Some properties of linear recurrent error-control codes: A module-theoretic approach

Michel Fliess^{‡,†}

 [‡] Centre de Mathématiques et Leurs Applications, École Normale Supérieure de Cachan
 61 avenue du Président Wilson, 94235 Cachan, France fliess@cmla.ens-cachan.fr
 [†] Laboratoire GAGE, École Polytechnique

91128 Palaiseau, France

Abstract

We are extending to linear recurrent codes, *i.e.*, to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. Those results are obtained thanks to a module-theoretic framework which has been developed in linear control.

Keywords: Linear recurrent codes, convolutional codes, linear systems, modules.

1 Introduction

This paper is devoted to various aspects of convolutional codes which are with linear block codes the most popular class of error-control codes. We are extending to linear recurrent codes, *i.e.*, to time-varying convolutional codes, most of the classic structural properties of fixed, *i.e.*, time-invariant, convolutional codes (see, *e.g.*, [3, 20, 25, 27]). Although Shannon's channel coding theorem has been extended to time-varying convolutional codes (see, *e.g.*, [32]) and not to fixed ones, those time-varying codes were much less utilised in practice than the time-invariant counterparts (see, nevertheless, [20]).

Our approach is another instance of the well known ties between convolutional codes and linear systems (see, *e.g.*, [4, 15, 16, 17, 18, 19, 20, 21, 25, 24, 28, 29, 30]). Our main mathematical tool is a particular module-theoretic setting for linear control [5, 7, 8, 11, 14], which has been quite useful in practice (see, *e.g.*, [12, 13]). We are utilising some elementary notions of difference algebra [2], homological algebra [31], and non-commutative algebra [23, 26], which is most natural in the time-varying case.

In the first part we define, following [20], *transducers*, *i.e.*, input-output systems, and study their main properties: state-variable representation, controllability, observability, transfer matrices, input-output inversion. In particular, an *encoder* is a right invertible transducer. The second part is devoted to codes. A code, here, is an equivalence class between encoders having the same output. We derive syndrome formers, dual codes, parity check matrices, polynomial and basic encoders, and Forney's theory in a manner which is often very short thanks to our algebraic framework.

2 Linear recurrent transducers

2.1 Algebraic preliminaries

2.1.1 Difference fields

A difference field [2] is a commutative field F, equipped with a transformation $\delta : F \to F$, i.e., a monomorphism. Here δ should be understood as the delay operator of one unit of time. A constant is an element $c \in F$, such that $c\delta = c$ (mappings are written on the right). The subfield of constants of F is the subfield of all constant elements of F. A field of constants is a difference field which coincide with its subfield of constants. The inversive closure $F^{\mathbf{A}}$ [2] of F, which is unique up to isomorphism, is the smallest difference overfield of F such that δ is an isomorphism. The difference field F is said to be inversive if, and only if, $F = F^{\mathbf{A}}$.

Example 2.1 Let $\mathbb{F}(t)$ be the field of rational functions in the indeterminate t over the field \mathbb{F} , a finite field for instance. With the \mathbb{F} -automorphism $\delta : \mathbb{F}(t) \to \mathbb{F}(t), t \mapsto t - 1, \mathbb{F}(t)$ becomes an inversive difference field, where the subfield of constants is \mathbb{F} .

2.1.2 A principal right ideal ring

The set of polynomials of the form

$$\sum_{\text{finie}} \delta^s a_s \tag{2.1}$$

 $a_s \in F$, is a *principal right ideal ring* $F[\delta]$. It is commutative if, and only if, F is a field of constants.

2.2 Input-output system

A system is a finitely generated right $F[\delta]$ -module, where F is an inversive difference field¹. A linear recurrent transducer, or a time-varying convolutional transducer, or a linear inputoutput system, \mathcal{T} is a system with the following properties:

- There is an *input*, *i.e.*, a finite subset $\boldsymbol{u} = (u_1, \ldots, u_k)$ of \mathcal{T} , such that the quotient module $\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{u})$ is torsion. The input will be assumed to be *independent*, *i.e.*, the module $\operatorname{span}_{F[\delta]}(\boldsymbol{u})$ is free, of rank k.
- There is an *output*, *i.e.*, a finite subset $\boldsymbol{y} = (y_1, \ldots, y_n)$ of \mathcal{T} .
- The system \mathcal{T} is causal (cf. [7]), or nonanticipative, i.e., the semi-linear mapping² $\delta : \mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{u}) \to \mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{u})$ is injective.

¹This assumption on F being inversive will simplify several further developments. It does not seem to bring any limitation from a practical viewpoint (see, *e.g.*,[20]).

