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Abstract

State-space stability of linear shift-invariant discrete two-dimensional (2-D) dynamics is
considered. An approach to the making of Lyapunov functions for 2-D dynamics is presented.
It produces quadratic forms involving finite cross-terms among local states. The scope of the
stability analysis based upon the notion of parallel stability expands, and the accuracy can be
improved by this approach.

1. Introduction

This paper attempts to develop a state-space method for analyzing the stability of discrete-time
linear dynamics in the Roesser’s two-dimensional (2-D) system models. Consider the following
difference equation with two arguments:( x1( i + 1, j )

x2( i, j + 1)

)
= A

( x1( i, j )
x2( i, j )

)
, (1.1)

where x1( i, j ) is a realn1-vector andx2( i, j ) is a realn2-vector, both are indexed by a pair of
integers (i, j). The matrixA is a realn× n matrix, n = n1 + n2, and it is assumed to be itemized as
follows:

A =

(
A11 A12

A21 A22

)
, (1.2)

the partition of which is created so as to be compatible with that of (1.1). Fort ∈ � , let us define a
bilateral sequence ofn-vectors:

Xt =
{( x1( i, j )

x2( i, j )

)
; i + j = t

}
. (1.3)

We regard (1.1) as a dynamical equation that describes the evolution ofXt , which is equivalent
to the dynamics of a discrete-time linear 2-D system on the Roesser’s model [1]. An alternative
expression of this dynamics is given in the Fornasini-Marchesini model [2] as follows:

x( i, j ) = Ã1x( i − 1, j ) + Ã2x( i, j − 1) , (1.4)

where

x( i, j ) =
( x1( i, j )

x2( i, j )

)
, Ã1 =

(
A11 A12

O O

)
, and Ã2 =

(
O O
A21 A22

)
. (1.5)
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Introduce the standard square-norm of a bilateral sequenceXt =
{

x( i, t − i ) ; i ∈ �
}

by ‖Xt ‖2 =(∑∞

i=−∞‖x( i, t − i )‖ 2
2

)1/2 , where the notation‖ · ‖2 used in the right hand side denotes the Euclidian
norm of then-vector involved. We denote byXn the linear space of these square summable
bilateral sequences. Define a linear operatorSA on Xn so that we can express the dynamics (1.1)
by

Xt+1 = SAXt . (1.6)

Then the evolution ofXt in (1.1) is written asXt = (SA ) tX0. Let

Ã(z) =

(
A11 A12

z A21 z A22

)
. (1.7)

A fundamental stability notion is introduced from the following number:

ρ̂(SA ) = max
|z|=1
ρ
(
Ã(z)

)
, (1.8)

where the notationρ( · ) used in the right hand side denotes the spectral radius of the matrix in-
volved. It can be shown that the condition ˆρ(SA ) < 1 is equivalent to saying that there exists a pair
of numbers (L, γ) with L ≥ 1 and 0≤ γ < 1 such that for anyX0 ∈ Xn , ‖(SA ) tX0‖2 ≤ L γt ‖X0‖2

for all t ∈ � . The geometric progression law gives definite information, in theory, about the
asymptotic property ofSA . Indeed, by considering the scaling ˆρ(SA )−1SA , we know that the
asymptotic convergency rate ofSA is ρ̂(SA ). In many instances, however, this result is next to
useless for talking about transient phenomena ofSA because the numberL may be impossibly
large. There is another approach to study the stability of 2-D dynamics. Consider the Lyapunov
matrix inequality

P− ATPA> O . (1.9)

It was shown in [3] that if (1.9) has a solutionP > O satisfying the block diagonal constraint

P =

(
P1 O
O P2

)
, (1.10)

where the order ofPi is ni for i = 1,2, then the dynamics (1.1) is stable in the sense that there
exists a number 0≤ γ < 1 such that the contractive relation

