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Abstract

Differential repetitive processes are a class of continuous-discrete 2D linear systems
of both systems theoretic and applications interest. The feature which makes them
distinct from other classes of such systems is the fact that information propagation in
one of the two independent directions only occurs over a finite interval. Applications
areas include iterative learning control and iterative solution algorithms for classes of
dynamic nonlinear optimal control problems based on the maximum principle. In this
paper, we first develop new results on optimal and sub-optimal control for an important
sub-class of differential linear repetitive processes and then proceed to extend the well
known maximum and ε-maximum principles to this sub-class. The end goal of the
research programme for which this paper forms part of the output is the development of
numerically reliable algorithms for the synthesis of optimization based control schemes
for these processes.

1 Introduction

The essential unique characteristic of a repetitive (termed multipass in the early literature)

process can be illustrated by considering machining operations where the material or work-

piece involved is processed by a sequence of sweeps, termed passes, of the processing tool.

Assume that the pass length α (i.e. the duration of a pass of the processing tool), which

is finite by definition, has a constant value for each pass. Then in a repetitive process the

output vector, or pass profile, yk(t), 0 ≤ t ≤ α, (t being the independent spatial or tem-

poral variable) produced on pass k acts as a forcing function on the next pass and hence

contributes to the dynamics of the new pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0.

Industrial examples (see, for example, [9]) include long-wall coal cutting and metal rolling

operations. Also problem areas exist where adopting a repetitive process setting for analysis

has clear advantages over alternatives. This is especially true for classes of iterative learn-

ing control schemes (see, for example, [1]) and of iterative solution algorithms for classes



of dynamic nonlinear optimal control problems based on the maximum principle (see, for

example, [7]).

The basic unique control problem for repetitive processes is that the output sequence of

pass profiles generated can contain oscillations that increase in amplitude in the pass to pass

direction (i.e. in the k - direction in the notation for variables used here). Early approaches

to stability analysis and controller design for (linear single-input single-output) repetitive

processes and, in particular, long-wall coal cutting were based on first converting the system

into an equivalent infinite-length single-pass process [2]. This, for example, resulted in a

scalar differential/algebraic system to which standard scalar inverse-Nyquist stability criteria

were then applied. In general, however, it was soon established that this approach to analysis

(and controller design) would, except in a few very restrictive special cases, lead to incorrect

conclusions [5]. The basic reason for this is that such an approach effectively neglects their

finite pass length repeatable nature together with the effects of resetting the initial conditions

before the start of each new pass. To remove this difficulty, a rigorous stability theory for

linear repetitive processes has been developed [5, 8] using an abstract model in a Banach

space setting which includes all examples with linear dynamics and a constant pass length

as special cases.

Given a suitable stability theory, it is a natural progression to consider the structure of con-

trol schemes for these processes and the development of suitable controller design/synthesis

tools. In this latter respect, one obvious way to proceed is to minimize a suitably defined

cost function. This is the subject area of this paper where we first develop new results on

optimal and sub-optimal control on an important sub-class of differential linear repetitive

processes and then proceed to extend the well known maximum and ε-maximum principles

to this case.

2 Background

The state space model of the differential linear repetitive processes considered here has the

form over 0 ≤ t ≤ α, k ≥ 0

ẏk(t) = A1yk(t) + A2yk−1(t) + buk(t) (2.1)

Here on pass k, yk(t) is the n× 1 pass profile vector and uk(t) is the scalar control input.

To complete the process description, it is necessary to specify the initial, or so-called

boundary, conditions, i.e. the pass state initial vector sequence and the initial pass profile.

The structure of these is of critical importance since it is known that if they are an explicit

function of the previous pass profile then this alone can cause instability [6]. In this work,

however, we consider the simplest possible form, i.e.

xk(0) = dk, k ≥ 1

y0(t) = f(t), 0 ≤ t ≤ α (2.2)



Here dk is an n × 1 vector with known constant entries and f(t) is an n × 1 vector whose

elements are known piecewise continuous functions of t.

In practice, a repetitive process will only complete a finite number of passes. Here we denote

this number by N. Also the most obvious approach to optimal control of these processes is,

by analogy with the standard linear systems case, to define a quadratic cost function for

each pass and the overall cost function as the sum of these N pass cost functions. Here,

however, we interested in the case when there is a terminal constraint on the value at the

end of each pass (a feature which is of particular interest in the iterative learning control

application [1]) which is assumed to be of the form

Hkyk(α) = gk, k = 1, 2, · · · , N (2.3)

where Hk is an m× n matrix with known entries and gk(α) is an m× 1 vector with known

entries.