²Consider a right $F[\delta]$ -module M as a F-vector space. A mapping $\sigma : M \to M$ is said to be *semi-linear* if, and only if, the following to properties are satisfied:

^{1.} $\forall m_1, m_2 \in M, (m_1 + m_2)\sigma = m_1\sigma + m_2\sigma,$

Example 2.2 The transducer $y\delta = u$, i.e., y(t-1) = u(t), where k = n = 1, should obviously be viewed as noncausal. It is also noncausal in our abstract setting. As a matter of fact the quotient module $\mathcal{T}/\operatorname{span}_{F[\delta]}(u)$ is a 1-dimensional F-vector space spanned by an element corresponding to u(t+1), which is mapped to 0 by δ .

When F is a field of constants, a linear recurrent transducer is called a *(fixed) convolutional transducer*.

2.3 State-variable representation

When viewed as a *F*-vector space, the finitely generated torsion module $\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{u})$ is of finite dimension, *m*. Take a basis $\boldsymbol{\xi} = (\xi_1, \ldots, \xi_m)$. The next lemma is clear.

Lemma 2.1 $\boldsymbol{\xi}\delta$ is also a basis.

Corollary 2.1 $\boldsymbol{\xi} = \boldsymbol{\xi} \delta A, A \in F^{m \times m}, \det(A) \neq 0.$

Take in \mathcal{T} a *m*-tuple $\boldsymbol{\eta} = (\eta_1, \ldots, \eta_m)$ the image of which in $\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{u})$ is $\boldsymbol{\xi}$. Then Corollary 2.1 yields a generalized state-variable representation of the transducer \mathcal{T}

$$\boldsymbol{\eta} = \boldsymbol{\eta} \delta A + \sum_{\mu=0}^{\nu} \boldsymbol{u} \delta^{\mu} \bar{B}_{\mu}$$
(2.2)

$$\boldsymbol{y} = \boldsymbol{\xi} \, \bar{C} + \sum_{\text{finite}} \boldsymbol{u} \delta^{\iota} \, \bar{D}_{\iota}$$
(2.3)

 $\bar{B}_{\mu} \in F^{k \times m}$, $\bar{C} \in F^{m \times n}$, $\bar{D}_{\iota} \in F^{k \times n}$. Let $\boldsymbol{\xi}'$ be another basis of $\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{u})$. Thus $\boldsymbol{\xi}' = \boldsymbol{\xi}P, P \in F^{m \times m}$, $\det(P) \neq 0$. Take a *m*-tuple $\boldsymbol{\eta}' = (\eta'_1, \ldots, \eta'_m)$ in \mathcal{T} the image of which in $\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{u})$ is $\boldsymbol{\xi}'$. Then

$$\boldsymbol{\eta}' = \boldsymbol{\eta} + \sum_{\text{finite}} \boldsymbol{u} \delta^{\iota} Q_{\iota}$$
(2.4)

 $Q \in F^{k \times m}$. Note that (2.4) is input-dependent. If in (2.2) $\nu \geq 2$ and $\bar{B}_{\nu} \neq 0$, set

$$\boldsymbol{\eta} = \tilde{\boldsymbol{\eta}} - \boldsymbol{u}\delta^{\nu-1} \ (\bar{B}_{\nu}A^{-1}\delta^{-1})$$

It yields

$$ilde{oldsymbol{\eta}} = ilde{oldsymbol{\eta}} \delta \ A + \sum_{\mu=0}^{
u-1} oldsymbol{u} \delta^{\mu} \ ilde{B}_{\mu}$$

If $\bar{B}_0 \neq 0$, setting

 $\tilde{\boldsymbol{\eta}} = \overline{\boldsymbol{\eta}} + \boldsymbol{u} \ \bar{B}_0$

2. $\forall a \in F, \forall m \in M, (ma)\sigma = (m\sigma)(a\sigma).$

If F is a field of constants, σ is a F-linear mapping.

yields

$$\overline{oldsymbol{\eta}}=\overline{oldsymbol{\eta}}\delta+\sum_{\mu=1}^{
u-1}oldsymbol{u}\delta^{\mu}\ \overline{B}_{\mu}$$

We have proved the following time-varying generalisation of [7]:

Theorem 2.1 A causal linear recurrent transducer may be given the Kalman state-variable representation

$$\boldsymbol{x} = \boldsymbol{x}\delta A + \boldsymbol{u}\delta B \tag{2.5}$$

$$\boldsymbol{y} = \boldsymbol{x} C + \sum_{\text{finie}} \boldsymbol{u} \delta^{\iota} D_{\iota}$$
 (2.6)

where $\boldsymbol{x} = (x_1, \ldots, x_m), \ m = \dim_F(\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{u})), \ A \in F^{m \times m}, \ \det A \neq 0, \ B \in F^{k \times m}, C \in F^{m \times n}, \ D_t \in F^{k \times m}.$

Remark 2.1 Setting $\boldsymbol{x} = \bar{\boldsymbol{x}} - \boldsymbol{u} (BA^{-1}\delta^{-1})$ yields $\bar{\boldsymbol{x}} = \bar{\boldsymbol{x}}\delta A + \boldsymbol{u} (BA^{-1}\delta^{-1})$ which might also be interesting in some applications.

