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Abstract

Since any symmetric BTHTHB matrix can be diagonalized by the DCT matrix, a BTTB

matrix encountered in the image reconstruction problem is sometimes approximated by a BTHTHB

matrix for computational efficiency. In this paper, the error caused by the approximation of a

BTTB matrix by a BTHTHB matrix is analyzed. It is also shown that a simple modification

of the observed image can achieve both reduced boundary error and fast deblurring.

1 Introduction

Nowadays, we encounter digital color images more than monochrome images with the advent of

digital TV and fast internet infrastructure. The global wide sense stationarity assumption is per-

vasive in several known methods spanning the work of Hunt and Kubler in 1984 upto the work

of Boo and Bose in 1997 for multispectral images [1]. With the assumption that the estimates of

signal power spectrum and noise power spectrum are available, a 3-D Wiener filter was applied to

two luminance images and 2-D Wiener filters to the chrominance components [1]. However, the

approximation of BTTB (Block Toeplitz Toeplitz Block) by BCCB (Block Circulant Circulant

Block) matrix caused some image degradation due to leakage components near the zeros of the

transfer function characterizing the linear shift-invariant (LSI) blur [2]. The amplified leakage

component may cause ringing effect near boundaries as well as in the center part of image. In [2],

the observed image is extrapolated and the image reconstruction is performed in DFT domain with

the periodic boundary condition to reduce this effect. In [3], the blur matrix was modified so that

the blur function has more peaked distribution near the boundaries. However, this modification

destroys the BCCB structure , so that diagonalization by 2-D DFT is not possible. The Neumann

boundary condition is known to produce small boundary error if the image is stationary inside and

as well as outside the boundaries [4]. Also, the resulting BTHTHB (Block Toeplitz-plus-Hankel

Toeplitz-plus-Hankel Block) matrix from the Neumann boundary condition can be diagonalized by

the DCT matrix if the BTHTHB matrix is symmetric [4].

The approximation of BTTB by BTHTHB, however, also produces unwanted ringing effects

similar to that in the approximation of BTTB by BCCB. Here, it will be shown that simple

modification of the observed image can significantly reduce the ringing effect while keeping the

BTHTHB structure invariant. With the technique introduced here, it is possible to achieve both

fast deblurring and reduced boundary error.
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2 Main Results

For brevity, consider the 1-D case. Denote the original finite dimensional signal vector by

f = (..., f
−m+1, ..., fo, f1, ...fn, fn+1, ..., fn+m, ...)t

and the blur vector by

h = (..., 0, h
−m, ..., h0, ...hm, 0, ...)t. (1)

The convolution ht ∗ f t produces the blurred signal vector g = [g1, ..., gn]t, where [4]

Tlfl + Tf + Trfr = g, (2)

fl = [f
−m+1, f−m+2, ..., f−1, f0]

t
, f = [f1, f2, ..., fn−1, fn]t , fr = [fn+1, fn+2, ..., fn+m−1, fn+m]t ,

Tl =
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, Tr =











0
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−m
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. . .
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−1 · · · h
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.

In the case of Neumann boundary condition, the data outside the support of f is assumed to be

a reflection of the data inside the support of f , i.e.,

fj = fk, where

{

k = 1− j, if i < 1

k = 2n + 1− i, if i > n

Then the system of equations in Eq. (2) becomes [4] (J denotes the anti-identity matrix satisfying

J2 = I and H(n) = [(0|Tl)J + T + (Tr|0)J ])

g = [(0|Tl)J + T + (Tr|0)J ]f = H(n)f . (3)

The resulting blur matrix H(n) is a Toeplitz-plus-Hankel matrix, which can be diagonalized by a

DCT matrix if it is symmetric [4]. In the 2-D case, the blur matrix becomes a BTHTHB matrix,

which can be diagonalized by the 2-D DCT matrix.

The image reconstruction system described in Eq. (2) is known to be ill-posed. The Tikhonov

regularized solution minimizes the objective function,

min
f

||Hf − g||22 + λ||Lf ||22 (4)

where L is the smoothing Laplacian-like operator and λ is the regularization parameter, optimally

calculable may be calculated by the L-curve [5] or other methods. It is easy to show that the solution

of Eq. (4) is

fλ =
[
HtH + λLtL

]
−1

Htg.

