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Abstract

In this note we will construct and investigate some small cyclic convolutional codes.
Among other things we will present an infinite series of one-dimensional CCCs over F4

with length 3 and increasing constraint length (complexity). Our computations show
that the first codes in this series have very good free distance.

1 Introduction

In the seventies a short series of papers appeared discussing the notion of cyclic convolutional

codes (CCC, for short), see [3, 4, 5, 6]. Thereafter, the topic disappeared from the coding

theory stage. However, we think it is worth being brought back into the community of

convolutional coding theory. In this short note we want to discuss some phenomena of

CCCs and present a few examples of CCCs with small parameters and their respective

free distances. One of the main results of the papers above is the fact that there are no

CCCs other than cyclic block codes, if cyclicity of a convolutional code is understood as the

property where the cyclic shift of each codeword (a vector in F((D))n) is a codeword itself.

This insight has led to a more general notion of cyclicity for convolutional codes. Just like

in the case of block codes, a CCC is best described as an ideal in a suitable quotient ring.

However, in contrast to block codes, the quotient ring now is a noncommutative polynomial

ring whose multiplication is based on a nontrivial automorphism of the constants.

This concept of CCCs raises the question as to what the smallest length of a binary CCC or

a CCC over F3 or F4 is. While this question is answered in [6] for the binary case, we will

discuss the two other cases. The examples will show that the class of CCCs contain some

codes with fairly good free distances.
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2 Cyclic Convolutional Codes

In this section we recall the fundamental notions and results for cyclic convolutional codes;

for the details the reader is asked to consult the papers [5, 6].

Recall that an (n, k)-convolutional code over a finite field F is a k-dimensional F((D))-

subspace C of F((D))n of the form

C = imG := {uG | u ∈ F((D))k} ⊆ F((D))n with G ∈ F[D]k×n, rkG = k,

where

F[D] =
{ N∑

j=0

Djfj

∣∣∣N ∈ N, fj ∈ F
}

and F((D)) =
{ ∞∑

j=l

Djfj

∣∣∣ l ∈ Z, fj ∈ F
}

are the polynomial ring and the field of formal Laurent series over F in the delay-operator D,

respectively. (Due to a left-module structure to be introduced later in this section it is

advantageous to put the coefficients to the right of the indeterminate D.) The matrix G is

called a generator matrix of the code C. Without loss of generality it can be assumed basic,

i. e. the k-minors γ1, . . . , γN ∈ F[D] of G (where N =
(

n
k

)
) are coprime polynomials. In other

words, the encoder is non-catastrophic. In that case the number

δ(C) := max{deg γi | i = 1, . . . , N}

does not depend on the choice of G and is called the complexity of the code. It is also

well-known [1] that we can assume G = (gij) to be minimal, i. e. the complexity equals the

sum of the row degrees: δ =
∑k

i=1 maxj=1,...,n deg gij. If δ = 0, the code can be regarded as

a block code since it has a constant minimal generator matrix.

In the following we will assume that the length n and the characteristic of the field F are

coprime. As in the case of cyclic block codes, we introduce the quotient ring

Rn := F[x]/〈xn − 1〉,

which, as an F-vector space, is isomorphic to Fn. Then we have the identification

ψ : F((D))n −→ Rn((D)) =
{ ∞∑

j=l

Djvj

∣∣∣ l ∈ Z, vj ∈ Rn

}
(

∞∑
j=l

Djv0j, . . . ,

∞∑
j=l

Djvn−1,j

)
7−→

∞∑
j=l

n−1∑
i=0

Djvijx
i.

 (2.1)

The set Rn((D)) carries a natural left Rn-module structure (coefficientwise multiplication).

Just like in the case of block codes, left-multiplication of v ∈ Rn((D)) by x ∈ Rn corresponds
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to the cyclic shift of the associated vector ψ−1(v) ∈ F((D))n. In the following we will not

distinguish between F((D))n and Rn((D)). The following result, which has been proven in [6,

Thm. 6] (see also [4, Thm. 6.4] for the binary case), shows that there are no convolutional

codes (other than block codes) that are cyclic in the usual sense. More precisely, we have

Theorem 2.1

Let C ⊆ Rn((D)) be a convolutional code (i. e. an F((D))-subspace of Rn((D))) satisfying the

condition

v ∈ C =⇒ xv ∈ C.

