee



an acceptable (i.e. stable (as the most basic requirement)) limit error the stronger concept

of stability along the pass (see below) has to be used.

Theorems 2.1 and 2.2 can be used to derive important results on parameter selection. In

particular we have the following.

1. Convergence is predicted to be ‘rapid’ if λe is small and will be geometric in form,

converging approximately with λk
e .

2. The limit error is nonzero but is usefully described by a (1D linear systems) unity

negative feedback system with effective control Keff defined by (2.12) and (2.13). If

maxi(|µi|) → 0+ then the limit error is essentially the first learning iterate, i.e. use of

ILC has little benefit and will simply lead to the normal ‘large errors’ encountered in

simple feedback loops. There is hence ‘pressure’ to let maxi|µi| be close to unity when

Keff is a ‘high gain’ controller which will lead (roughly speaking) to ‘small’ limit errors.

3. Zero limit error can only be achieved if b ≡ 0 which , in turn, requires that

N
∑

i=1

αi = 1

which is not possible if r(LT ) < 1 (but is possible for the case of r(LT ) = 1). This

situation is reminiscent of classical control where the inclusion of an integrator (on

the stability boundary) into the controller results in zero steady state (limit) error in

response to constant reference signals.

There is a conflict in the above conclusions which has implications on the systems and

control structure from both the theoretical and practical points of view. In particular,

consider for ease of presentation, the case when Ki = 0, 1 ≤ i ≤ N . Then ‘small’ learning

errors will require high effective gain yet GK0 should be stable under such gains.

High gain feedback systems are described in essential detail by the system root-locus. The

details are omitted here for brevity and can, for example, be found in [8]. This reference also

details the limitations imposed by a non-minimum phase plant.

In what follows we consider the application of the stronger linear repetitive process stability

theory concept termed stability along the pass to ILC schemes which can be written in the

abstract form (2.7). The starting point is to note that there are two essential problems with

asymptotic stability applied to ILC schemes.

The first of these is that only statements about the situation after an infinite number of

trials have occurred are possible and little information is available concerning performance

from trial to trial. The second problem is (as noted above) that although a limit error is

guaranteed to exist, it could well have unacceptable dynamic characteristics. In particular,

exponentially growing (‘unstable’) signals can be accepted because of the finite trial length

and, in practice, this is clearly undesirable. In the next section, we will introduce the

concept of norm optimal control to deal with the first problem and below we address the

second problem using the concept of stability along the pass, termed stability along the trial

here, of linear repetitive processes of the form (2.7). The key feature is that the stability

along the trial property is independent of T.



To apply this to the iterative learning control schemes of this section, consider the case

when the trial length (or pass length in linear repetitive process terminology) can be arbi-

trarily greater than the ‘nominal’ value T , i.e. it may become infinite. Then the formal

definition of this property is as follows.

Definition 2.2. An ILC scheme that can be written in the form (2.7) is said to be stable

along the trial if there exists real numbers M∞ > 0 and λ∞ ∈ (0, 1) independent of T such

that, for each T
e
> T , the error sequence from the model (2.7) satisfies the inequality

||êk − ê∞|| ≤ M∞λ
k
∞{||ê0||+

||b||

1− λ∞
} (2.15)

Using linear repetitive process theory [10], it can be shown that the property of Definition

2.2 is equivalent to the existence of real numbers M∞ > 0 and λ∞ ∈ (0, 1) independent of T

such that

||Lk
T || ≤M∞λ

k
∞, ∀ Te ≥ T (2.16)

To illustrate the application of the stability along the trial property, it is instructive to

consider the open loop case where the trial to trial error dynamics are defined by the integral

operator L : ek → ek+1

ek+1(t) = Dek(t) + C

∫ t

0

eA(t−τ)B ek(τ) d τ = L[ek(.)](t), 0 ≤ t ≤ T (2.17)

with ET = C([0, T ]; Rm) the space of bounded continuous real-valued functions in the interval

0 ≤ t ≤ T on which the norm is defined as ||e(t)|| = sup0≤t≤T ||e(t)||m, where || · ||m is any

convenient norm in R
m, e.g. ||y||m = max1≤i≤m|yi|. In this case, asymptotic stability is easily

shown to be equivalent to r(D) < 1 and to provide a physical explanation of this property

suppose that r(D) ≤ ||D|| < 1 (a sufficient condition) holds. Then ek+1(0) = Dek(0) is

reduced from trial to trial, i.e. the sequence of initial errors is reduced from trial to trial

