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Abstract. In the paper, the bang-bang principle for a control system connected with a

system of linear nonautonomous partial differential equations of hyperbolic type (the so-

called Goursat-Darboux problem or continuous Fornasini-Marchesini problem) is proved.

Some density result is also obtained.

1. Introduction

Let us consider the following control system with the concentrated parameters

·
x = A(t)x + B(t)u

for t ∈ [0, 1] a.e.,

x(0) = 0,

u ∈ M,

where x ∈ R
n, M ⊂ R

m, A(t) ∈ R
n×n, B(t) ∈ R

n×m. One of the fundamental results of the

control theory for the systems of the above type states that the set AM(1) of the points that

can be attained from 0 at the time t = 1 with the aid of the measurable controls taking their

values in a fixed compact set M ⊂ R
m is compact and convex in R

n and, if M ∗ ⊂ R
m is a

compact set such that convex hull of it coincides with the convex hull of M (coM = coM ∗)
then

AM(1) = AM∗(1)

(time t = 1 can be replaced by any T ∈ [0, 1]). This result is known in the literature as the

bang-bang principle (cf. [8], [10]).

An important question, from the practical point of view, is the possibility of choosing the

control function u : [0, 1] → M which steers the system to a given point and is piecewise

constant function(1). This problem is investigated in [9] and [1]. It is proved there that the

set APC
M (1) of the points that can be attained from 0 at the time t = 1 with the aid of the

piecewise constant controls taking their values in a fixed compact set M ⊂ R
m is, in general,

dense in AM(1) (a density theorem). The sets APC
M (1) and AM(1) coincide if M is the closed

convex hull of a finite number of points.

*This work was supported by grant 7 T11A 004 21 of the State Comittee for Scientific Research, Poland.
1We recall that a function u : [0, 1] → R

m is called a piecewise constant function if there exists a finite

partition 0 = x0 < x1 < ... < xk = 1 of the interval [0, 1] such that u is constant on (xi−1, xi) for every

i = 1, ..., k.
1
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The aim of the paper is to prove the analogous theorems for the following control system

with distributed parameters

(1.1) zxy = A0(x, y)z + A1(x, y)zx + A2(x, y)zy + B(x, y)u

for (x, y) ∈ P = [0, 1] × [0, 1] a.e.,

(1.2) z(x, 0) = 0, z(0, y) = 0

for x, y ∈ [0, 1],

u ∈ M,

where z ∈ R
n, M ⊂ R

m, A0, A1, A2 : P → R
n×n, B : P → R

n×m. In the automatic

control theory such system is called a continuous Fornasini-Marchesini system. It is in fact

a continuous version of 2-D discrete model of Fornasini-Marchesini type (cf. [5], [2]).

In the proof of the bang-bang principle, we shall use some facts concerning the integration

of the set-valued functions (Aumann integral). To prove a density theorem we shall prove

some extension (to the case of functions of two variables) of theorem on the density of

piecewise constant functions of one variable taking their values in some fixed set, in the

space of integrable functions which take their values in the same set (cf. [1]).

We shall consider system (1.1) in the space AC1
0 (P, Rn) (cf. [13]) of solutions, which

consists of all functions z having the representation

z(x, y) =

x∫

0

y∫

0

l(s, t)dsdt, (x, y) ∈ P,

with l ∈ L1(P, Rn). A function z ∈ AC1
0 (P, Rn) possesses a.e. on P the partial derivatives

zxy(x, y) = l(x, y),

zx(x, y) =

y∫

0

l(x, t)dt, zy(x, y) =

x∫

0

l(s, y)ds

and, of course, satisfies the initial conditions (1.2). In an elementary way one can check that

AC1
0 (P, Rn) with the norm

‖z‖AC1

0
(P,Rn) =

1∫

0

1∫

0

|zxy(x, y)| dxdy

is the Banach space.

On the control functions u we assume that they belong to L1(P, Rn). The functions

A0, A1, A2 : P → R
n×n, B : P → R

n×m are assumed to be elements of L∞(P, Rn×n),

L∞(P, Rn×m), respectively. In paper [3] it is proved that for any control u ∈ L1(P, Rm)

there exists exactly one solution zu ∈ AC1
0(P, Rn) of (1.1) and zun −→

n→∞
zu0 in AC1

0 (P, Rn)

as un −→
n→∞

u0 in L1(P, Rm).
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2. Bang-bang principle

Let us consider an operator

G : L1(P, Rm) 3 u 7−→ zu(1, 1) ∈ R
n.

Obviously, it is linear and bounded. Consequently, there exists a function g ∈ L∞(P, Rn×m)

such that

G(u) =

1∫

0

1∫

0

g(x, y)u(x, y)dxdy

for u ∈ L1(P, Rm).

Now, let us fix a set M ⊂ R
m and consider the sets

UM = {u ∈ L1(P, Rm); u(x, y) ∈ M for (x, y) ∈ P a.e.},

UcoM = {u ∈ L1(P, Rm); u(x, y) ∈ coM for (x, y) ∈ P a.e.}.