Then δ(C) = 0, i. e. C is a block code.

This negative result has led to the following generalized concept of cyclic shifts and CCCs,

see [5, 6].

Definition 2.2

Let σ ∈ AutF(Rn), the group of F-algebra-automorphisms of Rn.

(a) The multiplication

Rn ×Rn((D)) −→ Rn((D)),
(
a,

∞∑
j=l

Djvj

)
7−→ a ∗

∞∑
j=l

Djvj :=
∞∑
j=l

Djσj(a)vj

turns Rn((D)) into a left Rn-module. To be precise, we will call this the (Rn, σ)-module

structure on Rn((D)). Extending this multiplication in the obvious way

Rn((D))×Rn((D)) −→ Rn((D))( ∞∑
µ=m

Dµwµ,
∞∑
j=l

Djvj

)
7−→

∞∑
µ=m

Dµwµ ∗
∞∑
j=l

Djvj :=
∞∑

i=m+l

Di

∞∑
µ+j=i

σj(wµ)vj

we obtain a non-commutative ring, denoted by (Rn((D)), σ).

(b) A subset C ⊆ Rn((D)) is called a convolutional code, if C is an F((D))-subspace. It

is called a σ-cyclic convolutional code (for short, σ-CCC), if it is additionally a left

(Rn, σ)-submodule of Rn((D)), hence if it also satisfies

v ∈ C =⇒ x ∗ v ∈ C. (2.2)

Hence the σ-CCCs are the left-ideals in the non-commutative ring (Rn((D)), σ).

(c) A σ-cyclic convolutional code is called proper if it has complexity δ > 0. Hence an

improper σ-CCC has a constant generator matrix and therefore is the same as a block

code.

Remark 2.3

(a) Of course, for σ = idRn the above defined multiplication ∗ is just the usual multiplication.

In this case σ-cyclicity corresponds to the usual cyclic shift of the associated vectors and

Theorem 2.1 applies.
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(b) Piret [5] chooses the automorphism σ more restrictively than in the definition above.

Only monomial automorphisms, i. e. σ(x) = xπ for some π ∈ Z relatively prime to n,

were considered.

(c) It is easy to see from the multiplication ∗, that if G =
∑m

i=0D
iGi ∈ F[D]k×n is the

generator matrix of a σ-CCC for some automorphism σ, then G0 generates a cyclic

block code.

3 Some Small Cyclic Convolutional Codes

In this section we will present some CCCs with small parameters and their respective free

distances. The main tool for the construction is a theorem by Piret [5] concerning the struc-

ture of CCCs. Recall that Piret only considers monomial automorphisms, see Rem. 2.3(b).

However, it turns out that his (quite sophisticated) considerations work just as well for any

automorphism on Rn and lead, among other things, to the following result.

Theorem 3.1

Let n, q ∈ N with q being a prime power and (n, q) = 1. Let F be a field with q elements

and let σ ∈ AutF(Rn) be any automorphism. Choose an idempotent e ∈ Rn generating an

irreducible cyclic block code 〈e〉 ⊆ Rn. Let k := dimF 〈e〉 and h ∈ F[x] be the parity check

polynomial of 〈e〉. Finally, pick an element f ∈ Rn sucht that f modh is a primitive element

of the field F[x]/〈h〉 and a sequence (bi)i∈N0 in N0. Then for every m ∈ N the polynomial

g :=
m∑

i=0

Diσi(e)
(
σi(f)

)bi

generates an irreducible (n, k)-CCC in Rn((D)).

Remark 3.2

(a) Notice, that the set {g, x∗g, . . . , xk−1∗g} is an F((D))-basis of the code, hence a generator

matrix is given by

G =


ψ−1(g)

ψ−1(x ∗ g)
...

ψ−1(xk−1 ∗ g)

 ∈ F[D]k×n. (3.1)

Thus the codewords (u0, . . . , uk−1)G ∈ F((D))n, ui ∈ F((D)), correspond, via the isomor-

phism ψ in (2.1), to the product
∑k−1

i=0 uix
i ∗ g. Since the parity check polynomial h of

the ideal 〈e〉 has degree k, this indeed leads to all elements of the left ideal generated

by g, i. e. we have{ k−1∑
i=0

uix
i ∗ g | u0, . . . , uk−1 ∈ F((D))

}
=
{
u ∗ g | u ∈ Rn((D))

}
.
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Unfortunately, it is not clear how the complexity of the CCC can be determined directly

from the given data. In general the construction might lead to non-basic generator

matrices and in the extreme case to cyclic block codes.