The class of admissible control signals is defined as follows.

Definition 2.1. Consider differential linear repetitive processes of the form (2.1) and (2.2).

Then for k = 1, 2, · · · , N, the piecewise continuous function uk : [0, α] → R is termed an

admissible control on pass k if it satisfies the condition |uk(t)| ≤ 1, 0 ≤ t ≤ α.

The optimization problem we wish to solve can now be stated as finding the admissible con-

trols u1(t), u2(t), · · · , uN(t) such that the corresponding pass profiles y1(t), y2(t), · · · , yN(t)

of (2.1) and (2.2) maximize the cost function

J(u) =
N∑

k=1

pT
k yk(α) (2.4)

subject to the constraint (2.3), where pk is a given n× 1 vector.

In this paper, we solve this problem by extending the so-called constructive methods

[3, 4] to differential linear repetitive processes. One major motivation for this approach, as

opposed to alternatives, is the belief that it may lead to efficient numerical methods and

hence optimization controller design algorithms for these processes. Further study of such a

possibility is, however, left here as a topic for future research.

3 Optimality and Sub-optimality Conditions

The problem (2.1)-(2.4) can be represented in the following integral form :

max
u1,...,uN

J(u) = max
u1,...,uN

N∑
j=1

∫ α

0

cj(τ)uj(τ)dτ (3.1)



subject to the constraints

∫ α

0
g11(τ)u1(τ)dτ = h1,∫ α

0
[g21(τ)u1(τ) + g22(τ)u2(τ)]dτ = h2,

. . . . . . . . . . . . . . . . . . . . . . . . . . .∫ α

0
[gN1(τ)u1(τ) + ...+ gNN(τ)uN(τ)]dτ = hN ,

|uk(τ)| ≤ 1, k = 1, 2, · · · , N (3.2)

where

cj(τ) =
N∑

k=j

pT
kKk+1−j(α− τ)b,

gkj(τ) = HkKk+1−j(α− τ)b, j ≤ k, k = 1, 2, · · · , N,

hk = gk −
k∑

j=1

HkKj(α)dk+1−j −
∫ α

0

HkKk(α− τ)A2f(τ)dτ

and the Ki(t) satisfy

K̇1(t) = A1K1(t), K1(0) = In, K̇i(t) = A1Ki(t) + A2Ki−1(t), Ki(0) = 0, i = 2, ..., N.

Now we require the following.

Definition 3.1. For each fixed k, 1 ≤ k ≤ N, the points 0 < τk1 < τk2 < ... < τkm < α

are termed supporting points and their collection τ k
supp = {τk1, ..., τkm} is termed the support

on pass k for the problem (2.1)-(2.4) if the matrix Gk
supp = {gkk(τk1), ..., gkk(τkm)} is non-

degenerate. A pair {τ k
supp, uk(t), k = 1, 2, · · · , N} consisting of a support τ k

supp and admissible

control functions uk(t), 0 ≤ t ≤ α, is termed a supporting control function for the problem

(2.1)-(2.4).

Let {τ k
supp, uk(t), k = 1, 2, · · · , N} be a given support control function, and for each k =

N, ..., 1 find the m×1 vector of multipliers ν(k) as the solution of the following linear algebraic

system 
(ν(N))TGN

supp − c
(N)
supp = 0,

(ν(N−1))TGN−1
supp + (ν(N))TFN

(N−1)supp − c
(N−1)
supp = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(ν(1))TG1
supp + (ν(2))TF 2

1supp + ...+ (ν(N))TFN
1supp − c

(1)
supp = 0

(3.3)

where for j = 1, 2, · · · , N − 1

c(k)
supp = (ck(τk1), ..., ck(τkm)), k = 1, 2, · · · , N, F k

jsupp = (gkj(τj1), ..., gkj(τjm)), k > j.



Using these multipliers, define the function ∆(t) = (∆1(t), ...,∆N(t)) as ∆(t) = (ν̂)T Ĝ(t)−
c(t), where ν̂ = (ν(1), ..., ν(N)), c(t) = (c1(t), ..., cN(t)), and let Ĝ(t) denote the (mN ×mN)

triangular matrix whose rows are formed from the m × 1 vector functions gij(t) of (3.2).