2.4 Controllability and observability

2.4.1 Controllability

The transducer \mathcal{T} is called *controllable* if, and only if, the module \mathcal{T} is free. The next result, which is a discrete-time version of [5], is an extension to (2.5) of the classic Kalman controllability criterion (compare with [33]):

Proposition 2.1 The transducer \mathcal{T} is controllable if, and only if, the matrix

$$(B, B\delta A, \ldots, B(\delta A)^{m-1})$$

is of rank m.

Proof It is easy to check that $\operatorname{rk}(B, B\delta A, \ldots, B(\delta A)^{m-1}) < m$ is equivalent to the existence of a nontrivial torsion submodule of \mathcal{T} .

2.4.2 Observability

The transducer \mathcal{T} is called *observable* if, and only if, the modules \mathcal{T} and $\operatorname{span}_{F[\delta]}(\boldsymbol{u}, \boldsymbol{y})$ coincide. The next result, which is a discrete-time version of [5], is an extension to (2.5-2.6) of the classic Kalman observability criterion (compare with [33]):

Proposition 2.2 The transducer \mathcal{T} is observable if, and only if, the matrix

$$\begin{pmatrix} C\\ C\delta A^{-1}\\ \vdots\\ C(\delta A^{-1})^{m-1} \end{pmatrix}$$

is of rank m.

Proof Utilize $\boldsymbol{x}\delta = \boldsymbol{x} \ A^{-1} - \boldsymbol{u}\delta \ BA^{-1}$ for expressing $\boldsymbol{y}\delta^{\iota}$, $\iota = 1, \ldots, m-1$, as *F*-linear combinations of the components of \boldsymbol{x} and $\boldsymbol{u}\delta^{\kappa}$, $\kappa \geq 0$.

Remark 2.2 By utilizing the inverse $A\delta^{-1}$ of δA^{-1} , the Kalman observability criterion becomes

$$\operatorname{rk}\begin{pmatrix} C\\ C\delta^{-1}A\delta^{-1}\\ \vdots\\ C(A\delta^{-1})^{m-1} \end{pmatrix} = m$$

2.5 Transfer matrices

2.5.1 Definition

Let $F(\delta)$ be the quotient field of $F[\delta]$ which is a right Ore ring. The $F(\delta)$ -vector space $\hat{\mathcal{T}} = \mathcal{T} \otimes_{F[\delta]} F(\delta)$ is called the *transfer vector space* of \mathcal{T} [8]. The $F[\delta]$ -linear mapping $\mathcal{T} \to \hat{\mathcal{T}}, \tau \mapsto \hat{\tau} = \tau \otimes 1$, is the *(formal) Laplace transform* [8]. Its kernel is the torsion submodule of T. It is thus injective if, and only if, the module F is free. As \boldsymbol{u} is independent, $\hat{\boldsymbol{u}} = (\hat{u}_1, \ldots, \hat{u}_k)$ is a basis of $\hat{\mathcal{T}}$. It yields

$$\hat{\boldsymbol{y}} = (\hat{y}_1, \dots, \hat{y}_n) = \hat{\boldsymbol{u}} G \tag{2.7}$$

where $G \in F(\delta)^{m \times n}$ is the rational transfer matrix, or the rational generating matrix, of the transducer (compare with [22]). When k = n = 1, G is called a rational transfer, or generating, function.

Any element of $F(\delta)$ may be written as a Laurent series $\sum_{\nu \ge \nu_0} \delta^{\nu} a_{\nu}, a_{\nu} \in F, \nu_0 \in \mathbb{Z}$. It is said to be *causal* if, and only if, $\nu_0 \ge 0$. The matrix G is said to be *causal* if, and only if, all its entries are causal.

Theorem 2.2 Any causal linear recurrent transducer possesses a rational causal transfer matrix. Conversely, any rational causal matrix is the transfer matrix of a causal linear recurrent transducer, which is controllable and observable.

Proof The first part is an immediate consequence of the definition of causality in subsection 2.2 and of the input-output relation (2.7). For the second part, utilize the right coprime factorization $G = ND^{-1}$, $N \in F[\delta]^{k \times n}$, $D \in F[\delta]^{n \times n}$, where D is invertible (see [8]). The transfer matrix of the transducer $\mathbf{y}D = \mathbf{u}N$, which is both controllable and observable (see [8]), is G.

2.5.2 Interconnection

Let $h_v : \Sigma \to S_v, v \in \Upsilon$, be a morphism of systems, *i.e.*, of finitely generated right $F[\delta]$ -modules. The corresponding fibered sum is a system interconnection (cf. [10]). Parallel and series interconnections are particular instances of system interconnections. The proof of the following result is straightforward.

