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Abstract

We propose an interleaving scheme for multidimensional (M -D) interleaving. To

achieved by using a novel concept of basis interleaving array. A general method of

obtaining a variety of basis interleaving arrays is presented. Based on the basis inter-

leaving array, we then propose an interleaving technique, called successive packing, to

generate the interleaved array of arbitrary size. It is shown that the proposed technique

can spread any error burst of m
k
0×m

k
1 within m

n
0 ×m

n
1 array (1 ≤ k ≤ n−1) effectively

so that the error burst can be corrected with simple random error correcting-code (pro-

vided the error correcting-code is available). It is further shown that the technique is

optimal for combating a set of arbitrarily-shaped error bursts. Since this algorithm

needs to be implemented only once for a given M -D array, the computational cost is

is low.

Key words: Basis interleaving array, Multidimensional interleaving, error burst, random-

error-correction codes

1 Introduction

With rapid development of the information technology, two-dimensional (2-D) and three-

dimensional (3-D) data handling is being widely used. Applications include 2-D and 3-D

magnetic and optical data storage, charged-coupled devices (CCDs), 2-D barcodes, and infor-

mation hiding in digital images and video sequences. Correcting error bursts is an important

problem in all of these applications. Thus, the issue of reliability of M -D information is an

important task, with both theoretical and practical significance. In this paper, we address

the protection of multidimensional (M -D, M ≥ 2) digital data. Specifically, we show how

to spread the bursts (clusters) of errors in such a way that they can be corrected by simple

error correction code.
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One-dimensional (1-D) interleaving technique has been well documented in the literature

(see e.g., [1]). The main idea is to shuffle the code symbols from different codewords so that

error bursts encountered in the transmission are spread across multiple codewords when the

codewords are reconstructed at the receiving end. Consequently, the error occurring within

one codeword may be small enough to be corrected by using simple random-error-correction

code. Extending this strategy of one-dimensional (1-D) interleaving technique to the M -

D situation in order to combat error bursts with some random-error-correction codes has

become the most common approach to the correction of error bursts. Some M -D interleaving

techniques for combating M -D error bursts have been proposed in [2, 3, 4, 5]. Among them,

Almeida et.al. present 2-D interleaving results for circular-shape error bursts [2]. Their

results cannot be generalized to non-circular shaped bursts or to higher dimensions. The

United Parcel Service (UPS) combine the 1-D interleaving technique with a writing procedure

to protect 2-D barcode [3]. However, this approach cannot effectively spread the 2-D error

bursts [6, 7]. Adbel-Ghaffar [4] studies some theoretical aspects of 2-D interleaving, but only

presents unproven concepts.

A more comprehensive interleaving technique is discussed in [5], in which an error burst is

defined as an arbitrarily-shaped, connected area volume in the multidimensional space. In

this method, for each burst size t0, a specific algorithm is implemented, which can optimally

correct arbitrarily-shaped error burst of size t0. Furthermore, it is observed that when the

burst size t increases, i.e., when t > t0, the algorithm with a set of new parameters needs to

be implemented in order to correct the larger error burst of arbitrary shape. Likewise, when

the burst size decreases, i.e., t < t0, the interleaving array that is optimal for burst size t0 is

not optimal any more. Since, in practice, the sizes of error bursts are not known in advance,

application of the technique is somewhat limited. By contrast, the size of a given 2-D array

(e.g., the size of image and video frames) is known in many applications. Motivated by

these observations, a novel method, called successive packing (SP), to 2-D interleaving, is

proposed as a different and complementary technique [7, 8]and optimal performance of SP

on square arrays of size 2n × 2n is proved. However, the analysis and application of SP is

restricted to square arrays of size 2n × 2n.

In this paper, we first propose the novel concept of basis interleaving array. Its charac-

teristics are discussed and a method for its construction is proposed. We then propose to

generate a large class of interleaving arrays by successive packing of basis interleaving arrays.