‖SAXt ‖ (P1,P2) ≤ γ · ‖Xt ‖ (P1,P2) (1.11)

holds for anyXt ∈ Xn , where

‖Xt ‖ (P1,P2) =
( ∞∑

i=−∞

(
x1( i, t − i )TP1x1( i, t − i ) + x2( i, t − i )TP2x2( i, t − i )

))1/2
. (1.12)

The fact is that the converse is also true. We use the following terminology [4].
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Definition 1.1. A pair of matrices (̃A1, Ã2) is said to beparallel stableif there exists a pair of
positive definite matrices (P̃1, P̃2) such that

P̃1: P̃2 − ÃT
1 P̃1Ã1 − ÃT

2 P̃2Ã2 > O , (1.13)

whereP̃1: P̃2 =
(
P̃−1

1 + P̃−1
2

)
−1 .

Theorem 1.2 ([7]). The following statements are equivalent to each other.

(a) There exists a positive definite P satisfying the Lyapunov matrix inequality (1.9) and the block
diagonal constraint (1.10);

(b) There exists a pair of positive definite matrix(P1,P2) and 0 ≤ γ < 1 such that the contractive
relation (1.11) holds for anyXt ∈ Xn ;

(c) There exists a positive definite matrix P such that P− Ã(z)* PÃ(z) > O for any |z| = 1;

(d) (Ã1, Ã2) is parallel stable.

It is easy to see that the conditions above imply the spectral condition ˆρ(SA ) < 1. But the
converse is not true [5][6]. For the sake of later argument, we give the following.

The purpose of this paper is to widen the scope of application of simply formed quadratic Lya-
punov functions. Our approach is based on our latest paper [6] in which the same approach is
taken to enhance the stability analysis of 2-D systems in the Fornasini-Marchesini model. Since
the Roesser’s model gains wide usage in the study of digital image processing, it would be worth-
while to study it in (1.1).

2. Main Results

We have shown that the form (1.12) does not have enough ability in dealing with the stability of
(1.1). Taking account of the context that the dynamics (1.1) runs while exchanging data between
adjacent local states, we will introduce the cross terms of local states into (1.12) as follows:

‖Xt ‖ (P1,P2,R1,R2) =
( ∞∑

i=−∞

(
x1( i, t − i )TP1x1( i, t − i ) + x2( i, t − i )TP2x2( i, t − i )

)
+ 2

∞∑
i=−∞

(
x1( i, t − i )TR1x2( i, t − i ) + x2( i, t − i )TR2x1( i + 1, t − i − 1)

))1/2
,

(2.14)

where (P1,P2,R1,R2) is a set ofn × n matrices. The quartet (P1,P2,R1,R2) must be in such a
condition as to make the form (2.14) a positive operator onXn , i.e., ‖Xt ‖ (P1,P2,R1,R2) > 0 for any
nonzeroXt ∈ Xn . The first requirement is thatP1 andP2 are positive definite. Now, let us make
from the matrixA the following expanded matrix:

A =


A11 A12 O O
O O A21 A22

O O A11 A12

A21 A22 O O

 . (2.15)
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Then we consider the associated Lyapunov matrix inequality

P − ATP A > O . (2.16)

We have the following.

Theorem 2.3. If there exists a matrixP > O satisfying (2.16) under the constraint:

P =


P11 P12 O O
PT

12 P22 P23 O
O PT

23 P33 O
O O O P44

 , (2.17)

then the dynamics (1.1) is stable in the sense that by the use of the quartet(P1,P2,R1,R2) given by

P1 = P11+ P33, P2 = P22+ P44, R1 = P12, and R2 = P23, (2.18)

the form (2.14) is a positive operator onXn and there exists a number0 ≤ γ < 1 such that the
contractive relation‖SAXt ‖ (P1,P2,R1,R2) ≤ γ · ‖Xt ‖ (P1,P2,R1,R2) holds for anyXt ∈ Xn .