Proposition 2.3 The transfer matrix of the parallel (resp. series) interconnection of linear recurrent transducers is the sum (resp. product) of the transfer matrices.

Remark 2.3 Interconnections as simple as those in Proposition 2.3 may lead to a lost of controllability or observability³ which is not readable via transfer matrices [10].

2.6 Input-output inversion

2.6.1 General results

The output rank of the transducer \mathcal{T} is $\rho = \operatorname{rk}(\operatorname{span}_{F[\delta]}(\boldsymbol{y}))$. Obviously, $0 \leq \rho \leq \min(k, n)$. The transducer \mathcal{T} is said to be right invertible (resp. left invertible) if, and only if, $\rho = k$ (resp. $\rho = n$).

Proposition 2.4 \mathcal{T} is right invertible, if and only if, the quotient module $\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{y})$ is torsion.

Proof We have $\operatorname{rk}(\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{y})) = \operatorname{rk}(\mathcal{T}) - \varrho$. Since $\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{u})$ is torsion, $\operatorname{rk}(\mathcal{T}) = \operatorname{rk}(\operatorname{span}_{F[\delta]}(\boldsymbol{u})) = k$. Thus $\operatorname{rk}(\mathcal{T}/\operatorname{span}_{F[\delta]}(\boldsymbol{y})) = 0$ if, and only if, $\varrho = k$.

In a more down to earth language, Lemma 2.4 means that \boldsymbol{u} may be obtained from \boldsymbol{y} thanks to difference equations. The example $y = u\delta$, where k = n = 1, shows that the right inverse transducer is not generally causal. Left invertibility means that the components of \boldsymbol{y} are $F[\delta]$ -linearly independent.

The next results are clear.

Proposition 2.5 The linear recurrent transducer \mathcal{T} is right (resp. left) invertible if, and only if, its transfer matrix is right (resp. left) invertible.

Corollary 2.2 If the linear recurrent transducer \mathcal{T} is right (resp. left) invertible, then $n \ge k$ (resp. $n \le k$).

If k = n, the transducer is said to be *square*. Then right and left invertibilities coincide. An *invertible* square transducer is right and left invertible.

2.6.2 Encoders

A linear recurrent transducer, which is right invertible, is called a *linear recurrent encoder*, or a *(time-varying) convolutional encoder*. If F is a field of constants, it is called a *(fixed) convolutional encoder*⁴. A square encoder is called a *linear recurrent encrypter*.

 $^{^{3}}$ The continuous-time examples in [10] (see also the references therein) may trivially be adapted to our discrete-time context.

⁴Even if F is a finite field, the existing literature does not seem to propose a unique definition of convolutional encoders.

2.7 Some useful constructions

2.7.1 Blocking

For any integer $\Omega > 1$, $F[\delta^{\Omega}] \subset F[\delta]$. Thus any right $F[\delta]$ -module \boldsymbol{M} may also be viewed as a right $F[\delta^{\Omega}]$ -module \boldsymbol{M}_{Ω} called the Ω^{th} -blocking, or Ω^{th} -interleaving, module.

Lemma 2.2 $\operatorname{rk}(M_{\Omega}) = \Omega \operatorname{rk}(M)$.

Proof If ξ_1, \ldots, ξ_ℓ are $F[\delta]$ -linearly independent elements in M, then the elements

 $\xi_1, \xi_1 \delta, \ldots, \xi_1 \delta^{\Omega-1}, \ldots, \xi_\ell, \xi_\ell \delta, \ldots, \xi_\ell \delta^{\Omega-1}$

are $F[\delta^{\Omega}]$ -linearly independent.

The Ω^{th} -blocking transducer, or Ω^{th} -interleaving transducer, \mathcal{T}_{Ω} of \mathcal{T} is the linear recurrent transducer defined by (compare with [25]):

- its module is the Ω^{th} -blocking module \mathcal{T}_{Ω} ,
- its input and output are respectively $(\boldsymbol{u}, \boldsymbol{u}\delta, \dots, \boldsymbol{u}\delta^{\Omega-1})$ and $(\boldsymbol{y}, \boldsymbol{y}\delta, \dots, \boldsymbol{y}\delta^{\Omega-1})$.

The next result is clear:

Proposition 2.6 If \mathcal{T} is controllable (resp. observable, right invertible, left invertible), then \mathcal{T}_{Ω} is also controllable (resp. observable, right invertible, left invertible).

