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Abstract

We are extending to linear recurrent codes, i.e., to time-varying convolutional codes,
most of the classic structural properties of fixed convolutional codes. Those results are
obtained thanks to a module-theoretic framework which has been developed in linear
control.
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1 Introduction

This paper is devoted to various aspects of convolutional codes which are with linear block

codes the most popular class of error-control codes. We are extending to linear recurrent

codes, i.e., to time-varying convolutional codes, most of the classic structural properties of

fixed, i.e., time-invariant, convolutional codes (see, e.g., [3, 20, 25, 27]). Although Shannon’s

channel coding theorem has been extended to time-varying convolutional codes (see, e.g.,

[32]) and not to fixed ones, those time-varying codes were much less utilised in practice than

the time-invariant counterparts (see, nevertheless, [20]).

Our approach is another instance of the well known ties between convolutional codes

and linear systems (see, e.g., [4, 15, 16, 17, 18, 19, 20, 21, 25, 24, 28, 29, 30]). Our main

mathematical tool is a particular module-theoretic setting for linear control [5, 7, 8, 11, 14],

which has been quite useful in practice (see, e.g., [12, 13]). We are utilising some elementary

notions of difference algebra [2], homological algebra [31], and non-commutative algebra

[23, 26], which is most natural in the time-varying case.

In the first part we define, following [20], transducers, i.e., input-output systems, and study

their main properties: state-variable representation, controllability, observability, transfer

matrices, input-output inversion. In particular, an encoder is a right invertible transducer.

The second part is devoted to codes. A code, here, is an equivalence class between encoders

having the same output. We derive syndrome formers, dual codes, parity check matrices,

polynomial and basic encoders, and Forney’s theory in a manner which is often very short

thanks to our algebraic framework.
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2 Linear recurrent transducers

2.1 Algebraic preliminaries

2.1.1 Difference fields

A difference field [2] is a commutative field F , equipped with a transformation δ : F → F ,

i.e., a monomorphism. Here δ should be understood as the delay operator of one unit of time.

A constant is an element c ∈ F , such that cδ = c (mappings are written on the right). The

subfield of constants of F is the subfield of all constant elements of F . A field of constants is

a difference field which coincide with its subfield of constants. The inversive closure Fz [2]

of F , which is unique up to isomorphism, is the smallest difference overfield of F such that

δ is an isomorphism. The difference field F is said to be inversive if, and only if, F = Fz.

Example 2.1 Let F(t) be the field of rational functions in the indeterminate t over the field

F, a finite field for instance. With the F-automorphism δ : F(t) → F(t), t 7→ t − 1, F(t)

becomes an inversive difference field, where the subfield of constants is F.

2.1.2 A principal right ideal ring

The set of polynomials of the form ∑
finie

δsas (2.1)

as ∈ F , is a principal right ideal ring F [δ]. It is commutative if, and only if, F is a field of

constants.

2.2 Input-output system

A system is a finitely generated right F [δ]-module, where F is an inversive difference field1.

A linear recurrent transducer, or a time-varying convolutional transducer, or a linear input-

output system, T is a system with the following properties:

• There is an input, i.e., a finite subset u = (u1, . . . , uk) of T , such that the quotient

module T /spanF [δ](u) is torsion. The input will be assumed to be independent, i.e.,

the module spanF [δ](u) is free, of rank k.

• There is an output, i.e., a finite subset y = (y1, . . . , yn) of T .

• The system T is causal (cf. [7]), or nonanticipative, i.e., the semi-linear mapping2

δ : T /spanF [δ](u) → T /spanF [δ](u) is injective.

1This assumption on F being inversive will simplify several further developments. It does not seem to
bring any limitation from a practical viewpoint (see, e.g.,[20]).