The performance of the proposed scheme in burst error correction is discussed. The paper is

organized as follows. In Section 2, we introduce definitions necessary for the remaining part

of the paper. We then present the concept of basis interleaving array for M -D interleaving,

and the corresponding 2-D method is shown to be optimal. Next, in Section 3, we propose

the SP approach to M -D interleaving. We show that it works well in a set of error bursts

when size of the 2-D array is given, but size of error bursts is not known in advance. Finally,

conclusions are drawn in Section 4.
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2 Basis Interleaved Array

Unless otherwise stated, for the sake brevity of discussion, our presentation will be re-

stricted to one-random-error-correction codes. All results can be extended to r-random-

error-correction codes with r > 1 in a straightforward manner. The philosophy behind

interleaving to combat bursts of M -D errors is similar to that in the 1-D situation. Loosely

speaking, with interleaving, the elements in an M -D array are rearranged so that error in

the interleaved M -D array are separated as far away as possible from in the de-interleaved

array. Error burst correction is, thus, facilitated if there is only one error in each codeword

in the de-interleaved M -D array.

Definition 2.1. Let C be an M-D code of m0 ×m1 · · · ×mM−1 over GF(q). A codeword of

C is an M-D array of m0 × m1 · · · × mM−1, with each element of the M-D array assigned

with a code symbol.

Note that GF (q) denotes Galois field over q elements. The simplest field is the binary

field, GF (2) = {0, 1}.

Definition 2.2. In 2-D arrays, the neighbors of element (x, y) are denoted by

(x + 1, y), (x− 1, y), (x, y + 1), (x, y − 1)

In 3-D arrays, the neighbors of element (x,y,z) are denoted by

(x + 1, y, z), (x− 1, y, z), (x, y + 1, z), (x, y − 1, z), (x, y, z + 1), (x, y, z − 1)

provided those elements exist.

Natural extensions of Definition 2.2 in higher dimensions apply. For M -D arrays, an

element has 2M neighbors.

Definition 2.3. A burst is a subset of the given M-D array B, in which any element has at

least one neighbor contained in B. Its size is defined as the number of elements in B.

Definition 2.4. The distance between any two elements is the length of the shortest path

between the two elements. Here, path consists of a squence of neighbors connecting the two

elements.

Since interleaving involves shuffling code symbols so that each element in an error burst is

spread into a different codeword, if any two elements within a distinct codeword are separated

in the de-interleaved array such that their distance is maximized, then a large error bursts

can be hopefully corrected.

Let A be an M -D array of size m0×m1×· · ·×mM−1. We re-index each element si0,i1,··· ,iM−1

of A as sk with k being a function of i0 to iM−1 (for instance, for 2-D array, we can have

k = m1 × i0 + i1). Now consider a partitionin of A into L blocks with 1 ≤ L ≤ N , where

N = m0 ×m1 × · · · ×mM−1. That is, each block so generated contains K = N/L elements.
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Definition 2.5. In the above scheme of partitioning followed by reindexing, any element

having an index k with K(d − 1) ≤ k < Kd, 1 ≤ d ≤ L is said to belong to the d-th block.

An element having index K(d − 1) is referred to as the beginning element of the d-th block.

All elements belonging to the same block are referred to as the K-equivalent elements.

According to Definition 2.5, we see that s2l, s2l+1 are 2-equivalent elements; s3l, s3l+1, s3l+2

are 3-equivalent elements. It is obvious that K1-equivalent elements are also K2-equivalent

elements if K2/K1 is integer. Let one block be a codeword with length K, then all elements

of a distinct codeword is K-equivalent with each other. Hence, the objective of effective

interleaving is transformed to the problem of maximizing the minimum distance between

any two K-equivalent elements. If, for each k = 0 to M − 1, mk is prime, then the number

of codewords that the corresponding M -D array can contain is an integer multiple of mn

(n < M). Motivated by this observation, we propose the concept of basis interleaving array

next.

2.1 Square 2-D basis array

Definition 2.6. Consider a interleaving array B of size m × m, where m is prime. If the

minimum distance between any two m-equivalent elements attain the maximum, then we call

this array as basis interleaving array.

It is obvious from Definition 2.6 we have square basis arrays of sizes 2 × 2, 3 × 3, 5 × 5,

· · · etc. In [7, 8] an optimal interleaving technique based on the succesive packing of a

specific 2× 2 array is presented. In fact, this particular 2× 2 array is an example of a basis

interleaving array.

Theorem 2.1. The 2-D array
[

S0 S2

S3 S1

]

(2.1)

is a basis interleaving array.

Proof. In a 2× 2 array, the distance from one corner to its opposite corner is the maximum

distance between any two elements. It is obvious that this distance equal to 2. For the two

2-equivalent element pairs (s0, s1) and (s2, s3), it is easily seen the distance between s0 and

s1, as well as the distance between s2 and s3 attains the value 2. Thus, Theorem 2.1 is

proved.