We shall show that if M is compact, then the sets

AM(1, 1) = G(UM) = {

1∫

0

1∫

0

g(x, y)u(x, y)dxdy; u ∈ UM},

AcoM(1, 1) = G(UcoM) = {

1∫

0

1∫

0

g(x, y)u(x, y)dxdy; u ∈ UcoM}

are convex compact and coincide (the point (1, 1) can be replaced by any point (X,Y ) ∈ P ).

Let us define a single-valued function

f : P × R
m 3 (x, y, u) 7−→ g(x, y)u ∈ R

n,

the set-valued functions

F : P 3 (x, y) 7−→ f(x, y,M) = g(x, y)M ∈ 2R
n

coF : P 3 (x, y) 7−→ cof(x, y,M) = g(x, y)coM ∈ 2R
n

and denote by
1∫
0

1∫
0

F (x, y)dxdy the set

{

1∫

0

1∫

0

v(x, y)dxdy; v ∈ L1(P, Rn), v(x, y) ∈ F (x, y) for (x, y) ∈ P a.e.}

and by
1∫
0

1∫
0

coF (x, y)dxdy the set

{

1∫

0

1∫

0

v(x, y)dxdy; v ∈ L1(P, Rn), v(x, y) ∈ coF (x, y) for (x, y) ∈ P a.e.}.

In fact, they are the Aumann integrals of the set-valued functions of two variables F (x, y), coF (x, y),

respectively (cf. [4]).
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We have

Lemma 2.1. If M ⊂ R
m is a compact set, then

AM(1, 1) =

1∫

0

1∫

0

F (x, y)dxdy.

Proof. The inclusion

AM(1, 1) ⊂

1∫

0

1∫

0

F (x, y)dxdy

is obvious.

So, let z ∈
1∫
0

1∫
0

F (x, y)dxdy, i.e.

z =

1∫

0

1∫

0

v(x, y)dxdy

where v ∈ L1(P, Rn) and v(x, y) ∈ F (x, y) = g(x, y)M for (x, y) ∈ P a.e. The implicit

function theorem for the set-valued function (cf. [6]) implies that(2) there exists a measurable

function u : P → R
m such that u(x, y) ∈ M for (x, y) ∈ P a.e. (so u ∈ UM) and

v(x, y) = g(x, y)u(x, y), (x, y) ∈ P a.e.

Thus,

z =

1∫

0

1∫

0

g(x, y)u(x, y)dxdy ∈ AM(1, 1)

and the proof is completed.

Since the convex hull of a compact subset of R
n is compact, therefore from the above

theorem it follows that

AcoM(1, 1) =

1∫

0

1∫

0

coF (x, y)dxdy

provided M ⊂ R
m is compact.

Now, we shall prove the main result of the paper

Theorem 2.1. If M ⊂ R
m is a compact set, then the set AM(1, 1) ⊂ R

n is convex compact.

Moreover, if M ∗ ⊂ R
m is a compact set such that coM = coM ∗, then

AM(1, 1) = AM∗(1, 1).

2We apply the implicit function theorem to the single-valued function f(x, y, u) = g(x, y)u and the

constant set-valued function Γ(x, y) = M .
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Proof. First we shall prove the second part of the theorem. From [4] we have(3)

1∫

0

1∫

0

F (x, y)dxdy =

1∫

0

1∫

0

coF (x, y)dxdy.

So,

AM(1, 1) = AcoM(1, 1).

Analogously,

AM∗(1, 1) = AcoM∗(1, 1).

Thus, using the fact that coM = coM ∗, we obtain

AM(1, 1) = AM∗(1, 1).

To prove the first part of the theorem let us recall some classical result of the functional

analysis which states that the set UcoM is convex and weakly compact in L2(P, Rm) pro-

vided M ⊂ R
m is compact. Of course, the functional G |L2(P,Rm) (the restriction of G to

L2(P, Rm)) is linear and continuous on L2(P, Rm) (in L2(P, Rm) we consider the classical

norm). Consequently, the set

AcoM(1, 1) = G(UcoM) = (G |L2(P,Rm))(UcoM)

is convex and compact in R
n. This fact and the second part of the theorem imply the

convexity and compactness of AM(1, 1).

Remark. The equality

AM(1, 1) = Abd(M)(1, 1)

where bd(M) is the boundary of M has been obtained (on the basis of a decomposition

theorem and the so-called multipliers of Cesari) in [12]. The possibility of the extension of

this result to the case of the set of extreme points of M is also noticed.

3. Piecewise constant controls

In [1] (cf. also [11]) the following interesting theorem is proved

Theorem 3.1. If M ⊂ R
m is nonempty, then for every integrable function l : [0, 1] → M

and every ε > 0 there exists a picewise constant function u : [0, 1] → M such that
∫ 1

0

|l(t) − u(t)| dt ≤ ε.

Now, we shall prove an extension of this theorem to the case of functions of two variables.