(since it only depends on D). By continuity of ek+1, this also occurs for t ‘slightly’ greater

than zero. In this way, the matrix D ‘squeezes’ the error to zero, starting from t = 0 and

working to t = T . Unfortunately, depending on the state space triple (A,B,C), it could

be that for t � 0 the error actually increases over the first few trials and it takes ‘a large’

number of trials before the error is small everywhere. This is shown by first noting that

asymptotic stability guarantees the existence of real scalars MT > 0 and λT ∈ (0, 1) such

that

||ek − e∞|| ≤MTλ
k
T{||e0||+

||b||

1− λT

}, k ≥ 0 (2.18)

The term involving λT in this last equation relates to the error reduction due to D and

the term MT relates to, and depends on, the system structure defined by the state space

triple {A,B,C}. This whole process can be visualized as squeezing something out of a tube,



e.g. toothpaste, where when the end is already flat, a bulge develops in the middle and after

‘squeezing’ long enough everything drops out at the end.

In particular, with ETe
= C([0, Te]; R

m) where Te is arbitrary and not necessarily finite,

we obtain the following result for stability along the trial in the case of (2.17). (The proof

of this result is again omitted since it is a direct application of repetitive process stability

theory.)

Theorem 2.3. Suppose that the pair {C,A} is observable and the pair {A,B} is controllable.

Then the ILC process (2.17) with T
e
≥ T is stable along the trial if, and only if,

(a) r(D) < 1, |sIn − A| 6= 0, Re(s) ≥ 0; and

(b) all eigenvalues of the transfer function matrix

L(s) = C(sIn − A)−1B +D (2.19)

have modulus strictly less than unity for s = ı ω, ω ≥ 0

3 Norm Optimal ILC

The norm optimal approach in general has a mature theoretical basis [1] and in this setting

the following is the formal definition of a successful ILC algorithm.

Definition 3.1. Consider a dynamic system with input u and output y. Let Y and U

be the output and input function spaces respectively and let r ∈ Y be a desired reference

trajectory from the system. Then an ILC algorithm is successful if, and only if, it constructs

a sequence of control inputs {uk}k≥0 which, when applied to the system or plant (under

identical experimental conditions), produces an output sequence {yk}k≥0 with the following

properties of convergent learning:

lim
k→∞

yk = r, lim
k→∞

uk = u∞ (3.20)

Here convergence is interpreted in terms of the topologies assumed in Y and U respectively.

Note: This general description includes linear and nonlinear dynamics, continuous or dis-

crete plants, and time-invariant or time-varying systems.

Now let the space of output signals Y be a real Hilbert space and U also be a real (and

possibly distinct) Hilbert space of input functions. Then the respective inner products

(denoted by 〈·, ·〉) and norms || · ||2 = 〈·, ·〉 are indexed in a way that reflects the space if it

is appropriate to the discussion.

The dynamics of the plant considered here are approximated by a linear model which in

operator form can be written as

y = Gu+ z0 (3.21)

where no loss of generality arises from setting z0 = 0. Also it is clear that the ILC procedure,

if convergent, solves the problem r = Gu∞ for u∞ and, if G is invertible, the formal solution



is just u∞ = G−1r. A basic premise of the ILC approach is that the direct inversion of G is

regarded as an impractical solution because it requires exact knowledge of G and involves

derivatives of r. This high-frequency gain characteristic would make the approach sensitive

to noise and other disturbances. Also it can be argued that inversion of the whole plant G

is unnecessary as the solution only requires finding the pre-image of r under G.

The above problem is easily shown to be equivalent to finding the minimizing input u∞
for the optimization problem

minu{||e||
2 : e = r − y, y = Gu} (3.22)

The optimal error ||r − Gu∞||
2 is a measure of how well the ILC algorithm has solved the

inversion problem. It also represents the best that the system can do in tracking the signal r.

The case of interest here is when the optimal error is zero, i.e. u∞ is a solution of r = Gu∞.

Also (3.22) is clearly a singular optimal control problem which by its very nature requires

an iterative solution.

In particular, the class of ILC algorithms considered here compute, at the completion of

trial k, the input on trial k + 1 as the solution of the minimum norm optimization problem

uk+1 = arg minuk+1
{Jk+1(uk+1)} (3.23)

subject to

ek+1 = r − yk+1, yk+1 = Guk+1 (3.24)

where the performance index (or optimality criterion) used is

Jk+1(uk+1) = ||ek+1||
2
Y + ||uk+1 − uk||

2
U (3.25)

The initial control u0 ∈ U can be arbitrary but, in practice, will be a good first guess at

the solution of the problem. Also the relative weighting of reducing the current trial error

against minimizing the deviation in the control input signals used on successive passes can

be absorbed into the definitions of the norms in Y and U .