Space-variant regularization methods have also been proposed [6].
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Theorem 1 [4] With λ > 0, let f
(n)
λ be the regularized solution with the Neumann boundary con-

dition. Then the error vector e
(n)
λ ≡ f

(n)
λ − f of the reconstructed signal can be decomposed as the

sum e
(n)R
λ + e

(n)B
λ of the regularization error e

(n)R
λ and boundary error e

(n)B
λ . The boundary error,

e
(n)B
λ can be expressed as

e
(n)B
λ = [H(n)tH(n) + λLtL]−1H(n)t{[Tlfl − (0|Tl)Jf ] + [Trfr − (Tr|0)Jf ]}

Furthermore, if (E(v) denotes the expected value of a random vector v)

E([f ]i) = γ1, −m + 1 ≤ i ≤ m, and E([f ]i) = γ2, n−m + 1 ≤ i ≤ n + m,

then

|E([e
(n)B
λ ]i)| = 0

A method to satisfy the last equality with more relaxed constraints is proposed next. Rewrite

Eq. (2) as

g = Tlfl + Tf + Trfr

= [(0|Tl)J + T + (Tr|0)J ]f + Tlfl + Trfr − (0|Tl)Jf − (Tr|0)Jf

= H(n)f + [Tlfl + Trfr − (0|Tl)Jf − (Tr|0)Jf
︸ ︷︷ ︸

BC error e

]
(5)

where, H(n) is a Toeplitz-plus-Hankel matrix, defined in Eq. (3)

The main contribution of this paper is summarized next.

Theorem 2 If the original image is stationary near its boundary with conditions,

E([f ]i) = γ1, 1 ≤ i ≤ 3m, and E([f ]i) = γ2, n− 3m + 1 ≤ i ≤ n,

for constants γ1, γ2, then with boundary condition (BC) error vector e defined in Eq. (5), the

expected value of the random vector e is

E(e) = E([g1 − g2m g2 − g2m−1 · · · gm − gm+1 0 · · · 0 gn−m+1 − gn−m · · · gn − gn−2m+1]
t)

Proof. ¿From Eq. (5), the kth element ek of vector e can be written as

ek =







∑m
t=k ht(fk−t − ft−k+1), for 1 ≤ k ≤ m

∑k−n−1
t=−m ht(fk−t − f2n+t+1−k), for n−m + 1 ≤ k ≤ n

0, otherwise

Then, for 1 ≤ k ≤ m,

gk − g2m−k+1 =

m∑

t=−m

ht(f−t+k − f2m−t−k+1)

=

k−1∑

t=−m

ht(f−t+k − f2m−t−k+1)

︸ ︷︷ ︸

term1

+

m∑

t=k

ht(ft−k+1 − f2m−t−k+1)

︸ ︷︷ ︸

term2

+ ek
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Support of blur function
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with BTHTHB matrix

Figure 1: Modification of observed image g

and for n−m + 1 ≤ k ≤ n,

gk − g2n−k−2m+1 =
m∑

t=−m

ht(fk−t − f2n−k−2m−t+1)

=
m∑

t=k−n

ht(fk−t − f2n−k−2m−t+1)

︸ ︷︷ ︸

term3

+
k−n−1∑

t=−m

ht(f2n+t+1−k − f2n−k−2m−t+1)

︸ ︷︷ ︸

term4

+ ek.

With the conditions stated above (Theorem 2) satisfied,

E(term1) = E(term2) = E(term3) = E(term4) = 0

Therefore, E(e) has the form stated in the theorem. �

If the expected value of g is replaced by the instantaneous value of g in Theorem 2, then the

observed image g, after modification by the boundary error, is

gmod , g −E(e) ≈ H(n)f (6)

(the ≈ sign becomes an equality when E(e) is replaced by e, as in the LMS algorithm [7]) where

gmod = [g2m g2m−1 · · · gm+1 gm+1 · · · gn−m gn−m · · · gn−2m+1]
t (7)

The k-th sample of the modified signal (with blur in Eq. 1) is

gmod k =







g2m−k+1 for 1 ≤ k ≤ m

g2n−k−2m+1, for n−m + 1 ≤ k ≤ n

gk, otherwise

(8)

Therefore, before regularization is applied, the modifications in the observed signal occur in the

first m elements as well as the last m elements (see Eq. 7).
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In the case of 2-D signal, the modification shown in Eq. (8) is performed along horizontal and

vertical directions, as described in Figure 1.

3 Computer Experiments

In this computer simulation, a 256 × 256 was taken to be the original image, as shown in Figure

2 (a). The observed image was generated by convolving the original image with a LSI uniform

circular blur function of 6 pixels diameter and then adding a white Gaussian noise, as shown in

Figure 2 (b). For comparison, two image reconstruction algorithms were performed: (1)BTHTHB

approximation without the modification of the observed images (2)BTHTHB approximation with

the modification suggested in this paper of the observed images. The reconstructed images by

the two different methods are shown in Figures 2 (c) and (d). To get the optimal regularization

parameter, the L-curve method [5] was used.

4 Conclusions

Without the modification of the observed image, the approximation of BTTB by BTHTHB

causes ringing effect in the reconstructed image. However, simple modification of the observed

image significantly reduces this effect, and leads to improvement of the visual image quality as well

as PSNR (Peak Signal-to-Noise Ratio).
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(a) Original image of size 256× 256.
Observed blurred and noisy image;

PSNR=24.53dB.

Restored image without data modifica-

tion; PSNR=24.59dB.

Restored image with data modification;

PSNR=27.09dB.

Figure 2: Image restoration with approximation of BTTB by BTHTHB
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