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Abstract

Some improvements have been proposed for the algorithm of Agathoklis such that
2D stability test can be realized by totally algebraic operations.

1 Introduction

The stability test is the most important and fundamental problem for analysis and design

of systems. The stability of the nD (n Dimensional) system determined, as the case for 1D

systems, by the locus of the roots of the characteristic polynomial of the system. However, the

stability test of nD systems is much more difficult than the 1D case because the multivariable

polynomial has infinite number of roots.

The latest results of the stability tests of 2D systems are as follows,

• Bose’s method based on resultant theory[1].

• Agathoklis’ method for Roesser’s model by means of Lyapunov equation[2].

• Hu’s method by mean of polynomial array which may be viewed as an extension of

Jury’s table[3].

Among these method, only Hu’s algorithm is a totally algebraic, while the other two require

some numerical calculations in a certain step. For example, Agathoklis’ algorithm needs to

calculate general eigenvalues of some matrix. However, due to the numerical calculation

error, it is difficult to check the absolutes of that eigenvalues is really equal to 1.

Authors proposed that Bose’s 2D stability test can be fulfilled by totally algebraic algorithm[4].

The purpose of this research is to improve Agathoklis’s method such that the tests can be

realized by totally algebraic operations.
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2 Agathoklis’s stability test

Consider the 2D Roesser’s state-space model for a 2D system:[
xh(I + 1, j)

xv(I, j + 1)

]
=

[
A11 A12

A21 A22

] [
xh(I, j)

xv(I, j)

]
+

[
B1

B2

]
u(I, j)

y(I, j) =
[

C1 C2

] [
xh(I, j)

xv(I, j)

]
(2.1)

where xh ∈ Rn, xv ∈ Rm are horizontal and vertical states respectively, u is the input and

y is the output. A11, A12, A21, A22, B1, B2, C1, C2 are real matrices with appropriate

dimensions. The stability of the 2D system (2.1) depends on the zeros of the characteristic

polynomial C(z1, z2) given by

C(z1, z2) = det

[
In − z1A11 −z1A12

−z2A21 Im − z2A22

]
. (2.2)

The condition for internal stability is given by

C(z1, z2) 6= 0 for (z1, z2) ∈ Ū2, Ū2 = {(z1, z2)||z1| ≤ 1, |z2| ≤ 1}. (2.3)

Agathoklis et al proposed the following stability conditions to test (2.3) based on the Lya-

punov approach.

Theorem 2.1 [2] Necessary and sufficient conditions that the system (2.1) is internally

stable are

I)

|λI [A22]| < 1 (2.4)

ii) the matrix equation

HT (e−jω0)P̄H(ejω0)− P̄ = −Q̄ (2.5)

has a hermitian positive definite solution P̄ for any given constant positive definite

matrix Q̄ and an arbitrary ω0 ∈ [0, 2π] where

H(ejω) = A11 + A12(Imejω − A22)
−1A21 (2.6)

iii)

det(In2 −HT (e−jω)⊗HT (ejω) 6= 0 for all ω ∈ [0, 2π]. (2.7)

Theorem 2.1 requires test of the stability of two constant matrices A22, H(ejω0), and testing

of the condition (2.7) for all ω ∈ [0, 2π]. Based on Theorem 2.1, [2] proposed 2D stability

conditions testing the only eigenvalues of constant matrices.
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3 algebraic approach

The conditions proposed in [2] needs to calculate the eigenvalues of constant matrices and to

check whether absolute of eigenvalues equal to 1. It is difficult to check that absolute values

of the eigenvalues are really equal to 1 because of the numerical calculation error. Therefore,

we propose the algebraic method to test the conditions of Theorem 2.1.

It is easy to check the condition I) algebraically by using , e.g., Jury criterion. The

condition ii) is equal to |λ[H(ejω0)]| < 1 for an arbitrary ω0 ∈ [0, 2π], then it can be tested

algebraically by the same way as the condition I). So, we discuss the condition iii).