3. Applications

Let 0 ≤ δ ≤ 1. A mapW : �n
→ �

n, (ξ1, . . . , ξn) 7→ (ω1(ξ1), . . . , ωn(ξn)), is called aδ-saturation
arithmetic if it satisfies (1− δ) ξi ≤ ωi(ξi) ≤ ξi for i = 1, . . . ,n. Let Ωδ denote the set of all
δ-saturation arithmetic maps. Consider the following 2-D dynamics with saturation arithmetic:

(y1( i + 1, j )

y2( i, j + 1)

)
= A

( x1( i, j )

x1( i, j )

)
,

( x1( i, j )

x2( i, j )

)
=Wi, j

(y1( i, j )

y2( i, j )

)
, Wi, j ∈ Ωδ . (3.19)

Let W t denote the pointwize application ofWi,t−i ∈ Ωδ on Xn . Then the dynamics is written by

Xt+1 = W t+1SAXt . (3.20)

We will discuss the condition by which the stability is ensured against any realization of saturation
arithmetic. Such advantageous property does not necessarily follow from the stability of (1.1), as
can be easily imagined from the well-known arguments about limit-cycles in the theory of finite
dimensional dynamics. We associate a measureη(P) with an n× n positive definite matrixP as
follows. Let Kq = {(k1, k2, . . . , kq) ∈ �

q ; 1 ≤ k1 < k2 < · · · < kq ≤ n} for each 1≤ q ≤ n− 1, and

let K =
⋃n−1

q=1 Kq. The cardinality ofK is 2n − 2. With eachk ∈ K, we associate three submatrices
of P = (πk,l)k,l=1,...,n those defined byP

k
= (πk,l)k, l ∈k , Q

k
= (πk,l)k, l ∈kc , andR

k
= (πk,l)k∈kc , l ∈k , where

k
c denotes the complement ofk in {1,2, . . . ,n}. The matricesP

k
, Q

k
, andR

k
are of orderq× q,

(n− q)× (n− q), and (n− q)× q for k ∈ Kq, and we haveP
k
> O andQ

k
> O. For eachk ∈K, let

us compute

η
k
(P) =

(
λmax

(
P

k
(P

k
− R

k
T Q

k
−1R

k
)−1))1/2

. (3.21)
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Notice thatO ≤ R
k
T Q

k
−1R

k
< P

k
for any k ∈ K since P is positive definite. Hence the values

η
k
(P)’s are well defined. A positive numberη(P) associated with a positive definite matrixP is

then defined by
η(P) = max

k∈K
η

k
(P), (3.22)

whereη
k
(P)’s are those computed in (3.21) fork ∈ K. The number ofη

k
in (3.22) is reduced

by half to 2n−1 − 1 becauseη
k
(P) = η

k c(P). For P =
( α γ
γ β

)
, for example, we haveη(P) =√

αβ/(αβ − γ2) . Roughly speaking, the measureη(·) administers a proximity evaluation of a
positive definite matrix to the set of positive diagonal matrices. It is easy to see thatη(P) ≥ 1 for
any positive definite matrixP, and we can also readily check that the set{P ; P > O andη(P) = 1}
consists of positive diagonal matrices. The following result specialized in the case ofδ = 1 is what
we have already shown in [8].

Proposition 3.4. Let 0 ≤ δ ≤ 1. If there exists P> O satisfying the constraint (1.10) and

P−
(
δ2η(P)2 − δ2 + 1

)
ATPA> O , (3.23)

then (3.19) is stable irrespective of the saturation arithmetics belonging inΩδ .

The result above is predicated on the satisfaction of the condition in Theorem 1.2, so it actually
is not much useful. We can give a wider scope to this approach by the method used in the last
section.

Theorem 3.5.Let A be of (2.15), and let0 ≤ δ ≤ 1. If there existsP > O satisfying the constraint
(2.17) and

P −
(
δ2η(P)2 − δ2 + 1

)
ATP A > O , (3.24)

then (3.19) is stable irrespective of the saturation arithmetics belonging inΩδ .
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