In order to construct a basis interleaving array, it is necessary to know the upper bound

of the minimum distance. Note that the number of m-equivalent elements of each element

is m − 1 in a square m × m array. Thus, we need to constitute a 2-D sphere with size m

centered around each of the m-equivalent elements. The m spheres should be able to tile to

a m × m array without overlapping. Then the maximum radius of this sphere is the upper

bound of the minimum distance. This problem was first approached in [9] for m is odd.
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Figure 1: Typical 2-D sphere with size 2, 5, 8, 13, 18.

Later the idea was extended in [5] to even m case. It has been proven that if m is even and

m = t2/2, then the upper bound of the radius is t; if m is odd and m = (t2 + 1)/2, then the

upper bound is also t.

Some examples of 2-D spheres are shown in Fig. 1. Notice that spheres of size m do

not exist for values of m equal to 3, 4, 6, 7, 9, 10, 11, · · · . Thus, the upper bound of the

minimum distance is the radius of the largest sphere with size less than m. According to

this observation, the upper bound is 2 for 2 ≤ m ≤ 4; the upper bound is 3 for 5 ≤ m ≤ 7;

upper bound is 4 for 8 ≤ m ≤ 12, etc.

In the following we present a method of constructing square basis interleaving arrays.

Procedure 2.1. Let A be a 2-D array of size m×m (m ≥ 2), and let dr be the upper bound of

the distance between any two elements. We express coordinate (i, j) of each element toroidally

i.e., modulo integer m. We first attribute the elements of first row as s0, sm, s2m, · · · , sm(m−1),

which are in the location (0, 0), (0, 1), · · · , (0, m− 1). Then, let X = 1 and Y = dr − 1. For

each element with location (i, j), add 1 to the subscript of this element and put it in the

location (i+X, j+Y). For example, s1 is put in the location (X, Y). Repeat this procedure

until all of the positions are occupied.

Example 2.1.1: Consider the case of 2× 2 array. According to [5], we have dr = 2. Thus,

X = 1, Y = 1. Using the above procedure with X = 1, Y = 1, we have constructed the array

as in Fig.2. It can be seen that it is exactly same with our 2× 2 basis array above.

s

s s

s0

1

2

3

Figure 2: 2× 2 basis interleaving array

Example 2.1.2: Consider the case of 3× 3 array. According to [5], we have dr = 2. Thus,
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X = 1, Y = 1. Using the above procedure with X = 1, Y = 1, we have constructed the array

as in Fig. 3.

s

s s

s0

s s

s

s

s

1

2

3

4

5

6

7

8

Figure 3: 3× 3 basis interleaving array

Example 2.1.3: Consider the case of 5 × 5 array. According to [5], we have dr = 3. Thus

X = 1, Y = 2. Using the above procedure with X = 1, Y = 2, we have constructed the array

as in Fig. 4.
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Figure 4: 5× 5 basis interleaving array

Theorem 2.2. If the integer m is prime, then the square array constructed by Procedure 2.1

is a basis interleaving array.

Proof. According to Procedure 2.1, we first generate the positions for elements

s0, sm, s2m, · · · , sm(m−1). Then we generate the positions of their m-equivalent elements re-

spectively. It can be seen that the corresponding distance of two co-positional m-equivalent

elements in each of the m-equivalent set is the same. For example, the distance between

s0 and sk is equal to the distance between s2m and s2m+k, where k < m. Therefore, if we

can prove Theorem 2.2 for the m-equivalent set beginning with s0, then Theorem 2.2 is

proved. Based on the same reasoning, if we can prove that the distance between s0 and

any its m-equivalent elements is greater than or equal to dr, then it holds for any sk with

0 < k < m.

We first consider the case when dr is odd. Due to toroidal labeling of the coordinates, the

coordinates of sk is (kX, kY mod m). The distance between s0 and sk is kX +kY mod m.

Thus, the problem is transformed to proving the following inequality:

kX + kY mod m ≥ dr (2.2)

If kY < m then we have kY mod m = kY . Thus, kX + kY mod m = k(X + Y ). Since

X + Y = dr, it is obvious that k(X + Y ) > dr. Now, let us consider the case that kY > m.
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Then for integers l1 and l2 we can write

kY = l1m + l2.