The support control function {τ k
supp, uk(t), k = 1, 2, · · · , N} is termed non-degenerate for

the problem (2.1)-(2.4) if d∆k(τj)/dt 6= 0, ∀ τj ∈ τ k
supp, k = 1, 2, · · · , N and we have the

following result.

Theorem 3.1. A sufficient condition for a supporting control function {τ k
supp, u

0
k(t), k =

1, 2, · · · , N} to be optimal for the problem (2.1)-(2.4) is that

u0
k(t) = sign(∆k(t)), 0 ≤ t ≤ α, k = 1, 2, · · · , N. (3.4)

If the control function is non-degenerate then this last condition is both necessary and suffi-

cient.

The proof of sufficiency in the above result follows immediately from the fact that ∆J(u) ≥
0 for any admissible control u under the given conditions. The necessity part is proved by

establishing a contradiction through construction of a particular control function. These are

routine exercises and hence the details are omitted here.

The optimality conditions for the supporting control functions here can be expressed in

the classical maximum principle form. In particular, let ψk(t), k = 1, 2, · · · , N, 0 ≤ t ≤ α,

be the solutions of the following set of differential equations

dψk(t)

dt
= −AT

1 ψk(t)− AT
2 ψk+1(t),

dψN(t)

dt
= −AT

1 ψN(t), ψk(α) = pk −HT
k ν

k. (3.5)

and for each k = 1, 2, · · · , N, define the Hamiltonian function as

Hk(yk−1(t), yk(t), ψk(t), uk(t)) = ψT
k (t)(A1yk(t) + A2yk−1(t) + buk(t)), 0 ≤ t ≤ α. (3.6)

Then the following Corollary of Theorem 3.1 shows that the optimality conditions (3.4) are

of the maximum principle form.

Corollary 3.1. A sufficinet condition for optimality of the admissible supporting control

{τ k
supp, u

0
k(t), k = 1, 2, · · · , N, } is that along the corresponding trajectories y0

k(t), ψk(t) of

(2.1) and (3.5) the Hamiltonian function (3.6) attains its maximum value, i.e.

Hk(y
0
k−1(t), y

0
k(t), ψk(t), u

0
k(t)) = max

|v|≤1
Hk(y

0
k−1(t), y

0
k(t), ψk(t), v), k = 1, 2, · · · , N, 0 ≤ t ≤ α.

(3.7)

This condition is also necessary in the case when the supporting control action is non-

degenerate.

Next we establish the classical maximum principle for the admissible controls of a process

of the form considered in this work. This result will be stated as a consequence of the so-

called ε-optimality conditions which are expected to play a major role in numerical methods



for computing the controls. Let {u0
k(t), k = 1, 2, · · · , N, } be an optimal control signal for

the problem defined by (2.1)-(2.4) and also let J(u0) denote the corresponding optimal cost

functional value. Then we can introduce the following definition of an ε-optimal control

function.

Definition 3.2. We say that the admissible control function {uε
k(t), k = 1, 2, · · · , N, } is

ε-optimal for the problem defined by (2.1)-(2.3) if the corresponding solution {yε
k(t), k =

1, 2, · · · , N, 0 ≤ t ≤ α, } of (2.1) satisfies the inequality J(u0)− J(uε) ≤ ε.

Now we calculate the estimate (or measure of non-optimality) of arbitrary supporting

control function {uk, τ
k
supp, k = 1, 2, · · · , N, 0 ≤ t ≤ α}. In particular, we define the

estimate of sub-optimality as the number β = β(τsupp, u) obtained as the solution of the

following relaxed optimization problem for (2.1)-(2.4):

∆J(u) → max
∆uk

, |uk(t) + ∆ku(t)| ≤ 1, k = 1, 2, · · · , N, 0 ≤ t ≤ α. (3.8)

It is also easy to see that

β = β(τsupp, u) =
N∑

k=1

∫
PL+

k

∆k(t)(uk(t) + 1)dt+
N∑

k=1

∫
PL−k

∆k(t)(uk(t)− 1)dt, (3.9)

where

PL+
k = {t ∈ [0, α] : ∆k(t) > 0}, PL−k = {t ∈ [0, α] : ∆k(t) < 0}

and we have the following result.