(b) In [5] and also in [6] it is shown that each CCC is the direct sum of CCCs of the form

as in Theorem 3.1. The direct summands are determined by the decomposition of the

associated cyclic block code (given by the constant terms) into irreducible block codes.

In the theorem above, the irreducibility guarantees that the CCC has the same dimension

as the cyclic block code one starts with.

We will illustrate the construction of Theorem 3.1 for some small parameters. In [6] the

case of binary CCCs was considered. It has been shown that a proper binary CCC over F2

has length at least 7. In the following we will see that there are proper CCCs of length 2

(resp. 3) over F3 (resp. F4).

Example 3.3

In this example we show the existence of a (2, 1)-CCC over the field F3. In order to do

so we need a nontrivial automorphism of R2 := F3[x]/〈x2−1〉. Using the isomorphism R2
∼=

F3[x]/〈x−1〉 ⊕ F3[x]/〈x+1〉 it is easily seen that σ(x) := 2x defines the only nontrivial element

of AutF3(R2). Moreover, there are two nontrivial (2, 1)-cyclic block codes over F3, having

generating idempotents e1 := 2 + x and e2 := 2 + 2x respectively. Let us pick e1. Since

σj(e1) = e2 for odd j and σj(e1) = e1 for even j, we obtain a σ-CCC for every δ > 0 via the

generator polynomial

gδ :=
δ∑

i=0

Diσi(e1) =
δ∑

i=0

Di(2 + 2ix).

Using the isomorphism (2.1) this leads to the generator matrices

G(δ) := [2 + 2D + 2D2 + . . .+ 2Dδ, 1 + 2D +D2 + . . .+ 2δDδ] ∈ F3[D]1×2

of (2, 1)-CCCs over F3 (note that in a generator matrix it doesn’t matter if the coefficients

are put to the left or to the right of D since σ is the identity on F3). It is easy to see that

G(δ) is basic iff δ is even or δ = 1. If δ is odd, then G(δ) =
∑(δ−1)/2

i=0 D2iG(1), hence generates

the same code as G(1). It is obvious that dfree(imG(1)) = 4 and dfree(imG(2)) = 6. Moreover,

one can easily verify that

dfree(imG(δ)) = weight
(
(1 + 2D2)G(δ)

)
= 8 for all even δ ≥ 4.

But we can do better. Theorem 3.1 allows for some additional factors in the coefficients

of gδ. Using f = 2 and b2 = 1 we get the CCC with generator matrix

Ĝ(6) := [2 + 2D +D2 + 2D3 +D4 + 2D5 +D6, 1 + 2D + 2D2 + 2D3 + 2D4 + 2D5 + 2D6].
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The matrix is basic, hence the complexity of the code is δ = 6 and using a computer algebra

program one can check that its free distance is 10. In a similar way we obtain basic generator

matrices

Ĝ(5) :=

[
2 + 2D + 2D2 + 2D3 + 2D4 +D5

1 + 2D +D2 + 2D3 +D4 +D5

]T

and

Ĝ(7) :=

[
2 +D + 2D2 + 2D3 +D4 + 2D5 + 2D6 +D7

1 +D +D2 + 2D3 + 2D4 + 2D5 +D6 +D7

]T

which lead to CCCs with distances 9 and 11, respectively.

Using the generalized Heller bound

dfree ≤ min

{⌊
n(m+ i)qk(m+i)−δ−1(q − 1)

qk(m+i)−δ − 1

⌋ ∣∣∣∣∣ i ∈ N

}
(3.2)

for the free distance of an (n, k)-convolutional code over Fq with complexity δ and memory m

(see [2, p. 132] for the binary case), one can check that the code imG′′ above is just one less

than the Heller bound.

Example 3.4

Now we construct some small CCCs over F4 = {0, 1, α, α2}, where α2 + α+ 1 = 0.