Using the above equation, we can obtain

k =
l1m + l2

Y
.

Since X = 1, Y = dr − 1, we have

kX + kY mod m =
l1m + l2
dr − 1

+ l2.

Hence, the inequality (2.2) becomes

l1m + l2
dr − 1

+ l2 ≥ dr, (2.3)

which is satisfied if

l1m ≥ d2
r − (l2 + 1)dr − l2.

According to a result in [5], we have m ≥ d2
r+1
2

. Thus, if

l1
d2

r + 1

2
≥ d2

r − (l2 + 1)dr − l2

holds, then inequality (2.3) holds. The above inequality clearly holds for l1 > 1. If l1 = 1,

then it follows that
d2

r + 1

2
≥ d2

r − (l2 + 1)dr − l2.

Thus, the value of l2 should satisfy the following condition

l2 >
dr − 2

2
.

In order to find the range of allowable values of l2 when l1 = 1, let us decompose m as

m =
d2

r + 1

2

= (dr − 1)
dr + 1

2
+ 1 (2.4)

Now, if we let k = dr+1
2

+ 1 then

kY = (dr − 1)
dr + 1

2
+ 1 + (dr − 2)

= m + (dr − 2) (2.5)

Hence we get l2 = dr − 2. According to the above procedure, dr − 2 is the minimum of l2
when l1 = 1. Thus, the theorem is proved for the dr odd case. Similar reasoning applies

when dr is even.
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In Procedure 2.1, we proposed a technique for generating the basis interleaving array. Next,

we generalize this method to any m×m array such that the minimum distance between any

two m-equivalent elements attains the maximum value.

Procedure 2.2. Let A be a 2-d array of size m × m (m ≥ 2), and let dr be the upper

bound on the distance between any two elements of the array. We label the coordinates of the

array toroidally on m i.e., we replace the corordinate (i, j) with their values modulo m. We

first attribute the elements of first row as s0, sm, s2m, · · · , sm(m−1), which are in the locations

(0, 0), (0, 1), · · · , (0, m− 1). Then let X = 1, Y satisfy the condition dr − 1 ≤ Y ≤ dr, with

Y and m relatively prime. For each element with location (i, j), add 1 to the subscript of the

element and put it in the location (i+X, i+Y). For example, s1 is put in the location (X, Y ).

Repeat this procedure until all of the positions are occupied.

Theorem 2.3. For any integer m > 1, the square array constructed by Procedure 2.2 attains

the maximum in the sense of minimum distance between any two m-equivalent elements.

Proof of Theorem 2.3 is similar to proof of Theorem 2.2. Notice that Construction 2.1 in

[5] is a special case of Procedure 2.2, where Y = br for m = b2r+1
2

, and Y = br +1 for m = b2r
2
.

2.2 Rectangular basis interleaving array

Next, we generalize the results of the previous section to rectangular basis arrays. We have

the following result.

Theorem 2.4. Let m × n be a rectangular basis array. If m < n, then the upper bound of

the minimum distance between any two n-equivalent elements is the same as the minimum

distance of any two m-equivalent elements in a m×m basis array. If m > n, then the upper

bound of the minimum distance between any two m-equivalent elements is the same as the

minimum distance of any two n-equivalent elements in a n× n basis array.

Proof. To prove Theorem 2.4, we first prove that the upper bound of its minimum distance

cannot be greater than the corresponding square basis array. Then we show that the equality

can be obtained.

Let us assume for definiteness that the minimum distance is greater than the corresponding

square basis array, and the minimum distance of any two n-equivalent elements greater than

the minimum distance of m×m basis array. Let us then truncate the m×n array to m×m

array. According to our assumption, the newly obtained m×m array will have the minimum

distance larger than the m × m basis interleaving array, which contradicts the definition of

basis interleaving array. Hence, the minimum distance of the n-equivalent elements in the

m× n array cannot be larger than the corresponding m×m square basis interleaving array.

To obtain the same minimum distance as the square basis interleaving array, we can change

Procedure 2.1 slightly to generate the rectangular basis interleaving array.
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Figure 5: 3-D 2× 2× 2 basis interleaving array.

