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Abstract

Yamada et al. [1] suggested replacing the traditional cepstrum operator used in
homomorphic signal processing by a finite-dimensional alternative called isomorphic
operator. This paper sheds another light on the isomorphic operator in terms of two
matrix functions: exponential and logarithmic. Closed form formulas for 1–D and 2–D
cases are presented.

1 Introduction

In [1] Yamada et al. introduced an alternative to the cepstrum transform called isomorphic

operator Ψ. The operator transforms a multidimensional sequence of finite support in the

first quadrant into another sequence of finite support in the first quadrant such that

Ψ(x ∗� y) = Ψ(x) + Ψ(y) (1.1)

for any two sequences x, y of finite support; here ∗� denotes the finite (truncated) convo-

lution. Together with a coordinate transformation (described also in [1]) the operator Ψ is

a suitable tool for homomorphic signal processing in any dimension. Its major asset is that

not only the domain of Ψ but also the range consists only of finite support sequences. The

definition of Ψ, however, is not very transparent and certain properties remained unrevealed.

We first show that Ψ is equivalent to the logarithmic function in the Banach algebra

Sn of sequences with finite support in the first quadrant where multiplication is the finite

convolution ∗� and its inverse Ψ−1 is equivalent to the exponential function in the same

Banach algebra. Next we show that in the two practically most important cases, 1–D and

2–D, Sn is isomorphic to the Banach algebra of triangular Toeplitz and block–Toeplitz ma-

trices respectively. This will enable us to express Ψ and Ψ−1 in terms of matrix operations;

we derive closed-form formulas (3.5) and (3.8) for Ψ and (3.4) and (3.7) for Ψ−1.

2 Finite Support Sequences

Let M be a fixed positive integer, let ZM denote the set of all M -tuples of integers and

Q = {q ∈ ZM ; q = (q1, . . . , qM), qi ≥ 0, i = 1, . . . ,M} be the first quadrant in ZM . Let S
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be the linear space of all M -dimensional sequences {x(k)}k∈Q. For an n = (n1, . . . , nM) ∈ Q

we define

Qn =
{
q ∈ Q; q = (q1, . . . , qM), 0 ≤ qi ≤ ni, i = 1, . . . ,M

}
and denote Sn the linear subspace of S comprising all sequences with support in Qn. We

identify the linear space S with the linear space F of all formal power series

X(z) =
∑
k∈Q

x(k) zk =
∑
k∈Q

x(k1, . . . , kM) zk1
1 · · · zkM

M

and for n ∈ Q we introduce the projection operator Pn : S → Sn by Pn(x) = xn, where

xn(k) =

 x(k) for k ∈ Qn

0 otherwise

In Sn we define an operation ∗� of finite convolution

x ∗� y = Pn(x ∗ y),

where ∗ denotes usual linear convolution in S:

(x ∗ y)(k) =
∑
l∈Q

x(l) y(k − l), k ∈ ZM

and a norm

||x|| =
∑
k∈Qn

|x(k)|.

Sn is then a commutative Banach algebra with unity

δ(k) =

{
1 for k = 0

0 for k 6= 0

and hence admits the exponential function Exp and logarithmic function Log [2]:

Exp x = δ + x +
x2

2!
+

x3

3!
+ · · · (2.2)

where xk = x ∗� x ∗� . . . ∗� x (k-times) and

y = Log x iff x = Exp y.

Note that Sn has only one homomorphism h : h(x) = x(0). This leads to simple conditions

for invertibility and existence of logarithm.

Proposition 2.1. A sequence x has a convolution ∗� inverse in Sn if and only if x(0) 6= 0.
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Proof. An element x is invertible in a Banach algebra if and only if h(x) 6= 0 for all homo-

morphisms h of the Banach algebra [2]. �

Proposition 2.2. A sequence x has a logarithm in Sn if and only if it is invertible in Sn.