(a) We will restrict ourselves to length n = 3 first. We proceed as in Example 3.3. Let

R3 := F4[x]/〈x3 − 1〉. Using the isomorphism R3
∼= F4[x]/〈x− 1〉 ⊕ F4[x]/〈x− α〉 ⊕

F4[x]/〈x− α2〉, one can see that the F4-algebra R3 has 6 automorphisms. One of them

is given by σ(x) = α2x. Proceeding as in Theorem 3.1, we begin with a generating

idempotent of an irreducible cyclic block code. We choose the idempotent e0 := 1 +

αx + α2x2 ∈ R3, which generates the 1-dimensional cyclic block code with generator

polynomial (x− 1)(x− α). One easily calculates

σ(e0) = 1 + x+ x2 =: e1, σ
2(e0) = 1 + α2x+ αx2 =: e2, σ

3(e0) = e0.

Hence we get σ-CCCs of length n = 3 and dimension k = 1 via the the generating

polynomials

gδ :=
δ∑

i=0

Dieimod 3

= (1 + αx+ α2x2) +D(1 + x+ x2) +D2(1 + α2x+ αx2) +D3(1 + αx+ α2x2)

+D4(1 + x+ x2) +D5(1 + α2x+ αx2) +D6(1 + αx+ α2x2) + . . .

and with the generator matrices

G(δ) :=
δ∑

i=0

DiGimod 3, where G0 = [1, α, α2], G1 = [1, 1, 1], G2 = [1, α2, α].
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Obviously, the matrices are not basic if δ > 2 and δ ≡ 2 mod 3. In the other cases, i. e.

δ = 2 or δ 6≡ 2 mod 3, the matrices G(δ) are basic. (One can even show that in these

cases the first two entries of G(δ) are coprime.) Hence we get two series of basic generator

matrices with constant sizes and increasing complexities (for δ ≡ 0 mod 3 and for δ ≡ 1

mod 3). We tested some of the first codes in these series and obtained free distances as

follows.

dfree (im [1 +D +D2, α +D +D2α2, α2 +D +D2α]) = 9,

dfree (im [1 +D +D2 +D3, α +D +D2α2 +D3α, α2 +D +D2α+D3α2]) = 12,

dfree

im

 1 +D +D2 +D3 +D4

α+D +D2α2 +D3α+D4

α2 +D +D2α+D3α2 +D4

T = 13

and

dfree

im

 1 +D +D2 +D3 +D4 +D5 +D6

α+D +D2α2 +D3α+D4 +D5α2 +D6α

α2 +D +D2α+D3α2 +D4 +D5α+D6α2

T = 15.

Notice that the free distances of imG(2) and imG(3) are optimal for codes with parameters

(3, 1) and complexity 2 and 3, respectively. Hence these codes are MDS-convolutional

codes in the sense of [7]. The free distance of the code imG(4) is just one less than the

Heller bound (3.2).

(b) Let us now switch to length n = 5. In this case the F4-algebra

R5 := F4[x]/〈x5 − 1〉
∼= F4[x]〈x− 1〉 ⊕ F4[x]/〈x2 + α2x+ 1〉 ⊕ F4[x]/〈x2 + αx+ 1〉

has 8 automorphisms one of which is given by σ(x) = x4 + αx3 + α2x2 + x. Choosing

the idempotent e := αx + α2x2 + α2x3 + αx4, which generates the 2-dimensional block

code 〈(x− 1)(x2 + α2x+ 1)〉, we obtain for instance for δ = 1 the polynomial

g := (αx+ α2x2 + α2x3 + αx4) +D(α2x+ αx2 + αx3 + α2x4).

Calculating x ∗ g leads to the generator matrix (see (3.1))

G =

[
0 α+Dα2 α2 +Dα α2 +Dα α+Dα2

α+Dα Dα2 α α2 +Dα2 α2 +Dα

]
.

It is easy to see that the matrix G is basic and that dfree(imG) = 8, since both cyclic

block codes, 〈e〉 and 〈σ(e)〉, have distance 4. The Heller bound shows that this code is

optimal among all (5, 2)-codes over F4 with complexity δ = 2.

The examples presented above show that some of the constructions lead to quite good

convolutional codes. We think that it is worthwhile resuming the investigation of CCCs
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as it was initiated in the seventies by Piret and Roos. In particular, the examples above

give rise to the question whether one can explicitly construct a family of (n, k, δ)-CCCs with

fixed parameters (n, k), increasing δ, and good free distances. Example 3.4 (a) looks very

promising to us in this regard.
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