Procedure 2.3. Let A be a 2-D array of size m × n, and let dr be the upper bound of

the distance for the corresponding square interleaving array. If m < n, we re-express i of

row coordinates (i, j) toroidally as i mod m. We first attribute the elements of first row

as s0, sn, s2n, · · · , s(m−1)n, which are in the location (0, 0), (0, 1), · · · , (0, m − 1). Then let

X = dr − 1, Y = 1. For each element with location (i, j), add 1 to the subscript of the

element and put it in the location (i+X, j+Y). For example, s1 is put in the location (X,

Y). Repeat this procedure until all of the positions are occupied. If m > n, an analogous

procedure is followed.

It is easy to see by using arguments as in the proof of Theorem 2.2, that Procedure 2.3

yields the same minimum distance as the corresponding square array.

2.3 3-D basis interleaving array

In this section, we attempt to briefly describe via some examples how to extend the results

of the previous section to higher dimensions.

Definition 2.7. Consider a 3-D interleaving array B of size l × m × n, where l, m, n are

prime, and l ≤ m ≤ n. If the minimum distance between any two mn-equivalent elements

attains the maximum, then we call this array a basis interleaving array.

For a square 3-D array of size m × m× m with minimum distance dr, it has been proven

that m is bounded by

m ≥
d3

r + 2dr

6
, for dr even,

m ≥
d3

r + 5dr

6
, for dr odd,

where m is the size of 3-D sphere [5]. This result is further extended for M -D arrays in [5].

However, this bound cannot be always to achieve for M ≥ 3. For details we refer to [9, 5].

Here, we present an example of a 3-D basis interleaving array of size 2 × 2 × 2 , which will

be useful in our discussions to follow.
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3 Successive Packing of Basis Interleaving Array

The initial idea of successive packing for interleaving was presented in [7, 8], where the

authors focus on the interleaving of arrays of size 2n × 2n. Whether it can applied to M -

D array with arbitrary size had not been investigated. Also, it is not clear if its optimal

performance holds for rectangular 2-D arrays. In this section, we first present an M -D

interleaving technique based on the successive packing of basis interleaving arrays. Then its

performance for spreading error burst is analyzed. Subsequently, its optimality is discussed

and proved.

3.1 Successive Packing

Now we discuss the proposed SP technique in M -D case.

Procedure 3.1. (M-D interleaving using the successive packing)

Consider an M-D basis interleaving array of size m0×m1 ×· · ·×mM−2×mM−1. The inter-

leaving array is the original basis interleaving array itself. When m0 = m1 · · · = mM−1 = 1,

it is

S1 = [s0] (3.6)

where s0 represents the element in the array, and S1 the array. The subscript in S1 represents

the total number of elements in the interleaving array. Given interleaving array SN of size

N = m1×m2×· · ·×mM−2×mM−1, the interleaving array SN2 can be generated by transferring

each element si in SN to a M-D array according to the operation N ×SN + i (this operation

is described further in the following). This packing procedure is carried out successively

to generate SNK by transferring each element si in SNK to a M-D array according to the

operation N × SNK−1 + i.

In the above procedure, the operation N × SN + i is the key point. Generalizing what we

presented in [7], operation N × SN + i generates a M -D array with the same dimensionality

as SN . Furthermore, each element in N × SN + i is indexed in such a way that its subscript

equals to the N times of that of the corresponding elements (i.e., elements occupying the

same position in the M -D array) in SN plus i. A few examples are presented next.

Example 3.1: Given a 1-D basis array S3 = {s0, s1, s2}, the interleaving array is S9 = {s0,

s3, s6, s1, s4, s7, s2, s5, s8}.

Example 3.2: Given a 3×3 basis array as in Fig.3, the 9×9 interleaving array is generated

as in Fig.6.

Example 3.3: Given a 2× 2× 2 basis array as in Fig.5, the 4× 4× 4 interleaving array is

generated as in Fig.7, whereas the left hand side displays 2 × 2 × 2 array obtained via the

operation 8× S8 + 5.

To generate a interleaving array with arbitrary size, we use the successive packing method

based on a combination of different basis interleaving arrays. For instance, given basis
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Figure 6: Successive Packing generated 9× 9 interleaving array.

���
�

���� ��

��	�	
�


����


�

�
������

��������

���� ��

��������

����

������

��� � 

!!"
"

#�#$ %&

'()�)*�*

+�+,

-�--�-.�..�.