Let z = ejω, the condition iii) is equal to

det(In2 −HT (z−1)⊗HT (z)) 6= 0 for |z| = 1. (3.8)

From now on we consider the condition (3.8) instead of (2.7)

The following Lemma gives the key idea for algebraic approach by revealing symmetric

properties of the rational polynomial (3.8).

Lemma 3.1 det(In2 −HT (z−1)⊗HT (z)) is the self-inversive rational polynomial given by

det(In2 −HT (z−1)⊗HT (z)) = det(In2 −HT (z)⊗HT (z−1)) (3.9)

Proof. Note that det(I − A ⊗ B) = det(I − B ⊗ A) (see Appendix A) for the same size of

square matrices A and B, we see that (3.9) is true.

The self-inversive rational polynomial f(z)(= f(z−1)) can be represented as f(z) = n(z)/d(z)

where n(z) and d(z) are self-inversive polynomials, namely n(z) = n(z−1), d(z) = d(z−1).

Thus, from Lemma 3.1, there exist self-inversive polynomials hn(z), hd(z) such that

hn(z)

hd(z)
∆
= det(In2 −HT (z−1)⊗HT (z)). (3.10)

Because the degree of the numerator of H(z) is m − 1 at most, the degree of hn(z) is

only 2(m − 1)n2. Let dn be the degree of hn(z), the self-inversive polynomial hn(z) can be

described as

hn(z) = fn0 +
dn∑

k=1

fnk(z
k + z−k). (3.11)

hn(z) can be transformed to real polynomial of x by using x = (z + z−1)/2 as [5]

hn(z) = fnZ
(dn) = fnDdnxdn

4
= ĥn(x), I = 1, 2 (3.12)
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where fn = [fn0 fn1 · · · fndn ]C xk = [1 x x2 · · ·xk]T

Z(dn) =



1

z−1 + z1

z−2 + z2

...

z−dn + zdn


=



1

d1x1

d2x2

...

ddnxdn


= Ddnxdn ,

dk = [dk,0 dk,1 · · · dk,k].

dk is defined as

zk + z−k =
k∑

j=0

dk,jx
j = dkxk (3.13)

and calculates recursively as

dI,0 = di−2,0, di,j = 2di−1,j−1 − di−2,j,

i ≥ 3, j = 1, 2, . . . , i (3.14)

with the initial condition [d1,0 d1,1] = [0 2], [d2,0 d2,1 d2,2] = [−2 0 4] and

Ddn =



1 0

d1

d2

...

ddn


=



1 0

d1,0 d1,1

d2,0 d2,1 d2,2

...
...

...
. . .

ddn,0 ddn,1 ddn,2 · · · ddn,dn


As hd(z) are also self-inversive polynomials, hd(z) can be converted into polynomials ĥd(x)

in the variable x = (z + z−1)/2 by the method mentioned above. Also, note that z̄ = z−1 on

the unit circle |z| = 1, all the zeros of hn(z), hd(z) on the unit circle are located within the

interval −1 < x < 1. The condition (3.10) can be rewritten as

ĥn(x)

ĥd(x)
6= 0 for − 1 ≤ x ≤ 1. (3.15)

Note that the polynomial ĥd(x) is bounded within the interval of −1 ≤ x ≤ 1, the condition

(3.15) is equal to

ĥn(x) 6= 0 for − 1 ≤ x ≤ 1. (3.16)

The condition (3.16) can be easily tested algebraically by using the Sturm’s theorem[6]. Let

g(s) be polynomials given arbitrarily. It is assumed that g(x) and its derived function g′(x)

have no common zeros. Define the sequence begun with g(x), g1(x)(= g′(x));

g(x), g1(x), g2(x), · · · , gl(x) (3.17)

where

gi−1(x) = hi(x)gi(x)− gi+1(x), i = 1, 2, . . . , l − 1 (3.18)
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Lemma 3.2 [6] Let V (x0) be the number of sign changes of sequence (3.17) corresponded to

g(x0) and N0 assume the number of roots of equation g(x) = 0 for the interval of a < x ≤ b.