2Consider a right F [δ]-module M as a F -vector space. A mapping σ : M → M is said to be semi-linear
if, and only if, the following to properties are satisfied:

1. ∀m1,m2 ∈ M , (m1 + m2)σ = m1σ + m2σ,
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Example 2.2 The transducer yδ = u, i.e., y(t − 1) = u(t), where k = n = 1, should

obviously be viewed as noncausal. It is also noncausal in our abstract setting. As a matter

of fact the quotient module T /spanF [δ](u) is a 1-dimensional F -vector space spanned by an

element corresponding to u(t + 1), which is mapped to 0 by δ.

When F is a field of constants, a linear recurrent transducer is called a (fixed) convolutional

transducer.

2.3 State-variable representation

When viewed as a F -vector space, the finitely generated torsion module T /spanF [δ](u) is of

finite dimension, m. Take a basis ξ = (ξ1, . . . , ξm). The next lemma is clear.

Lemma 2.1 ξδ is also a basis.

Corollary 2.1 ξ = ξδ A, A ∈ Fm×m, det(A) 6= 0.

Take in T a m-tuple η = (η1, . . . , ηm) the image of which in T /spanF [δ](u) is ξ. Then

Corollary 2.1 yields a generalized state-variable representation of the transducer T

η = ηδ A +
ν∑

µ=0

uδµ B̄µ (2.2)

y = ξ C̄ +
∑
finite

uδι D̄ι (2.3)

B̄µ ∈ F k×m, C̄ ∈ Fm×n, D̄ι ∈ F k×n. Let ξ′ be another basis of T /spanF [δ](u). Thus

ξ′ = ξP , P ∈ Fm×m, det(P ) 6= 0. Take a m-tuple η′ = (η′1, . . . , η
′
m) in T the image of which

in T /spanF [δ](u) is ξ′. Then

η′ = η +
∑
finite

uδι Qι (2.4)

Q ∈ F k×m. Note that (2.4) is input-dependent. If in (2.2) ν ≥ 2 and B̄ν 6= 0, set

η = η̃ − uδν−1 (B̄νA
−1δ−1)

It yields

η̃ = η̃δ A +
ν−1∑
µ=0

uδµ B̃µ

If B̄0 6= 0, setting

η̃ = η + u B̄0

2. ∀a ∈ F , ∀m ∈ M , (ma)σ = (mσ)(aσ).

If F is a field of constants, σ is a F -linear mapping.
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yields

η = ηδ +
ν−1∑
µ=1

uδµ Bµ

We have proved the following time-varying generalisation of [7]:

Theorem 2.1 A causal linear recurrent transducer may be given the Kalman state-variable

representation

x = xδ A + uδ B (2.5)

y = x C +
∑
finie

uδι Dι (2.6)

where x = (x1, . . . , xm), m = dimF (T /spanF [δ](u)), A ∈ Fm×m, det A 6= 0, B ∈ F k×m,

C ∈ Fm×n, Dι ∈ F k×m.

Remark 2.1 Setting x = x̄ − u (BA−1δ−1) yields x̄ = x̄δ A + u (BA−1δ−1) which might

also be interesting in some applications.

2.4 Controllability and observability

2.4.1 Controllability

The transducer T is called controllable if, and only if, the module T is free. The next

result, which is a discrete-time version of [5], is an extension to (2.5) of the classic Kalman

controllability criterion (compare with [33]):

Proposition 2.1 The transducer T is controllable if, and only if, the matrix
(
B, BδA, . . . , B(δA)m−1

)

is of rank m.

Proof It is easy to check that rk(B,BδA, . . . , B(δA)m−1) < m is equivalent to the existence

of a nontrivial torsion submodule of T .

2.4.2 Observability

The transducer T is called observable if, and only if, the modules T and spanF [δ](u,y)

coincide. The next result, which is a discrete-time version of [5], is an extension to (2.5-2.6)

of the classic Kalman observability criterion (compare with [33]):

Proposition 2.2 The transducer T is observable if, and only if, the matrix



C

CδA−1

...