2.7.2 Puncturing

Puncturing a linear recurrent transducer \mathcal{T} means taking a linear recurrent transducer \mathcal{T}_P defined by the same module, the same input and by an output which is a subset of \boldsymbol{y} . The next result is clear:

Proposition 2.7 If \mathcal{T} is controllable (resp. left invertible), then \mathcal{T}_P is also controllable (resp. left invertible). If \mathcal{T} is observable (resp. right invertible), then \mathcal{T}_P is not necessarily observable (resp. right invertible).

3 Some properties of linear recurrent codes

3.1 Equivalence of encoders and codes

3.1.1 Equivalence

Two linear recurrent encoders with inputs $\boldsymbol{u} = (u_1, \ldots, u_k)$, $\boldsymbol{u}' = (u_1, \ldots, u_{k'})$ and outputs $\boldsymbol{y} = (y_1, \ldots, y_n)$, $\boldsymbol{y}' = (y_1, \ldots, y_{n'})$ are said to be *equivalent* if, and only if, the following conditions are satisfied:

1.
$$n = n'$$
.

2. There exists $\sigma \in S_n$, where S_n is the symmetric group over $\{1, \ldots, n\}$, such that the mapping $y_{\iota} \mapsto y'_{\sigma\iota}$, $\iota = 1, \ldots, n$, defines an isomorphism between the modules $\operatorname{span}_{F[\delta]}(\boldsymbol{y})$ and $\operatorname{span}_{F[\delta]}(\boldsymbol{y}')$.

Proposition 3.1 The inputs of two equivalent linear recurrent encoders possess the same number of components.

Proof Let ρ and ρ' be the output ranks of the encoders \mathcal{T} and \mathcal{T}' . The right invertibility of \mathcal{T} and \mathcal{T}' implies $\rho = k$ and $\rho' = k'$. The equivalence of \mathcal{T} and \mathcal{T}' implies $\rho = \rho'$.

3.1.2 Codes

A linear recurrent code, or a (time-varying) convolutional code is an equivalence between linear recurrent encoders. From Proposition 3.1, we know already two integers $k, n, 0 < k \leq n$ which are attached to the code, which is therefore called a (n, k) linear recurrent code. Its rate is $\frac{k}{n}$. By a slight abuse of language, $\operatorname{span}_{F[\delta]}(\boldsymbol{y})$ is sometimes called a linear recurrent code, or a (time-varying) convolutional code. When F is a finite field of constants, a linear recurrent code is called a (fixed) convolutional code. A code is said to be free, or controllable if, and only if, the module $\operatorname{span}_{F[\delta]}(\boldsymbol{y})$ is free.

3.2 Syndrome formers

Let \mathcal{F}_n be the free right $F[\delta]$ -module, with basis $\bar{y}_1, \ldots, \bar{y}_n$. The mapping $\bar{y}_{\iota} \mapsto y_{\iota}, \iota = 1, \ldots, n$, defines an epimorphism $\mathcal{F}_n \to \operatorname{span}_{F[\delta]}(\boldsymbol{y})$ and the short exact sequence

$$0 \to \mathcal{F}_{n-k} \to \mathcal{F}_n \to \operatorname{span}_{F[\delta]}(\boldsymbol{y}) \to 0$$
(3.8)

where \mathcal{F}_{n-k} a free right $F[\delta]$ -module of rank n-k. A syndrome former of the code is a presentation matrix of $\operatorname{span}_{F[\delta]}(\boldsymbol{y})$, which corresponds here to the monomorphism $\mathcal{F}_{n-k} \to \mathcal{F}_n$.

The sequence (3.8) splits, *i.e.*, $\mathcal{F}_n \simeq \mathcal{F}_{n-k} \oplus \operatorname{span}_{F[\delta]}(\boldsymbol{y})$, if, and only if, the code is free.

3.3 Some properties of free codes

¿From now on and until the end of the paper codes are assumed to be free⁵. When F is a finite field of constants, a (fixed) convolutional code may be defined as a certain $F[\delta]$ -submodule of the $F[\delta]$ -module $\mathcal{L} = \{\sum_{v\geq 0} \delta^v a_{1v}, \ldots, \sum_{v\geq 0} \delta^v a_{nv}\}$ of *n*-tuple of formal power series. The relationship with our approach⁶ is given by Hom (span_{$F[\delta]}(\boldsymbol{y}), \mathcal{L}),$ *i.e.* $, by <math>F[\delta]$ -module morphisms $\Phi = (\phi_1, \ldots, \phi_n) : \operatorname{span}_{F[\delta]}(\boldsymbol{y}) \to \mathcal{L}, (y_1, \ldots, y_n) \mapsto (y_1\phi, \ldots, y_n\phi)$ (compare with [28]).</sub>

⁵When F is a finite field of constants, a (fixed) convolutional code is often defined as a vector subspace of $F(\delta)^{1 \times n}$ (see, e.g., [25] and the references therein.). With respect to this transfer matrix setting the freeness may always be assumed.