Proof. An element x has a logarithm in a Banach algebra A if and only if log h(x) is contin-

uous on the space of all homomorphisms of A [3]. �
In [1] an operator Ψ: So

n → Sn was defined such that (1.1) holds; the domain of Ψ is

So
n = {x ∈ Sn; x(0) > 0}. The definition of Ψ was shown [1] to be equivalent to

Ψ
(
X(z)

)
= Pn

(
log X(z)

)
,

where log X(z) is expressed in terms of its Taylor series coefficients in z0 = 0. It was also

proved in [1] that Ψ is invertible and

Ψ−1
(
X(z)

)
= Pn

(
exp X(z)

)
.

The relation of Ψ to the logarithmic and exponential functions in Sn is shown in the next

two theorems.

Theorem 2.1. Ψ−1(x) = Exp x for any x ∈ Sn.

Proof. Since x ∗� y = Pn(x ∗ y) for any x, y ∈ Sn,it follows from (2.2) (due to linearity and

continuity of Pn) Exp x = exp (Pn(X(z))) = Ψ−1(x). �

Theorem 2.2. If x ∈ Sn and x(0) > 0, then Ψ(x) = Log x.

Proof. Let y = Log x. Then x = Exp y = Ψ−1(y), hence y = Ψ(x). �

3 Matrix Computations

For M = 1, 2 we now describe Ψ in terms of matrix operations. First, let M = 1 and n be a

positive integer. Let T (n) denote the linear space of all lower-triangular Toeplitz matrices of

order n + 1, i.e. matrices

X =


x0 0 0 . . . 0

x1 x0 0 . . . 0

x2 x1 x0 . . . 0
...

...
...

. . .
...

xn xn−1 xn−2 · · · x0

 . (3.3)

Each such matrix is uniquely determined by its first column x = (x0, x1, . . . , xn)T . Moreover,

if x, y ∈ Sn determine matrices X, Y ∈ T (n) respectively, then x ∗� y determines the matrix

XY . Hence the following theorem holds.
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Theorem 3.1. The linear space T (n) with usual matrix multiplication and the norm

||X|| =
n∑

i=0

|xi|

is a commutative Banach algebra which is isometrically isomorphic to Sn.

By combining Theorems 2.1, 2.2 and 3.1 we can express Log x and Exp x, hence also Ψ(x)

and Ψ(x)−1 in terms of matrix logarithmic and exponential functions.

Theorem 3.2. Let x = {x0, x1, . . . , xn} and X be the matrix (3.3). Then

exp X = ex0

(
I +

n−1∑
k=1

1

k!

(
X − x0I

)k
)

(3.4)

and Ψ−1(x) equals to the first column of the matrix exp X. If x0 6= 0, then

log X =
(
log x0

)
I +

n−1∑
k=1

(−1)k−1

k xk
0

(
X − x0I

)k

(3.5)

and Ψ(x) equals to the first column of the matrix log X.

Proof. Any function f of a matrix A is determined by a polynomial p whose values on

the spectrum of A coincide with those of f : p(j)(λi) = f (j)(λi) for each eigenvalue λi and

j = 0, 1, . . . ,mi − 1, where mi is the geometric multiplicity (index) if λi [4]. Since X has

a single eigenvalue x0 of multiplicity n (both algebraic and geometric), this amounts to

p(j)(x0) = f (j)(x0), j = 0, 1, . . . n− 1. Then

p(x) =
n∑

i=0

f (i)(x0)

n!
(x− x0)

i

Formulas (3.4) and (3.5) follow by setting f(x) = exp x and f(x) = log x respectively. �
Moreover, if x1 = x2 = · · · = xl−1 = 0, then geometric multiplicity of x0 decreases and

(X − x0I)k = O for k >
[n

l

]
+ 1

([·] denotes the integer part) and the number of nonzero terms in (3.5) and (3.4) reduces

considerably.