C(δA−1)m−1




is of rank m.
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Proof Utilize xδ = x A−1 − uδ BA−1 for expressing yδι, ι = 1, . . . ,m − 1, as F -linear

combinations of the components of x and uδκ, κ ≥ 0.

Remark 2.2 By utilizing the inverse Aδ−1 of δA−1, the Kalman observability criterion be-

comes

rk




C

Cδ−1Aδ−1

...

C(Aδ−1)m−1


 = m

2.5 Transfer matrices

2.5.1 Definition

Let F (δ) be the quotient field of F [δ] which is a right Ore ring. The F (δ)-vector space

T̂ = T ⊗F [δ] F (δ) is called the transfer vector space of T [8]. The F [δ]-linear mapping

T → T̂ , τ 7→ τ̂ = τ ⊗ 1, is the (formal) Laplace transform [8]. Its kernel is the torsion

submodule of T . It is thus injective if, and only if, the module F is free. As u is independent,

û = (û1, . . . , ûk) is a basis of T̂ . It yields

ŷ = (ŷ1, . . . , ŷn) = û G (2.7)

where G ∈ F (δ)m×n is the rational transfer matrix, or the rational generating matrix, of

the transducer (compare with [22]). When k = n = 1, G is called a rational transfer, or

generating, function.

Any element of F (δ) may be written as a Laurent series
∑

ν≥ν0
δνaν , aν ∈ F , ν0 ∈ Z. It is

said to be causal if, and only if, ν0 ≥ 0. The matrix G is said to be causal if, and only if, all

its entries are causal.

Theorem 2.2 Any causal linear recurrent transducer possesses a rational causal transfer

matrix. Conversely, any rational causal matrix is the transfer matrix of a causal linear

recurrent transducer, which is controllable and observable.

Proof The first part is an immediate consequence of the definition of causality in subsection

2.2 and of the input-output relation (2.7). For the second part, utilize the right coprime

factorization G = ND−1, N ∈ F [δ]k×n, D ∈ F [δ]n×n, where D is invertible (see [8]). The

transfer matrix of the transducer yD = uN , which is both controllable and observable (see

[8]), is G.

2.5.2 Interconnection

Let hυ : Σ → Sυ, υ ∈ Υ, be a morphism of systems, i.e., of finitely generated right F [δ]-

modules. The corresponding fibered sum is a system interconnection (cf. [10]). Parallel and

series interconnections are particular instances of system interconnections. The proof of the

following result is straightforward.
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Proposition 2.3 The transfer matrix of the parallel (resp. series) interconnection of linear

recurrent transducers is the sum (resp. product) of the transfer matrices.

Remark 2.3 Interconnections as simple as those in Proposition 2.3 may lead to a lost of

controllability or observability3 which is not readable via transfer matrices [10].

2.6 Input-output inversion

2.6.1 General results

The output rank of the transducer T is % = rk(spanF [δ](y)). Obviously, 0 ≤ % ≤ min(k, n).

The transducer T is said to be right invertible (resp. left invertible) if, and only if, % = k

(resp. % = n).

Proposition 2.4 T is right invertible, if and only if, the quotient module T /spanF [δ](y) is

torsion.

Proof We have rk(T /spanF [δ](y)) = rk(T ) − %. Since T /spanF [δ](u) is torsion, rk(T ) =

rk(spanF [δ](u)) = k. Thus rk(T /spanF [δ](y)) = 0 if, and only if, % = k.

In a more down to earth language, Lemma 2.4 means that u may be obtained from y

thanks to difference equations. The example y = uδ, where k = n = 1, shows that the right

inverse transducer is not generally causal. Left invertibility means that the components of

y are F [δ]-linearly independent.

The next results are clear.

Proposition 2.5 The linear recurrent transducer T is right (resp. left) invertible if, and

only if, its transfer matrix is right (resp. left) invertible.

Corollary 2.2 If the linear recurrent transducer T is right (resp. left) invertible, then n ≥ k

(resp. n ≤ k).