The benefits of this approach are immediate from the simple interlacing result

||ek+1||
2 ≤ Jk+1(uk+1) ≤ ||ek||

2, ∀ k ≥ 0 (3.26)

which follows from optimality and the fact that the (non-optimal) choice of uk+1 = uk would

lead to the relation Jk+1(uk) = ||ek||
2. This result states that the algorithm is a descent

algorithm as the norm of the error is monotonically non-increasing in k and also equality

holds if, and only if, uk+1 = uk, i.e. when the algorithm has converged and no more input-

updating takes place.

The controller on trial k + 1 is given by

uk+1 = uk +G∗ek+1, ∀k ≥ 0 (3.27)



This relationship, together with the error update relation

ek+1 = (I +GG∗)−1ek, ∀ k ≥ 0 (3.28)

and the recursive input update relation

uk+1 = (I +G∗G)−1(uk +G∗r), ∀ k ≥ 0 (3.29)

can be used to undertake a detailed analysis of the (theoretical) properties of this class of

ILC laws [1].

In this paper, we will only consider the special case of Jk+1(uk+1) defined as follows applied

to a linear time invariant differential plant model with state space matrices (A,B,C) (state,

input and output respectively)

Jk+1(uk+1) =
1

2

∫ T

0

{eT
k+1(t)Qek+1(t) + (uk+1(t)− uk(t))

TR(uk+1(t)− uk(t))}dt

+
1

2
eT

k+1(T )Fek+1(T ) (3.30)

and the symmetric matrices Q,R, and F satisfy the normal linear quadratic optimal control

assumptions. Standard optimal control theory now gives the solution as

ψ̇k+1(t) = −ATψk+1(t)− CTQek+1(t)

uk+1(t) = uk(t) +R−1BTψk+1(t)

ψk+1(T ) = CTFek+1(T ), t ∈ [0, T ] (3.31)

This representation is non-causal (in the standard sense) but it can be transformed into a

causal implementation as detailed next for the case of a relaxation factor α.

Transform the costate vector ψk+1(t) using

ψk+1(t) = −K(t) [xk+1(t)− αxk(t)] + ζk+1(t) (3.32)

where the feedback gain matrix K(t) satisfies the well known Riccati (matrix) differential

equation

K̇(t) = −ATK(t)−K(t)A+K(t)BR−1BTK(t)− CTQC

K(T ) = CTFC (3.33)

Note that this last equation is independent of the inputs, states and outputs of the system

and hence only needs to be computed once before the sequence of trials begin.

The predictive or ‘feedforward’ term ζk+1(t) must be computed on each trial using

ζ̇k+1(t) = −(A− BR−1BTK)T ζk+1(t)− αCTQek(t)

+ (1− α)KBuk(t)− (1− α)CTQr(t) (3.34)



with terminal boundary condition

ζk+1(T ) = CTF [αek(T ) + (1− α)r(T )] (3.35)

The algorithm is now causal since (3.34) and (3.35) can be solved off-line by reverse time

simulation using available previous trial data.

Next we detail the application area studied in this paper.

4 Chain Conveyor Systems

Previous work [5] has applied three term (or PID) ILC schemes to this conveyor structure

both in simulation and experiment. The major conclusion was that this is a highly rele-

vant application area for ILC. Despite this, achievable performance was limited by the PID

structure in certain cases. Hence the decision was made to apply norm optimal based ILC

schemes outlined in the previous section to chain conveyor systems. The eventual goal is

to assess the performance of such schemes in ‘real world’ operation - both stand alone and

comparatively. In the remainder of this paper, we describe the chain conveyor system to be

used, its mathematical modeling and configuration for the actual implementation of control

action, and the design of the candidate ILC scheme.

The System

The chain conveyor systems considered in this work have two possible operational modes

- indexing and synchronization. When operating in an indexing mode the conveyor moves

one item at a time under a dispenser. The dispenser remains stationary and product is

dispensed when the conveyor comes to rest. This motion is then repeated for the next item.

In synchronization mode the conveyor moves at constant velocity and the dispenser moves

back and forth. Product is dispensed when the position and velocity of the dispenser are

synchronized to that of item on the conveyor. The system is measured by its accuracy

combined with rate of throughput and reliability. Each requirement introduces difficulties

and accuracy will degrade with time due to component wear. Commonly this is overcome

by regular manual re-calibration of the system.

High rates of throughput imply large accelerations. These produce large electrical and

mechanical stresses in the system components that increase wear and reduces accuracy.

Ultimately high stresses will cause the premature failure of components, reducing reliability

and overall throughput. It is therefore necessary to ensure that the controller demand does

not require the actuator to perform outside of the manufacturers specifications. As described

in [5] the system has many problems that a PID controller cannot deal with at high enough

accuracy to meet typical performance requirements.