We say that a function u : P → R
m is piecewise constant if there exists a partition

0 = x0 < x1 < ... < xk = 1 of the interval [0, 1] such that u is constant on (xi−1, x)×(xj−1, xj)

for every i, j = 1, ..., k.

We have the following

3This theorem can be applied in our case because the set-valued function F (x, y) is measurable (in the

sense of definition given in [IT]), bounded by an integrable function and has the closed values (in fact

compact).
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Theorem 3.2. If M ⊂ R
m is nonempty, then for every integrable function l : P → M and

every ε > 0 there exists a piecewise constant function u : P → M such that
∫ 1

0

∫ 1

0

|l(x, y) − u(x, y)| dxdy ≤ ε.

Proof. Let us fix an integrable function l : P → M, ε > 0, u0 ∈ M and consider a function

b0 : P 3 (x, y) 7−→ l(x, y) − u0 ∈ R
m.

The Tchebychev’s inequality (cf. [7]) implies that for any ν ∈ N

µ({(x, y) ∈ P ; |b0(x, y)| ≥ ν}) ≤
1

ν

∫ 1

0

∫ 1

0

|b0(x, y)| dxdy

(µ denotes the Lebesgue measure in P ). From the absolute continuity of the integral it

follows that for any η > 0 there exists δ > 0 such that
∫ ∫

R

|b0(x, y)| dxdy < η

provided µ(R) < δ. Consequently, there exists ν0 ∈ N such that
∫ ∫

R0

|b0(x, y)| dxdy <
ε

2

where R0 = {(x, y) ∈ P ; |b0(x, y)| ≥ ν0}.

If we put

b(x, y) =

{
u0 ; (x, y) ∈ R0

l(x, y) ; (x, y) ∈ P \ R0

for (x, y) ∈ P , then we have
∫ 1

0

∫ 1

0

|l(x, y) − b(x, y)| dxdy

=

∫ ∫

R0

|l(x, y) − b(x, y)| dxdy +

∫ ∫

P\R0

|l(x, y) − b(x, y)| dxdy

=

∫ ∫

R0

|b0(x, y)| dxdy <
ε

2
.

Let us denote by γ a constant (a finite number) which bounds the function b on P , i.e.

|b(x, y)| ≤ γ for (x, y) ∈ P . The Lusin’s Theorem implies that there exists a compact set

H ⊂ P such that

µ(H) > 1 −
ε

8γ

and the function H 3 (x, y) 7−→ b(x, y) ∈ R is uniformly continuous. In particular, there

exists σ > 0 such that

|b(x, y) − b(x, y)| <
ε

4
for (x, y), (x, y) ∈ H, |(x, y) − (x, y)| < σ.

Let us fix a number r ∈ N such that
√

2
r

< σ and consider a partition

Pij = [
i

r
,
i + 1

r
] × [

j

r
,
j + 1

r
]; i, j = 0, ..., r − 1,
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of the interval P . Let us also define a function u : P → R
m,

u(x, y) =

{
b(x̃i, ỹj) ; (x, y) belongs to some IntPij and (IntPij) ∩ H 6= ∅

u0 ; otherwise
,

where (x̃i, ỹj) is an arbitrary fixed point of (IntPij)∩H for any i, j such that (IntPij)∩H 6= ∅.

Of course, u is a constant function and

u(x, y) ∈ M

for (x, y) ∈ P a.e. Moreover, we have
∫ ∫

P

|b(x, y) − u(x, y)| dxdy

=

∫ ∫

H

|b(x, y) − u(x, y)| dxdy +

∫ ∫

P\H
|b(x, y) − u(x, y)| dxdy

≤
r−1∑

i,j=0,(IntPij)∩H 6=∅

∫ ∫

(IntPij)∩H

|b(x, y) − u(x, y)| dxdy + µ(P \ H)2γ

≤ r2 1

r2

ε

4
+

ε

8γ
2γ =

ε

2
.

Finaly, u : P → M is the piecewise constant function and
∫ ∫

P

|l(x, y) − u(x, y)| dxdy

≤

∫ ∫

P

|l(x, y) − b(x, y)| dxdy +

∫ ∫

P

|b(x, y) − u(x, y)| dxdy ≤ ε

which completes the proof.

Let us denote by UPC
M the set of all piecewise constant functions u : P → M . From the

above theorem and the continuity of the mapping

G : L1(P, Rm) → R
n,

G(u) = zu(1, 1),

we obtain

Theorem 3.3. If M ⊂ R
m is nonempty, then the set

APC
M (1, 1) = {zu(1, 1); u ∈ UPC

M }

is dense in AM(1, 1).

Finally, from theorems 2.2 and 3.3 we obtain

Theorem 3.4. If M,M ∗ ⊂ R
m are nonempty compact sets such that coM = coM ∗, then

each point z1 ∈ R
n that can be attained with the aid of a control u ∈ UM can be attained with

the aid of a control u ∈ UM∗. Moreover, for every ε > 0 there exists a control ũ ∈ UPC
M∗ such

that ∣∣z1 − zũ(1, 1)
∣∣ < ε.
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