If k = n, the transducer is said to be square. Then right and left invertibilities coincide. An

invertible square transducer is right and left invertible.

2.6.2 Encoders

A linear recurrent transducer, which is right invertible, is called a linear recurrent encoder,

or a (time-varying) convolutional encoder. If F is a field of constants, it is called a (fixed)

convolutional encoder4. A square encoder is called a linear recurrent encrypter.

3The continuous-time examples in [10] (see also the references therein) may trivially be adapted to our
discrete-time context.

4Even if F is a finite field, the existing literature does not seem to propose a unique definition of convo-
lutional encoders.
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2.7 Some useful constructions

2.7.1 Blocking

For any integer Ω > 1, F [δΩ] ⊂ F [δ]. Thus any right F [δ]-module M may also be viewed as

a right F [δΩ]-module MΩ called the Ωth-blocking, or Ωth-interleaving, module.

Lemma 2.2 rk(MΩ) = Ω rk(M).

Proof If ξ1, . . . , ξ` are F [δ]-linearly independent elements in M, then the elements

ξ1, ξ1δ, . . . , ξ1δ
Ω−1, . . . , ξ`, ξ`δ, . . . , ξ`δ

Ω−1

are F [δΩ]-linearly independent.

The Ωth-blocking transducer, or Ωth-interleaving transducer, TΩ of T is the linear recurrent

transducer defined by (compare with [25]):

• its module is the Ωth-blocking module TΩ,

• its input and output are respectively (u,uδ, . . . , uδΩ−1) and (y,yδ, . . . , yδΩ−1).

The next result is clear:

Proposition 2.6 If T is controllable (resp. observable, right invertible, left invertible), then

TΩ is also controllable (resp. observable, right invertible, left invertible).

2.7.2 Puncturing

Puncturing a linear recurrent transducer T means taking a linear recurrent transducer TP

defined by the same module, the same input and by an output which is a subset of y. The

next result is clear:

Proposition 2.7 If T is controllable (resp. left invertible), then TP is also controllable

(resp. left invertible). If T is observable (resp. right invertible), then TP is not necessarily

observable (resp. right invertible).

3 Some properties of linear recurrent codes

3.1 Equivalence of encoders and codes

3.1.1 Equivalence

Two linear recurrent encoders with inputs u = (u1, . . . , uk), u′ = (u1, . . . , u
′
k′) and outputs

y = (y1, . . . , yn), y′ = (y1, . . . , y
′
n′) are said to be equivalent if, and only if, the following

conditions are satisfied:

1. n = n′.
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2. There exists σ ∈ Sn, where Sn is the symmetric group over {1, . . . , n}, such that

the mapping yι 7→ y′σι, ι = 1, . . . , n, defines an isomorphism between the modules

spanF [δ](y) and spanF [δ](y
′).

Proposition 3.1 The inputs of two equivalent linear recurrent encoders possess the same

number of components.

Proof Let % and %′ be the output ranks of the encoders T and T ′. The right invertibility

of T and T ′ implies % = k and %′ = k′. The equivalence of T and T ′ implies % = %′.

3.1.2 Codes

A linear recurrent code, or a (time-varying) convolutional code is an equivalence between

linear recurrent encoders. From Proposition 3.1, we know already two integers k, n, 0 < k ≤
n which are attached to the code, which is therefore called a (n, k) linear recurrent code. Its

rate is k
n
. By a slight abuse of language, spanF [δ](y) is sometimes called a linear recurrent

code, or a (time-varying) convolutional code. When F is a finite field of constants, a linear

recurrent code is called a (fixed) convolutional code. A code is said to be free, or controllable

if, and only if, the module spanF [δ](y) is free.

3.2 Syndrome formers

Let Fn be the free right F [δ]-module, with basis ȳ1, . . . , ȳn. The mapping ȳι 7→ yι, ι =

1, . . . , n, defines an epimorphism Fn → spanF [δ](y) and the short exact sequence

0 → Fn−k → Fn → spanF [δ](y) → 0 (3.8)

where Fn−k a free right F [δ]-module of rank n − k. A syndrome former of the code is a

presentation matrix of spanF [δ](y), which corresponds here to the monomorphism Fn−k →
Fn.