The conveyor, see Figure 1, is constructed from a 3m long framework of right angle steel

section and consists of two parallel strings of 0.5 pitch steel roller chain. At 300 mm intervals

there is an aluminum plate supported on a rod that is pinned through a bushing on each
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Figure 1: Schematic of Conveyor Construction.

chain. A standard squirrel cage induction motor supplied by a variable voltage variable

frequency (VVVF) inverter, that is delta connected to a 3 phase pulse width modulated

(PWM) inverter, drives the conveyor through a timing belt drive with a 5:2 reduction ratio.

The induction motor is oversized for the mechanical load to ensure that the actuator will not

limit system performance. A 500 pulse per revolution optical encoder, making measurements

on the motor shaft with differential outputs, provides position feedback. Processing using a

DEVA 004 motion control card increases the resolution to the equivalent of 2000 pulses per

revolution.

The dispenser, see Figure 2, consists of a trolley that moves linearly above the conveyor.

The trolley is an open frame, as this allows dispensing systems and instruments to be ex-

changed when required. A long belt supplies the linear motion, rotary motion being provided

by an identical induction motor/belt drive system as for the conveyor.

C o n v e y o r

D i s p e n s e r

Figure 2: Schematic of Dispenser Construction.

Frequency-Domain Model

The models of the conveyor and the dispenser used are linear approximations, which were

developed for simulation purposes. These were obtained by driving the conveyor and the

dispenser with a variable frequency sinusoid, provided by a dc motor drive and recording

the frequency response. The motor velocity was measured by using a tachometer, and then

scaled to give a response relating input voltage to output velocity in counts/seconds. From

the resulting Bode plots linear approximations were derived for the conveyor and dispenser

respectively as

Gconv(s) =
615.06× 106

(s2 + 49s+ 352)(s2 + 54s+ 1802)

(4.36)



Gdisp(s) =
6.47× 106

(s+ 35)(s2 + 99s+ 1102)

(4.37)

Next we briefly describe how the control action is applied.

Control Implementation

A PC controls the system that includes the DEVA interface card. The card has two

14-bit Digital to Analogue Converters (D/A) for speed demand output and two optically-

isolated digital outputs for axes enabling. A programmable interrupt controller is provided

to produce regularly timed processor interrupts suitable for running discrete controllers. As

the inverters are unable to accept a -10V to +10V speed demand, a positive analogue speed

signal is provided, with a single line of the parallel port linked to the direction setting pin of

the inverter to provide direction control. A program, written in C, provides a user interface

to the hardware and also implements the controller.

System Simulation

In order to begin the evaluation of the performance of norm optimal ILC designs in this

area, including the relative advantages/disadvantages of predictive action, a simulation of

the system operating in synchronous mode has been constructed in MATLAB/SIMULINK.

Also a range of controllers have been designed. For example, Figure 3 shows a sample design

(for the dispenser transfer function) where the reference signal used is the same as that used

in the previous work on the use of PID ILC for this application [5].
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Figure 3: Illustrative Design.

5 Conclusions

The goal of the research programme on which this paper is based is to evaluate the perfor-

mance (both stand alone and comparative terms) of norm optimal based ILC schemes in the



‘real world’ operating domain. The testbed chosen for this is a chain conveyor system. To

date, the experimental testbed has been constructed and the relevant parts of its dynamics

approximated by linear models, in the form of transfer functions constructed from measured

frequency domain data, obtained. Also a range of controllers based on both the norm opti-

mal and predictive norm optimal ILC designs have been completed (a sample norm optimal

design has been included here).

This paper has described the necessary background development to undertake an extensive

range of experimental tests which will be used to address the following key questions (and

others).

1. How do normal optimal and predictive norm optimal ILC compare against alternatives

(from, in the main, [5] and the relevant cited references).

2. Are there any benefits to be obtained by using predictive norm optimal ILC [2], i.e. an

enhancement of norm optimal control action where the (weighted) effects of the errors

on a finite number of future trials are taken into account in the cost function to be

minimized, against just norm optimal ILC.

3. If norm optimal ILC does indeed give improved (relative) performance, how can this be

quantified in terms of the key extra parameters in these control laws, i.e. the prediction

horizon N and the weighting factor λ?

4. What are the general messages from this study in terms of the theme of this special

session, i.e. the relative merits of higher order ILC.

Further early results from the experimental programme (beyond those of Figure 3 here)

can be found in [4]. Initial assessment of them does indeed confirm the promise of the

norm optimal approach to iterative learning controller design for what is a major industrial

applications area (chain conveyor systems are extensively used in many process control areas,

such as bread production systems). The following areas require short to medium term further

research.

1. The effects of unmodeled dynamics.

2. The effects of mismatch in resetting the process initial conditions.

3. The development of the algorithms in a stochastic setting to deal with the effects of

noise.
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