/�/0�012

3�34�4 56

789�9:

;�;<�<

=�=>

?�?@
AB

C�CD EF

GHI�IJ�J

K�KL

M�MN�N

O�OP�PQR

S�ST UV

WXY�YZ�Z

[�[\

]�]^�^

_�_`�`

ab

c�cd ef

ghi�ij�j

k�kl

m�mn�n

o�op�pqr

s�st�t uv

wxy�yz

{�{|�|

}�}~

����

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
� S

S

S S

8 8

8

8 8

8 8

8xS  +0

8 

8xS  +7

8xS  +2

8xS  +1

8xS  +38xS  +4

8xS  +5

8xS  +6

S0 61

45 21

13

S
37

S
29

S53

Figure 7: Successive Packing generated 4× 4× 4 interleaving array.

interleaving array SN and S2, we can generate the interleaving array S2N by {SN × 2 +

0, SN × 2 + 1}.

Example 3.4: Given 2×2 basis array as in Fig.2 and 3×3 basis array as in Fig.3, the 6×6

interleaving array is generated as in Fig.8.

3.2 Performance Analysis

Before embarking on performance analysis of our SP based M -D interleaving technique, we

introduce the following definition.

Definition 3.1. Consider two bursts B1 and B2 having the same size and shape in an

interleaving M-D array. If each element in a burst (e.g., B1) is either an element of another

burst (e.g., B2), or K-equivalent of an element of another burst (B2), then we say that bursts

B1 and B2 are K-equivalent bursts.

In the remainder of the paper, when discussing error burst correction, we may consider
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Figure 8: Successive Packing generated 6× 6 interleaving array.

each set of equivalent elements defined in Definition 2.5 as a M -D codeword. This implies

that a codeword consists of a set of consecutive code symbols. This is necessary since we

need to discriminate code symbols within a codeword in our ensuing discussion of the SP

technique for M -D interleaving. An error burst (in the interleaved array) is said to be spread,

and can be corrected with one-random-error-correction codes, if each element in the burst is

spread in distinct codewords of the de-interleaved array. From this point of view, it is easy

to see that given two equivalent bursts, if one is interleaved then the other burst must have

also been interleaved.

We may now state the following results.

Lemma 3.1. Let A be a 2-D array of size mn
0 ×mn

1 obtained by using successive packing of

a basis interleaving array of size m0 ×m1. Then all bursts of size mk
0 ×mk

1 in A with k < n

are K1-equivalent, where K1 = (m0 ×m1)
n−k.

The proof of this lemma is ommitted for brevity. Now we are in a position to present the

following theorem.

Theorem 3.1. Consider a 2-D array A of size mn
0 ×mn

1 . Then any burst of size mm
0 ×mm

1

with m ≤ n in the interleaving array A obtained by using the successive packing is spread in

the de-interleaved array so that each element of the burst falls into a distinct block of size

mn−m
0 ×mn−m

1 .

Theorem 3.1 indicates that, if a distinct code symbol is assigned to each element in a block (cf.

to Definition 2.5), and all the code symbols associated with an individual K-equivalent class

form a distinct codeword, then burst error correction with a one-random-error-correction

code is guaranteed, provided the code is available. Furthermore, the interleaving degree

equals the size of the burst error, hence minimizing the number of codewords required in an

interleaving scheme. In other words, with the successive packing technique, the interleaving

degree attains the lower bound (the interleaving gain)1. In this sense, the successive packing

1see [8] for definition of interleaving degree and interleaving gain.
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interleaving technique is optimal. Note that discussions in [8] can be considered to be a

special case of Theorem 3.1 with m0 = 2, m1 = 2. We conjecture that following result hold.

Conjecture 3.1. Consider an M-D array A of size mn
0 ×mn

1 ×· · ·×mn
M−1. Then any burst

of size mm
0 × mm

1 × · · · × mm
M−1 with m ≤ n in the interleaving array A obtained by using

the successive packing is spread in the de-interleaved array so that each element of the burst

falls into a distinct block of size mn−m
0 × mn−m

1 × · · · × mn−m
M−1.

In Section 3.1, we proposed to generate arbitrary size interleaved array by combining

different basis interleaving arrays. Here, we first show how to generate a square 2-D array

of size 2m2 × 2m2. We then prove its optimal performance. The procedure can be described

as follows.

Procedure 3.2.

• Generate the m× m interleaving array according to our SP technique.