The sequence (3.8) splits, i.e., Fn ' Fn−k ⊕ spanF [δ](y), if, and only if, the code is free.

3.3 Some properties of free codes

¿From now on and until the end of the paper codes are assumed to be free5. When F is a finite

field of constants, a (fixed) convolutional code may be defined as a certain F [δ]-submodule

of the F [δ]-module L = {∑υ≥0 δυa1υ, . . . ,
∑

υ≥0 δυanυ} of n-tuple of formal power series.

The relationship with our approach6 is given by Hom
(
spanF [δ](y),L)

, i.e., by F [δ]-module

morphisms Φ = (φ1, . . . , φn) : spanF [δ](y) → L, (y1, . . . , yn) 7→ (y1φ, . . . , ynφ) (compare with

[28]).

5When F is a finite field of constants, a (fixed) convolutional code is often defined as a vector subspace of
F (δ)1×n (see, e.g., [25] and the references therein.). With respect to this transfer matrix setting the freeness
may always be assumed.

6This is more generally the relationship (see [6]) between our module-theoretic setting and Willems’
behavioral approach [34].
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3.3.1 Dual codes and parity check matrices

The image of Fn−k in Fn is called the dual code. A syndrome former of the dual code is

called a parity check matrix of the code.

Remark 3.1 When F is a finite field of constants, the dual code of a convolutional code is

usually defined as for block codes via an orthogonality relation. The explicit relationship with

our definition will be given elsewhere [9].

3.3.2 Polynomial and basic encoders

A controllable and observable encoder E is said to be polynomial if, and only if, u is a basis

of the free module E . The next property is an immediate consequence of Theorem 2.2:

Proposition 3.2 A controllable and observable encoder is polynomial if, and only if, the

entries of its transfer matrix are polynomial, i.e., belong to F [δ].

The polynomial encoder E is said to be basic if, and only if, E = spanF [δ](y). By taking for

u any basis of the free module spanF [δ](y) we obtain the

Proposition 3.3 Any free code admits a basic encoder.

3.3.3 Systematic encoders

Proposition 3.4 Any free code admits a systematic encoder, i.e., an encoder where k com-

ponents of the output are identical to the k components of the input.

Proof The result is clear if k = n: y is a basis of spanF [δ](y) and can be taken as an input.

Assume that the result holds for n = n0 ≥ k. Take n = n0 + 1. Since the components of y

are F [δ]-linearly dependent we may write

y1γ1 + · · ·+ yn0+1γn0+1 = 0 (3.9)

where γ1, . . . , γn0+1 ∈ F [δ] are right coprime. At least one of the coefficients γι, ι = 1, . . . , n0+

1, γn0+1 for instance, when expressed as a sum (2.1), is such that a0 6= 0. Apply the

assumption to the code spanned by y1, . . . , yn0 and utilise the causal relation yn0+1 = −(y1γ1+

· · ·+ yn0γn0)γ
−1
n0+1.

3.3.4 Non-catastrophic encoders

The ring of Laurent polynomials F [δ, δ−1] is the localized ring of F [δ] by the multiplicative

monoid {δs | s ≥ 0}, which satisfies the right Ore condition. The corresponding localized

right F [δ, δ−1]-module E⊗F [δ]F [δ, δ−1] of spanF [δ](u) is free, if E is controllable. The canonical

mapping E → E ⊗F [δ] F [δ, δ−1], υ 7→ υ ⊗ 1, being injective, E may be considered as a subset

of E ⊗F [δ] F [δ, δ−1]. A controllable encoder is said to be non-catastrophic if, and only if,

u belongs to spanF [δ](y) ⊗F [δ] F [δ, δ−1]. The next result is an immediate consequence of

Proposition 3.3.