⁶This is more generally the relationship (see [6]) between our module-theoretic setting and Willems' behavioral approach [34].

3.3.1 Dual codes and parity check matrices

The image of \mathcal{F}_{n-k} in \mathcal{F}_n is called the *dual code*. A syndrome former of the dual code is called a *parity check matrix* of the code.

Remark 3.1 When F is a finite field of constants, the dual code of a convolutional code is usually defined as for block codes via an orthogonality relation. The explicit relationship with our definition will be given elsewhere [9].

3.3.2 Polynomial and basic encoders

A controllable and observable encoder \mathcal{E} is said to be *polynomial* if, and only if, \boldsymbol{u} is a basis of the free module \mathcal{E} . The next property is an immediate consequence of Theorem 2.2:

Proposition 3.2 A controllable and observable encoder is polynomial if, and only if, the entries of its transfer matrix are polynomial, i.e., belong to $F[\delta]$.

The polynomial encoder \mathcal{E} is said to be *basic* if, and only if, $\mathcal{E} = \operatorname{span}_{F[\delta]}(\boldsymbol{y})$. By taking for \boldsymbol{u} any basis of the free module $\operatorname{span}_{F[\delta]}(\boldsymbol{y})$ we obtain the

Proposition 3.3 Any free code admits a basic encoder.

3.3.3 Systematic encoders

Proposition 3.4 Any free code admits a systematic encoder, i.e., an encoder where k components of the output are identical to the k components of the input.

Proof The result is clear if k = n: \boldsymbol{y} is a basis of $\operatorname{span}_{F[\delta]}(\boldsymbol{y})$ and can be taken as an input. Assume that the result holds for $n = n_0 \ge k$. Take $n = n_0 + 1$. Since the components of \boldsymbol{y} are $F[\delta]$ -linearly dependent we may write

$$y_1\gamma_1 + \dots + y_{n_0+1}\gamma_{n_0+1} = 0 \tag{3.9}$$

where $\gamma_1, \ldots, \gamma_{n_0+1} \in F[\delta]$ are right coprime. At least one of the coefficients $\gamma_{\iota}, \iota = 1, \ldots, n_0 + 1$, γ_{n_0+1} for instance, when expressed as a sum (2.1), is such that $a_0 \neq 0$. Apply the assumption to the code spanned by y_1, \ldots, y_{n_0} and utilise the causal relation $y_{n_0+1} = -(y_1\gamma_1 + \cdots + y_{n_0}\gamma_{n_0})\gamma_{n_0+1}^{-1}$.

3.3.4 Non-catastrophic encoders

The ring of Laurent polynomials $F[\delta, \delta^{-1}]$ is the localized ring of $F[\delta]$ by the multiplicative monoid $\{\delta^s \mid s \geq 0\}$, which satisfies the right Ore condition. The corresponding localized right $F[\delta, \delta^{-1}]$ -module $\mathcal{E} \otimes_{F[\delta]} F[\delta, \delta^{-1}]$ of $\operatorname{span}_{F[\delta]}(\boldsymbol{u})$ is free, if \mathcal{E} is controllable. The canonical mapping $\mathcal{E} \to \mathcal{E} \otimes_{F[\delta]} F[\delta, \delta^{-1}], v \mapsto v \otimes 1$, being injective, \mathcal{E} may be considered as a subset of $\mathcal{E} \otimes_{F[\delta]} F[\delta, \delta^{-1}]$. A controllable encoder is said to be *non-catastrophic* if, and only if, \boldsymbol{u} belongs to $\operatorname{span}_{F[\delta]}(\boldsymbol{y}) \otimes_{F[\delta]} F[\delta, \delta^{-1}]$. The next result is an immediate consequence of Proposition 3.3. **Proposition 3.5** Any free code admits a non-catastrophic encoder.

3.4 Forney's theorem

3.4.1 An important filtration

Define a filtration of $F[\delta]$ by setting $\mathbf{F}_{\alpha} = \{\delta^{\alpha}P\}, \alpha \geq 0, P \in F[\delta]$. Thus $F[\delta] = \mathbf{F}_0 \supset \mathbf{F}_1 \supset \ldots$. The corresponding filtration for the free module $\operatorname{span}_{F[\delta]}(\boldsymbol{y})$ is obtained by setting $\mathbf{C}_{\alpha} = \operatorname{span}_{F[\delta]}(\boldsymbol{y})\mathbf{F}_{\alpha}$. Thus $\operatorname{span}_{F[\delta]}(\boldsymbol{y}) = \mathbf{C}_0 \supset \mathbf{C}_1 \supset \ldots$. Any element $x \in \operatorname{span}_{F[\delta]}(\boldsymbol{y})$ may be written uniquely as a finite sum

$$x = \sum_{\alpha=\nu}^{\mu} \xi_{\alpha} \delta^{\alpha} \tag{3.10}$$

where $\xi_{\alpha}\delta^{\alpha}$ is homogeneous, of weight α (ξ_{α} is homogeneous of weight 0). The element x is said to be of order ν (resp. degree μ) if, and only if, $\xi_{\nu} \neq 0$ (resp. $\xi_{\mu} \neq 0$). It is homogeneous if, and only if, $\nu = \mu$. The next results are clear.