Theorem 3.2. (ε-maximum principle) For any ε ≥ 0, admissible control signal {uk(t), k =

1, 2, · · · , N, 0 ≤ t ≤ α} has the ε-optimality property if, and only if, ∃ support {τ k
supp, k =

1, 2, · · · , N, } such that the associated Hamiltonian attains the ε- maximum value

Hk(yk−1(t), yk(t), ψk(t), uk(t)) = max
|v|≤1

Hk(yk−1(t), yk(t), ψk(t), v)− εk(t), 0 ≤ t ≤ α,

N∑
k=1

α∫
0

εk(t)dt ≤ ε (3.10)

along the solutions yk(t), ψk(t), k = 1, 2, · · · , N, 0 ≤ t ≤ α, of (2.1)-(2.3) and (3.5).

To prove this theorem, we use the fact that the estimate of sub-optimality can be expressed

in the form β = β(τsupp, u) = βsupp + βu. Here βu =
N∑

k=1

α∫
0

ck(t)(uk(t) − u0
k(t))dt denotes the

non-optimality measure of the given control function {uk(t), k = 1, 2, · · · , N, 0 ≤ t ≤ α},
and

βsupp =

 N∑
k=0

hT
k (νk − z0

k) +
N∑

k=1

α∫
0

(vk(t)− v0
k(t))− (wk(t)− w0

k(t))dt

 (3.11)



denotes the sub-optimality estimate of the chosen support {τ k
supp, k = 1, 2, · · · , N, } which

is determined from the solution of the following so-called dual problem for (2.1)

min
z,v,w

I(z, v, w) = min
z,v,w

N∑
k=1

hT
k zk +

α∫
0

vk(t)dt+

α∫
0

wk(t)dt

 (3.12)

subject to the constraints

N∑
s=k

zT
s gsk(t)−vk(t)+wk(t) = ck(t), vk(t) ≥ 0, wk(t) ≥ 0, k = 1, 2, · · · , α, 0 ≤ t ≤ α. (3.13)

The classical maximum principle follows immediately from the above theorem by setting

ε = 0. This is stated formally as the following corollary to Theorem 3.2.

Corollary 3.2. An admissible control {u0
k(t), k = 1, 2, · · · , N, 0 ≤ t ≤ α} is optimal

if, and only if, ∃ a support {τ 0k
supp, k = 1, 2, · · · , N, } such that the supporting control

{u0
k(t), τ

0k
supp, k = 1, 2, · · · , N, 0 ≤ t ≤ α} satisfies the maximum conditions

max
|v|≤1

Hk(y
0
k−1(t), y

0
k(t), ψk(t), v) = Hk(y

0
k−1(t), y

0
k(t), ψk(t), u

0
k(t)), k = 1, 2, · · · , N, 0 ≤ t ≤ α.

4 Conclusions

This paper has used a supporting control functions setting to study optimization prob-

lems for an important sub-class of differential linear repetitive processes. In common with

other methods, the approach proposed here enables us to characterize solutions in terms

of constructive necessary and sufficient optimality conditions which can then be used for

the design of numerical algorithms. Moreover, the design task here can be based on the

principle of decreasing the sub-optimality estimate on each iteration, i.e. the iteration

{τ k
supp, uk(t), k = 1, 2, · · · , N} → {τ̂ k

supp, ûk(t), k = 1, 2, · · · , N} is completed in such a

way that β(τ̂supp, û) < β(τsupp, u). Also in accordance with the obtained representation of

this estimate, the iterative task here can be separated into the following two stages:

1) apply a transformation of the admissible control functions {uk(t), k = 1, 2, · · · , N} →
{ûk(t), k = 1, 2, · · · , N} which decreases the degree of non-optimality of the admissible con-

trols β(û) < β(u), and;

2) variation of the support {τ k
supp, k = 1, 2, · · · , N} → {τ̂ k

supp, k = 1, 2, · · · , N} such that

the degree of non-optimality of the support decreases,i.e. β(τ̂supp) < β(τsupp).

These transformations essentially invoke the duality theory for the problems defined by

(2.1)-(2.4) and (3.12)-(3.13) and also exploit the ε-optimality conditions developed in this

paper.

The results given here are the first in this very important general area and work is currently

proceeding in a number of follow up areas. Results from this research will be reported in due

course. It can also be conjectured that the results given here can also be used to construct



the differential equations for the switching functions of the optimal control laws that will

arise in the design of optimal control feedback control laws for these processes. This area is

also currently under investigation.
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