9



Proposition 3.5 Any free code admits a non-catastrophic encoder.

3.4 Forney’s theorem

3.4.1 An important filtration

Define a filtration of F [δ] by setting Fα = {δαP}, α ≥ 0, P ∈ F [δ]. Thus F [δ] = F0 ⊃
F1 ⊃ . . . . The corresponding filtration for the free module spanF [δ](y) is obtained by setting

Cα = spanF [δ](y)Fα. Thus spanF [δ](y) = C0 ⊃ C1 ⊃ . . . . Any element x ∈ spanF [δ](y) may

be written uniquely as a finite sum

x =

µ∑
α=ν

ξαδα (3.10)

where ξαδα is homogeneous, of weight α (ξα is homogeneous of weight 0). The element x is

said to be of order ν (resp. degree µ) if, and only if, ξν 6= 0 (resp. ξµ 6= 0). It is homogeneous

if, and only if, ν = µ. The next results are clear.

Lemma 3.1 The semi-linear linear mapping δ` : Cα → Cα+`, ` > 0, is bijective.

Corollary 3.1 For any homogeneous element xα+` of order α+` there exists a homogeneous

element xα of order α such that xαδ` = xν+`.

Lemma 3.2 Homogeneous elements of order ν are F [δ]-linearly independent if, and only if,

they are F -linearly independent.

Corollary 3.2 The F -vector space Cα/Cα+1 is of dimension k.

3.4.2 The result

Let ε1 be the highest degree of the components of y, when written as in (3.10). Let V1 be

the $1-dimensional F -vector space spanned by the corresponding homogeneous elements.

Choose according to Corollary 3.1 homogeneous elements u1, . . . , u$1 , of degree 0, such that

V1 = span(u1δ
ε1 , . . . , u$1δ

ε1). Let ε2 < ε1 be the first integer such that u1δ
ε2 , . . . , u$1δ

ε2

does not span the F -vector space spanned by the homogeneous components of order ε2 in y.

Complete then u1, . . . , u$1 as above. We obtain a basis u = (u1, . . . , um) and a corresponding

polynomial transfer matrix with lines of degrees7 e1 ≤ e2 ≤ · · · ≤ ek.

We must show that the above basic encoder is minimal, i.e., that the degrees f1 ≤ f2 ≤
· · · ≤ fk of the lines of any polynomial generating matrix verify eι ≤ fι, ι = 1, . . . , k. The

next lemma, which is obvious, demonstrates that this result holds true if k = 1.

Lemma 3.3 Take a free F [δ]-module M of rank 1. Two bases b and b′ are related by b = γb′,
γ ∈ F , γ 6= 0. Let N ⊇ M be another free F [δ]-module of rank 1. Then, for any basis c of

N , b = πb, π ∈ F [δ].

7The degree of a line is the maximum degree of its entries.
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By considering the quotient module spanF [δ](y)/spanF [δ](u1), which is free of rank k− 1, we

obtain the minimality for any k ≥ 2, assuming that it holds true for k − 1.

We have proved

Theorem 3.1 For any free linear recurrent code, there exists a basic encoder, called mini-

mal, such that est the degrees of the lines of its transfer matrix are e1 ≤ e2 ≤ · · · ≤ ek. The

degrees f1 ≤ f2 ≤ · · · ≤ fk of the lines of a transfer matrix of any equivalent polynomial

encoder verify eκ ≤ fκ, κ = 1, . . . , k.

A corresponding input is called a Forney input.

4 Conclusion

More details might be found in [9] as well as a new connection between convolutional and

block codes. The following topics will be discussed in subsequent works:

• Turbo-codes [1]. They are often given by two convolutional encoders in parallel with

an interleaver. They are known to be related to time-varying convolutional codes.

• Non-linear tree codes which correspond to non-linear encoders, i.e., to right invertible

non-linear input-output systems.

• Cryptography which will be associated to invertible square input-output systems.
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