• Generate the 2m× 2m interleaving array as follows

S4m2 =

[

4× Sm2 + 0 4× Sm2 + 2

4× Sm2 + 3 4× Sm2 + 1

]

(3.7)

• Let li,j denote the subscript of the corresponding element in the 2-D interleaving of

array S4m2 of size 2m× 2m. The 2m2 × 2m2 interleaving array is generated as

S4m4 =







m2 × S4m2 + l0,0 · · · m2 × S4m2 + l0,m−1

...
...

m2 × S4m2 + lm−1,0 · · · m2 × S4m2 + lm−1,m−1






(3.8)

We first need the following lemma.

Lemma 3.2. Let C be a cluster of size 2m in a 2-D array of size m1×m1, where 2m < m1.

Then there must exist a rectangular block R1 of size 2m×m, and/or a rectangular block R2

of size m× 2m such that C is entirely contained in either R1 or R2, or in both.

Proof. For the purpose of establishing a contradiction, let us hypothesize that there do not

exist blocks R1 and R2 as in the statement of the Lemma entirely containing C. Then, C

would be outside of R1 either in the X, or in the Y direction. Since the length of R1 in Y

direction is 2m, which is equal to the size of C, it is only possible for C to be outside of

R1 in X direction. Hence we have CX > m, where the CX is the dimension of C along X

direction. Since C is not entirely contained in R2, based on the same reasoning above, we

would have CY > m, where CY is the dimension of C along Y direction. Our hypothesis

then would imply that the size Size(C) of cluster C, satisfy the following:

Size(C) ≥ CX + CY − 1 ≥ 2× (m + 1)− 1 = 2m + 1,

which contradicts that C is of size 2m. The lemma is hence proved.
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Theorem 3.2. The 2-D interleaving array generated by Procedure 3.2 is optimal in the sense

that it can spread arbitrary burst of size 2m to distinct codeword of size 2m2.

Proof. According to Lemma 3.1 and Theorem 3.1, it is easy to see that any two 2m × 2m

bursts within the generated 2m2 × 2m2 array are m2-equivalent, and any two m × 2m or

2m × m bursts within the generated 2m2 × 2m2 array are 2m2-equivalent. Thus, any burst

with size m × 2m or 2m × m can be spread into distinct blocks with size 2m2. However,

according to Lemma 3.2, an arbitrary burst of size 2m is necessarily contained in a burst of

size either m × 2m or 2m× m. Theorem 3.2 is, thus, proved.

Theorem 3.2 indicates that if a distinct code symbol is assigned to each element in blocks

of size 2m2 (refer to Definition 2.5) and all the code symbols associated with a block form a

distinct codeword, then the SP technique can correct arbitrarily-shaped error burst of size

2m with one-random-error-correction code, provided the code is available. That is, the SP

technique achieves the same performance as that achieved by the technique in [5].

Comment: Needless to say that there are certain constraints with the SP technique.

Namely, it is not guaranteed that the upper bound of the minimum distance can be achieved

for the larger 2-D array (multiple basis interleaving array) with size (2m + 1) × (2m + 1).

However, since the SP based interleaving method is optimal for a large set of bursts, it

provides a versatile tool for busrt error correction.

In summary, the SP approach does provide an effective way for M -D interleaving. For a

given 2-D array of size mn
0×mn

1 , it can be applied once, and is optimal for a set of error bursts

having different sizes defined in Theorem 3.1. In addition, for the case of arbitrarily-shaped

error bursts having a size of 2m, to which both the SP technique and the technique in [5]

can be applied, the SP approach can also spread and correct arbitrarily-shaped error bursts

with the same lower bound obtained by using the approach in [5]. For the basis interleaving

array, we proposed a method which is proved to be optimal in 2-D case. For M > D case,

this optimality cannot guaranteed [9, 5].

4 Summary

In this paper, we focus on how to realize effective M -D interleaving. We first present a

novel concept, basis interleaving array. Based on this, a new interleaving method, called

successive packing (SP), is proposed to combat M -D error bursts. We have proved that the

proposed method can spread any error burst of mk
0 × mk

1 (with 1 ≤ k ≤ n − 1) to different

code blocks in the array of mn
0 ×mn

1 . Thus the simple error correction code which is optimal

for independent channel can be used to correct this kinds of error bursts. It needs to be

implemented only once for a given M -D array, and is thereafter optimal for the set of error

bursts having different sizes.
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