Lemma 3.1 The semi-linear linear mapping $\delta^{\ell} : C_{\alpha} \to C_{\alpha+\ell}, \ \ell > 0$, is bijective.

Corollary 3.1 For any homogeneous element $x_{\alpha+\ell}$ of order $\alpha + \ell$ there exists a homogeneous element x_{α} of order α such that $x_{\alpha}\delta^{\ell} = x_{\nu+\ell}$.

Lemma 3.2 Homogeneous elements of order ν are $F[\delta]$ -linearly independent if, and only if, they are F-linearly independent.

Corollary 3.2 The *F*-vector space $C_{\alpha}/C_{\alpha+1}$ is of dimension *k*.

3.4.2 The result

Let ε_1 be the highest degree of the components of \boldsymbol{y} , when written as in (3.10). Let V_1 be the ϖ_1 -dimensional *F*-vector space spanned by the corresponding homogeneous elements. Choose according to Corollary 3.1 homogeneous elements $u_1, \ldots, u_{\varpi_1}$, of degree 0, such that $V_1 = \operatorname{span}(u_1\delta^{\varepsilon_1}, \ldots, u_{\varpi_1}\delta^{\varepsilon_1})$. Let $\varepsilon_2 < \varepsilon_1$ be the first integer such that $u_1\delta^{\varepsilon_2}, \ldots, u_{\varpi_1}\delta^{\varepsilon_2}$ does not span the *F*-vector space spanned by the homogeneous components of order ε_2 in \boldsymbol{y} . Complete then $u_1, \ldots, u_{\varpi_1}$ as above. We obtain a basis $\boldsymbol{u} = (u_1, \ldots, u_m)$ and a corresponding polynomial transfer matrix with lines of degrees⁷ $e_1 \leq e_2 \leq \cdots \leq e_k$.

We must show that the above basic encoder is *minimal*, *i.e.*, that the degrees $f_1 \leq f_2 \leq \cdots \leq f_k$ of the lines of any polynomial generating matrix verify $e_{\iota} \leq f_{\iota}$, $\iota = 1, \ldots, k$. The next lemma, which is obvious, demonstrates that this result holds true if k = 1.

Lemma 3.3 Take a free $F[\delta]$ -module M of rank 1. Two bases b and b' are related by $b = \gamma b'$, $\gamma \in F$, $\gamma \neq 0$. Let $N \supseteq M$ be another free $F[\delta]$ -module of rank 1. Then, for any basis c of $N, b = \pi b, \pi \in F[\delta]$.

⁷The degree of a line is the maximum degree of its entries.

By considering the quotient module $\operatorname{span}_{F[\delta]}(\boldsymbol{y})/\operatorname{span}_{F[\delta]}(u_1)$, which is free of rank k-1, we obtain the minimality for any $k \geq 2$, assuming that it holds true for k-1.

We have proved

Theorem 3.1 For any free linear recurrent code, there exists a basic encoder, called minimal, such that est the degrees of the lines of its transfer matrix are $e_1 \leq e_2 \leq \cdots \leq e_k$. The degrees $f_1 \leq f_2 \leq \cdots \leq f_k$ of the lines of a transfer matrix of any equivalent polynomial encoder verify $e_{\kappa} \leq f_{\kappa}$, $\kappa = 1, \ldots, k$.

A corresponding input is called a *Forney input*.

4 Conclusion

More details might be found in [9] as well as a new connection between convolutional and block codes. The following topics will be discussed in subsequent works:

- Turbo-codes [1]. They are often given by two convolutional encoders in parallel with an interleaver. They are known to be related to time-varying convolutional codes.
- Non-linear tree codes which correspond to non-linear encoders, *i.e.*, to right invertible non-linear input-output systems.
- Cryptography which will be associated to invertible square input-output systems.

References

- C. Berrou, A. Glavieux, Near-optimum error-correcting coding and decoding: Turbocodes, *IEEE Trans. Communicat.* 44 (1996) 1261-1271.
- [2] R.M. Cohn, *Difference Algebra*. Interscience (1965).
- [3] A. Dholakia, Introduction to Convolutional Codes with Applications. Kluwer (1994).
- [4] F. Fagnani, S. Zampieri, System-theoretic properties of convolutional codes over rings, IEEE Trans. Information Theory 47 (2001) 2256-2274.
- [5] M. Fliess, Some basic structural properties of generalized linear systems, Systems Control Lett. 15 (1990) 391-396.
- [6] M. Fliess, A remark on Willems' trajectory characterization of linear controllability. Systems Control Lett. 19 (1992) 43-45.
- [7] M. Fliess, Reversible linear and nonlinear discrete-time dynamics, *IEEE Trans. Au*tomat. Control 37 (1992) 1144-1153.