Next, let M = 2 and n = (n1, n2), where n1 and n2 are positive integers. Let B(n)

denote the linear space of all triangular block Toeplitz matrices X whose blocks Xk are also

triangular and Toeplitz (k = 0, 1, . . . , n2):

X =


X0 O . . . O

X1 X0 . . . O

X2 X1 . . . O
...

...
. . .

...

Xn2 Xn2−1 · · · X0

 , Xk =


x0,k 0 . . . 0

x1,k x0,k . . . 0

x2,k x1,k . . . 0
...

...
. . .

...

xn1,k xn1−1,k · · · x0,k

 . (3.6)
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Theorem 3.3. The linear space B(n) with usual matrix multiplication and the norm

||X|| =
n1∑
i=0

n2∑
k=0

|xi,k|

is a commutative Banach algebra which is isometrically isomorphic to Sn.

Proof. Obviously, it is sufficient to show that (3.6) is the matrix of the linear mapping

L : Lu = x ∗� u in a suitably chosen basis of Sn. For the sake of notation clarity we write

x(i, k) instead of xi,k. Let

δk(i) =

{
1 for i = k,

0 otherwise,
k ∈ QM ;

then B = {δ0,0, δ1,0, . . . , δm1,0, δ0,1, δ1,1, · · · δm1,m2} is a basis of Sn (note that δr,s is the

((r + 1) + s(m1 + 1))-th element of the basis). If yr,s = x ∗� δr,s, then

yr,s(i, j) =
i∑

k=0

j∑
l=0

x(k, l) δr,s(i− k, j − l) =

{
x(i− r, j − s) if i ≥ r and j ≥ s,

0 otherwise.

This means that the ((r + 1) + s(m1 + 1))-th column of the matrix is(
0, . . . , 0︸ ︷︷ ︸

r+s(m1+1)

, x(0, 0) , x(1, 0), . . . , x(m1 − r, 0), 0, . . . , 0︸ ︷︷ ︸
r

, x(0, 1), x(1, 1), . . . , x(m1 − r, 1),

. . . , 0, . . . , 0︸ ︷︷ ︸
r

, x(0, m2 − s), . . . , x(m1 − r, m2 − s)
)
,

hence the same as the ((r + 1) + s(m1 + 1))-th column of the matrix X in (3.6). �
As in 1–D case, the isomorphism between B(n) and Sn enables to identify the exponential

functions in both algebras as well as logarithmic functions.

Theorem 3.4. Let x = {xi,k}, i = 0, 1, . . . , n1, k = 0, 1, . . . , n2, let X be the block matrix

(3.6) and let N = n1 n2. Then

exp X = ex0,0

(
I +

N−1∑
k=1

1

k!

(
X − x0,0I

)k
)

(3.7)

and Ψ−1(x) is determined by the first column of the matrix exp X. If x0,0 6= 0, then

log X =
(
log x0,0

)
I +

N−1∑
k=1

(−1)k−1

k xk
0,0

(
X − x0,0I

)k

(3.8)

and Ψ(x) is determined by the first column of the matrix log X.

Proof. The matrix X has a single eigenvalue x0,0 of algebraic multiplicity N . Though geo-

metric multiplicity of x0,0 is less than N, the proof is the same as in Theorem 3.2. �
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4 Conclusion

We have presented an alternative view on the multidimensional isomorphic operator Ψ intro-

duced by Yamada et al. in [1]. The isomorphic operator Ψ finds applications in homomorphic

signal processing where it can replace the cepstrum transform or approximate the cepstrum

of minimum phase signals. In this paper Ψ has been shown to be equivalent to the loga-

rithmic function in the Banach algebra of triangular Toeplitz matrices and hence expressible

in terms of matrix operations. From the theoretical viewpoint we thus get an interesting

connection between two rather distant branches of applied mathematics. It is fair to admit,

however, that in general the matrix operations will be more time consuming than the original

recursive definition.
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