The following relation is hold.

V (a)− V (b) = N0 (3.19)

Based on this lemma, if V (−1) − V (1) = 0, ĥn(x) dose not have roots on real region

−1 < x ≤ 1. One may reduce testing the condition (3.16) to checking V (−1) − V (1) = 0

and ĥn(−1) 6= 0 algebraically.

Now we have following stability test algorithm;

step 1 Test |λi[A22]| < 1 by using Jury criterion etc.

step 2 Test |λi[H(1)]| < 1 for ω0 = 0 by using Jury criterion etc.

step 3 Calculate ĥn(x) and check the condition (3.16) by the Sturm’s theorem.

4 examples

Consider the stability of the following 2D system[2].

[
A11 A12

A21 A22

]
=


−0.5 0.75 0.3895 0.03895

0 0 0 0

0.1423 0 −0.4 0.02

−0.0342 0 −0.6 0.03

 (4.20)

where n = 2, m = 2.

step 1 det(zI − A22) = z2 + 37/100z = z(z + 37/100). This polynomial is obviously 1D

stable.

step 2 det(zI −H(1)) = z(z + 1273387641
2740000000

). This polynomial is also 1D stable.

step 3

hn(z)

hd(z)
= det(I −HT (−z)⊗HT (z)) (4.21)

hn(z) = 3478920240964073679 + 1215156998392190720(z + z−1)

+ 11575161000000000(z2 + z−2) (4.22)

hd(z) = 45476× 1014 + 148× 1016(z + z−1) (4.23)

Let x = (z + z−1)/2, hn(z) and using the transformation (3.12), we have

ĥn(x) = −46300644×109x2 +2430313996784381440x+3502070562964073679. (4.24)
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Constructing the Sturm’s functions f0(x), f1(x), f2(x) for ĥn(x) and computing V (−1),

V (1), we have V (−1) = 1, V (1) = 1. And the value of ĥn(−1) is not 0.

Therefore, we conclude that the system (4.20) is 2D stable.

Noting that the above ĥ(x) is only a second degree polynomial, while [2] needs to calculate

18× 18 matrixes eigenvalues.

5 conclusions

Some implements are proposed for algorithm of Agathoklis such that the 2D stability test can

be realized by total algebraic operations. The stability test using proposed algorithm usually

involve very complicated symbolic manipulations. Therefore, the Stability Testing Package,

which consists of 2D stability testing functions implemented Bose’s, Hu’s and Agathoklis’s

method, has been developed for use with the MATLAB and (Extended) Symbolic Math

Toolbox[7]. Among these method, algorithm of Agathoklis is modified so that the stability

test can be realized by totally algebraic manipulations by using algorithm mentioned in this

paper.
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A the proof of det(I − A⊗B) = det(I −B ⊗ A)

We first show det(A⊗B) = det(B ⊗ A) in case A and B are the same size. Assuming that

A = [aij] ∈ Rn×n, B = [bij] ∈ Rn×n. From the definition of Kronecker product

det(A⊗B) =

∣∣∣∣∣∣∣∣∣∣∣

a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

an1B an2B · · · annB

∣∣∣∣∣∣∣∣∣∣∣
. (A.25)

The column of (i− 1)n + j is exchanged for (j − 1)n + i (i, j = 1, 2, . . . , n, i < j) to move bij

into the (i, j) block matrix. It’s just the same with rows. The number of exchange is even

number n(n− 1). Then (A.25) can be rewritten as∣∣∣∣∣∣∣∣∣∣∣

b11A b12A · · · b1nA

b21A b22A · · · b2nA
...

...
. . .

...

bn1A bn2A · · · bnnA

∣∣∣∣∣∣∣∣∣∣∣
(A.26)

So, det(A⊗B) = det(B ⊗ A).

Next, in the same manner as before, we exchange columns and rows. Diagonal elements

1− aiibjj are always moved to diagonal locations. Then we conclude that det(I −A⊗B) =

det(I −B ⊗ A).
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