- [8] Fliess M., Une interprétation algébrique de la transformation de Laplace et des matrices de transfert, *Linear Algebra Appl.* 203-204 (1994) 429-442.
- [9] M. Fliess, On the structure of linear recurrent error-control codes, to appear in *ESAIM:* Control Optimisation Calculus Variations.
- [10] M. Fliess, H. Bourlès, Discussing some examples of linear system interconnections, Systems Control Lett. 27 (1996) 1-7.
- [11] M. Fliess, J. Lévine, P. Martin, P. Rouchon, Flatness and defect of non-linear systems: introductory theory and applications, *Internat. J. Control* 61 (1995) 1327-1361.
- [12] M. Fliess, R. Marquez, Continuous-time linear predictive control and flatness: a moduletheoretic setting with examples, *Internat. J. Control* 73 (2000) 606-623.
- [13] M. Fliess, R. Marquez, Une approche intrinsèque de la commande prédictive linéaire discrète, APII J. europ. Syst. automat. 35 (2001) 127-147.
- [14] M. Fliess, H. Mounier, Controllability and observability of linear delay systems: an algebraic approach, ESAIM: Control Optimisation Calculus Variations 3 (1998) 301-314.
- [15] G.D. Forney, Jr, Convolutional codes I: Algebraic structure, *IEEE Trans. Information Theory* 16 (1970) 720-738.
- [16] G.D. Forney, Jr, Minimal bases of rational vector spaces, with applications to multivariable linear systems, SIAM J. Control 13 (1975) 493-520.
- [17] G.D. Forney, Jr, Algebraic structure of convolutional codes and algebraic system theory, in *Mathematical System Theory - The Influence of R.E. Kalman*, A.C. Antoulas Ed., Springer (1991) 527-557.
- [18] G.D. Forney, Jr, M.D. Trott, The dynamics of group codes: state-space, trellis diagrams and canonical encoders, *IEEE Trans. Information Theory* **39** (1993) 1491-1513.
- [19] G.D. Forney, Jr, B. Marcus, N.T. Sindhushayana, M. Trott, A multilingual dictionary: System theory, coding theory, symbolic dynamics and automata theory, in *Different Aspects of Coding Theory*, Proc. Symp. Appl. Math. 50, Amer. Math. Soc. (1995) 109-138.
- [20] R. Johannesson, K. Sh. Zigangirov, Fundamentals of Convolutional Coding. IEEE Press (1999).
- [21] T. Kailath, *Linear Systems*. Prentice-Hall (1979).
- [22] E.W. Kamen, P.P. Khargonekar, K.R. Poola, A transfer-function approach to linear time-varying discrete-time systems, SIAM J. Control Optimiz. 23 (1985) 550-565.

- [23] T.Y. Lam, Lectures on Rings and Modules. Springer (1999).
- [24] J.L. Massey, M.K. Sain, Codes, automata and contnuous systems: explicit interconnections, *IEEE Trans. Automat. Control* 12 (1967) 644-650.
- [25] R.J. McEliece, The algebraic theory of convolutional codes, in *Handbook of Coding Theory*, Pless V., Huffman W.C. (Eds), Elsevier, vol. 1 (1998) 1065-1138.
- [26] J.C. McConnel, J.C. Robson, Noncommutative Noetherian Rings. Wiley (1987).
- [27] P. Piret, Convolutional Codes, an Algebraic Approach. MIT Press (1988).
- [28] J. Rosenthal, Connections between linear systems and convolutional codes, in Codes, Systems and Graphical Models, B. Marcus, J. Rosenthal (Eds), Springer (2000) 39-66.
- [29] J. Rosenthal, J.M. Schumacher, E.V. York, On behaviors and convolutional codes, *IEEE Trans. Informat. Theory* 42 (1996) 1881-1891.
- [30] J. Rosenthal, E.V. York, BCH convolutional codes, *IEEE Trans. Informat. Theory* 45 (1999) 1833-1844.
- [31] J. Rotman, An Introduction to Homological Algebra. Academic Press (1979).
- [32] A.J. Viterbi, J.K. Omura, Principles of Digital Communication and Coding. McGraw-Hill (1979).
- [33] L. Weiss, Controllability, realization and stability of discrete-time systems, SIAM J. Control 10 (1972) 230-251.
- [34] J.C. Willems, Paradigms and puzzles in the theory of dynamical systems, *IEEE Trans.* Automat. Control **36** (1991) 259-294.